Key Points
-
p53 is a key tumour suppressor and master regulatory transcription factor that is altered in most human cancers. Several stresses lead to p53 activation, which results in various biological outcomes, including cell cycle arrest and apoptosis. Each of these events seems to contribute to tumour suppression. The p53 network can be affected by variation in p53 levels and the variety of genes targeted.
-
The extent of p53 transactivation and transcriptional repression is influenced by many factors, including p53 levels, cofactors and the specific response element (RE) sequences, all of which contribute to the role that p53 has in the aetiology of cancer. Cooperativity in cis between p53 and other transcription factors, such as oestrogen receptors, in the activation of canonical and non-canonical REs greatly expands the p53 master regulatory network.
-
Essential components in the p53-mediated transactivation of target genes are the p53 RE sequences, which differ individually from the consensus sequence and support p53 transactivation to varying extents. Transactivation assays developed in budding yeast and human cells have been valuable tools for defining and assessing the p53 transcriptional functionality of potential RE targets.
-
Non-canonical sequences that differ significantly from consensus can also support transactivation by p53, thereby greatly expanding the p53 transcriptional network. Canononical and non-canonical p53 REs can be transactivated by several p53 mutants with altered functionality, many of which are associated with cancer.
-
Using information about the functionality of p53 REs, it seems that in the evolution of humans and primates many DNA metabolism and repair genes have evolved to become responsive to p53 through the inclusion of functional p53 REs.
Abstract
The p53 tumour suppressor is modified through mutation or changes in expression in most cancers, leading to the altered regulation of hundreds of genes that are directly influenced by this sequence-specific transcription factor. Central to the p53 master regulatory network are the target response element (RE) sequences. The extent of p53 transactivation and transcriptional repression is influenced by many factors, including p53 levels, cofactors and the specific RE sequences, all of which contribute to the role that p53 has in the aetiology of cancer. This Review describes the identification and functionality of REs and highlights the inclusion of non-canonical REs that expand the universe of genes and regulation mechanisms in the p53 tumour suppressor network.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Sun, X., Shimizu, H. & Yamamoto, K. Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression. Mol. Cell Biol. 15, 4489–4496 (1995).
Wang, S. & El-Deiry, W. S. p73 or p53 directly regulates human p53 transcription to maintain cell cycle checkpoints. Cancer Res. 66, 6982–6989 (2006).
Le, M. T. et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 23, 862–876 (2009).
Grover, R., Ray, P. S. & Das, S. Polypyrimidine tract binding protein regulates IRES-mediated translation of p53 isoforms. Cell Cycle 7, 2189–2198 (2008).
Mahmoudi, S. et al. Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol. Cell 33, 462–471 (2009).
Ofir-Rosenfeld, Y., Boggs, K., Michael, D., Kastan, M. B. & Oren, M. Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol. Cell 32, 180–189 (2008).
Candeias, M. M. et al. P53 mRNA controls p53 activity by managing Mdm2 functions. Nature Cell Biol. 10, 1098–1105 (2008).
Mosner, J. et al. Negative feedback regulation of wild-type p53 biosynthesis. EMBO J. 14, 4442–4449 (1995).
Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nature Rev. Cancer 4, 793–805 (2004).
Hu, W., Feng, Z., Teresky, A. K. & Levine, A. J. p53 regulates maternal reproduction through LIF. Nature 450, 721–724 (2007).
Helton, E. S. & Chen, X. p53 modulation of the DNA damage response. J. Cell Biochem. 100, 883–896 (2007).
Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nature Rev. Mol. Cell Biol. 9, 402–412 (2008). A comprehensive review that provides one of the most recent collations of verified human p53-responsive genes and their p53 REs.
Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009). This excellent review covers several of the fundamental aspects of p53 biology.
Vousden, K. H. Outcomes of p53 activation — spoilt for choice. J. Cell Sci. 119, 5015–5020 (2006).
Kastan, M. B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia–telangiectasia. Cell 71, 587–597 (1992).
Garbe, J. C., Holst, C. R., Bassett, E., Tlsty, T. & Stampfer, M. R. Inactivation of p53 function in cultured human mammary epithelial cells turns the telomere-length dependent senescence barrier from agonescence into crisis. Cell Cycle 6, 1927–1936 (2007).
Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).
Green, D. R. & Chipuk, J. E. p53 and metabolism: inside the TIGAR. Cell 126, 30–32 (2006).
Teodoro, J. G., Parker, A. E., Zhu, X. & Green, M. R. p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 313, 968–971 (2006).
Zhang, L. et al. Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res. 60, 3655–3661 (2000).
Pal, S., Datta, K. & Mukhopadhyay, D. Central role of p53 on regulation of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) expression in mammary carcinoma. Cancer Res. 61, 6952–6957 (2001).
Menendez, D. et al. A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network. Proc. Natl Acad. Sci. USA 103, 1406–1411 (2006).
Taura, M. et al. p53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines. Mol. Cell. Biol. 28, 6557–6567 (2008).
Roger, L., Gadea, G. & Roux, P. Control of cell migration: a tumour suppressor function for p53? Biol. Cell 98, 141–152 (2006).
Singh, K. et al. p53 target gene SMAR1 is dysregulated in breast cancer: its role in cancer cell migration and invasion. PLoS ONE 2, e660 (2007).
Qin, Q. et al. A novel function for p53: regulation of growth cone motility through interaction with Rho kinase. J. Neurosci. 29, 5183–5192 (2009).
Molchadsky, A. et al. p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PLoS ONE 3, e3707 (2008).
Tedeschi, A. & Di Giovanni, S. The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Rep. 10, 576–583 (2009).
Yu, X., Harris, S. L. & Levine, A. J. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 66, 4795–4801 (2006).
He, L., He, X., Lowe, S. W. & Hannon, G. J. MicroRNAs join the p53 network —another piece in the tumour-suppression puzzle. Nature Rev. Cancer 7, 819–822 (2007).
Braun, C. J. et al. p53-responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Res. 68, 10094–10104 (2008).
Sinha, A. U., Kaimal, V., Chen, J. & Jegga, A. G. Dissecting microregulation of a master regulatory network. BMC Genomics 9, 88 (2008).
Yamakuchi, M., Ferlito, M. & Lowenstein, C. J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl Acad. Sci. USA 105, 13421–13426 (2008).
Brosh, R. & Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nature Rev. Cancer 9, 701–713 (2009).
Christophorou, M. A., Ringshausen, I., Finch, A. J., Swigart, L. B. & Evan, G. I. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443, 214–217 (2006).
Lozano, G. The oncogenic roles of p53 mutants in mouse models. Curr. Opin. Genet. Dev. 17, 66–70 (2007).
Martins, C. P., Brown-Swigart, L. & Evan, G. I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323–1334 (2006).
Iwakuma, T. & Lozano, G. Crippling p53 activities via knock-in mutations in mouse models. Oncogene 26, 2177–2184 (2007).
Liu, G. et al. High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc. Natl Acad. Sci. USA 97, 4174–4179 (2000).
Ryan, K. M. & Vousden, K. H. Characterization of structural p53 mutants which show selective defects in apoptosis but not cell cycle arrest. Mol. Cell. Biol. 18, 3692–3698 (1998). The transcriptional effect of different p53 mutants on the selection of gene targets is described in this paper.
Monti, P. et al. Transcriptional functionality of germ line p53 mutants influences cancer phenotype. Clin. Cancer Res. 13, 3789–3795 (2007).
Petitjean, A., Achatz, M. I., Borresen-Dale, A. L., Hainaut, P. & Olivier, M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157–2165 (2007).
el-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W. & Vogelstein, B. Definition of a consensus binding site for p53. Nature Genet. 1, 45–49 (1992). One of the classic papers in the p53 field. It is the starting point for understanding p53 REs.
Funk, W. D., Pak, D. T., Karas, R. H., Wright, W. E. & Shay, J. W. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol. 12, 2866–2871 (1992).
Veprintsev, D. B. & Fersht, A. R. Algorithm for prediction of tumour suppressor p53 affinity for binding sites in DNA. Nucleic Acids Res. 36, 1589–1598 (2008). This paper evaluates binding affinities for systematically mutated consensus p53 DNA-binding sequences and presents a binding predictor for p53 REs.
Espinosa, J. M. & Emerson, B. M. Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol. Cell 8, 57–69 (2001).
Saramaki, A., Banwell, C. M., Campbell, M. J. & Carlberg, C. Regulation of the human p21(waf1/cip1) gene promoter via multiple binding sites for p53 and the vitamin D3 receptor. Nucleic Acids Res. 34, 543–554 (2006).
Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002).
Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).
Wei, C. L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219 (2006).
Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).
Brooks, C. L. & Gu, W. p53 ubiquitination: Mdm2 and beyond. Mol. Cell 21, 307–315 (2006).
Das, S., Boswell, S. A., Aaronson, S. A. & Lee, S. W. p53 promoter selection: choosing between life and death. Cell Cycle 7, 154–157 (2008).
Espinosa, J. M. Mechanisms of regulatory diversity within the p53 transcriptional network. Oncogene 27, 4013–4023 (2008). A key publication discussing the influence of cofactors on p53 transactivation.
Gu, W. et al. A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol. Cell 3, 97–108 (1999).
Zhang, X. et al. MED1/TRAP220 exists predominantly in a TRAP/Mediator subpopulation enriched in RNA polymerase II and is required for ER-mediated transcription. Mol. Cell 19, 89–100 (2005).
Lee, D. et al. SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J. Biol. Chem. 277, 22330–22337 (2002).
An, W., Kim, J. & Roeder, R. G. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117, 735–748 (2004).
Avantaggiati, M. L. et al. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89, 1175–1184 (1997).
Grossman, S. R. p300/CBP/p53 interaction and regulation of the p53 response. Eur. J. Biochem. 268, 2773–2778 (2001).
Lill, N. L., Grossman, S. R., Ginsberg, D., DeCaprio, J. & Livingston, D. M. Binding and modulation of p53 by p300/CBP coactivators. Nature 387, 823–827 (1997).
Ard, P. G. et al. Transcriptional regulation of the mdm2 oncogene by p53 requires TRRAP acetyltransferase complexes. Mol. Cell. Biol. 22, 5650–5661 (2002).
Berger, S. L. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12, 142–148 (2002).
Ito, M. et al. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell 3, 361–370 (1999).
Mantovani, F. et al. The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nature Struct. Mol. Biol. 14, 912–920 (2007).
Bergamaschi, D. et al. iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nature Genet. 38, 1133–1141 (2006).
Samuels-Lev, Y. et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell 8, 781–794 (2001).
Tanaka, T., Ohkubo, S., Tatsuno, I. & Prives, C. hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell 130, 638–650 (2007).
Cuadrado, A. et al. A new p38 MAP kinase-regulated transcriptional coactivator that stimulates p53-dependent apoptosis. EMBO J. 26, 2115–2126 (2007).
Schumm, K., Rocha, S., Caamano, J. & Perkins, N. D. Regulation of p53 tumour suppressor target gene expression by the p52 NF-κB subunit. EMBO J. 25, 4820–4832 (2006).
Flores, E. R. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560–564 (2002).
Bourdon, J. C. et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 19, 2122–2137 (2005). The existence of several p53 isoforms and possible biological functions are described in this paper.
Bergamaschi, D. et al. iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nature Genet. 33, 162–167 (2003).
Das, S. et al. Hzf determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell 130, 624–637 (2007).
Homer, C. et al. Y-box factor YB1 controls p53 apoptotic function. Oncogene 24, 8314–8325 (2005).
Wei, X., Xu, H. & Kufe, D. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 7, 167–178 (2005).
Budhram-Mahadeo, V. S. et al. Brn-3b enhances the pro-apoptotic effects of p53 but not its induction of cell cycle arrest by cooperating in trans-activation of bax expression. Nucleic Acids Res. 34, 6640–6652 (2006).
Hudson, C. D., Morris, P. J., Latchman, D. S. & Budhram-Mahadeo, V. S. Brn-3a transcription factor blocks p53-mediated activation of proapoptotic target genes Noxa and Bax in vitro and in vivo to determine cell fate. J. Biol. Chem. 280, 11851–11858 (2005).
Donner, A. J., Szostek, S., Hoover, J. M. & Espinosa, J. M. CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol. Cell 27, 121–133 (2007).
Espinosa, J. M., Verdun, R. E. & Emerson, B. M. p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol. Cell 12, 1015–1027 (2003).
Hearnes, J. M. et al. Chromatin immunoprecipitation-based screen to identify functional genomic binding sites for sequence-specific transactivators. Mol. Cell. Biol. 25, 10148–10158 (2005).
Szak, S. T., Mays, D. & Pietenpol, J. A. Kinetics of p53 binding to promoter sites in vivo. Mol. Cell. Biol. 21, 3375–3386 (2001).
Zhao, R. et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14, 981–993 (2000).
Candau, R. et al. Two tandem and independent sub-activation domains in the amino terminus of p53 require the adaptor complex for activity. Oncogene 15, 807–816 (1997).
Vogelstein, B. & Kinzler, K. W. p53 function and dysfunction. Cell 70, 523–526 (1992).
Venot, C., Maratrat, M., Sierra, V., Conseiller, E. & Debussche, L. Definition of a p53 transactivation function-deficient mutant and characterization of two independent p53 transactivation subdomains. Oncogene 18, 2405–2410 (1999).
Ho, W. C., Fitzgerald, M. X. & Marmorstein, R. Structure of the p53 core domain dimer bound to DNA. J. Biol. Chem. 281, 20494–20502 (2006).
Kitayner, M. et al. Structural basis of DNA recognition by p53 tetramers. Mol. Cell 22, 741–753 (2006). This paper describes the DNA interaction of the p53 core tetramer through its DNA-binding domain assembled on two half sites.
Tidow, H. et al. Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex. Proc. Natl Acad. Sci. USA 104, 12324–12329 (2007).
Wang, Y. et al. p53 domains: identification and characterization of two autonomous DNA-binding regions. Genes Dev. 7, 2575–2586 (1993).
Mazur, S. J. et al. Preferential binding of tumor suppressor p53 to positively or negatively supercoiled DNA involves the C-terminal domain. J. Mol. Biol. 292, 241–249 (1999).
Kim, E. & Deppert, W. The versatile interactions of p53 with DNA: when flexibility serves specificity. Cell Death Differ. 13, 885–889 (2006).
Kim, E. & Deppert, W. Interactions of mutant p53 with DNA: guilt by association. Oncogene 26, 2185–2190 (2007).
Teufel, D. P., Freund, S. M., Bycroft, M. & Fersht, A. R. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc. Natl Acad. Sci. USA 104, 7009–7014 (2007).
Wells, M. et al. Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proc. Natl Acad. Sci. USA 105, 5762–5767 (2008).
Okorokov, A. L. & Orlova, E. V. Structural biology of the p53 tumour suppressor. Curr. Opin. Struct. Biol. 19, 197–202 (2009).
Joerger, A. C. & Fersht, A. R. Structural biology of the tumor suppressor p53. Annu. Rev. Biochem. 77, 557–582 (2008).
Tomso, D. J. et al. Functionally distinct polymorphic sequences in the human genome that are targets for p53 transactivation. Proc. Natl Acad. Sci. USA 102, 6431–6436 (2005).
Contente, A., Dittmer, A., Koch, M. C., Roth, J. & Dobbelstein, M. A polymorphic microsatellite that mediates induction of PIG3 by p53. Nature Genet. 30, 315–320 (2002).
Horvath, M. M., Wang, X., Resnick, M. A. & Bell, D. A. Divergent evolution of human p53 binding sites: cell cycle versus apoptosis. PLoS Genet. 3, e127 (2007).
Jegga, A. G., Inga, A., Menendez, D., Aronow, B. J. & Resnick, M. A. Functional evolution of the p53 regulatory network through its target response elements. Proc. Natl Acad. Sci. USA 105, 944–949 (2008).
Resnick, M. A. & Inga, A. Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc. Natl Acad. Sci. USA 100, 9934–9939 (2003).
Inga, A., Storici, F., Darden, T. A. & Resnick, M. A. Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence. Mol. Cell. Biol. 22, 8612–8625 (2002).
Aurelio, O. N., Kong, X. T., Gupta, S. & Stanbridge, E. J. p53 mutants have selective dominant-negative effects on apoptosis but not growth arrest in human cancer cell lines. Mol. Cell. Biol. 20, 770–778 (2000).
Weinberg, R. L., Veprintsev, D. B., Bycroft, M. & Fersht, A. R. Comparative binding of p53 to its promoter and DNA recognition elements. J. Mol. Biol. 348, 589–596 (2005).
Freeman, J., Schmidt, S., Scharer, E. & Iggo, R. Mutation of conserved domain II alters the sequence specificity of DNA binding by the p53 protein. EMBO J. 13, 5393–5400 (1994).
Jordan, J. J. et al. Noncanonical DNA motifs as transactivation targets by wild type and mutant p53. PLoS Genet. 4, e1000104 (2008). This paper systematically examines transactivation of p53 at non-canonical target sites and addresses the effect of spacers on p53 transactivation.
Nagaich, A. K., Bhattacharyya, D., Brahmachari, S. K. & Bansal, M. CA/TG sequence at the 5′ end of oligo(A)-tracts strongly modulates DNA curvature. J. Biol. Chem. 269, 7824–7833 (1994).
Nagaich, A. K., Appella, E. & Harrington, R. E. DNA bending is essential for the site-specific recognition of DNA response elements by the DNA binding domain of the tumor suppressor protein p53. J. Biol. Chem. 272, 14842–14849 (1997).
Halazonetis, T. D. & Kandil, A. N. Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J. 12, 5057–5064 (1993).
Sykes, S. M. et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol. Cell 24, 841–851 (2006).
Shaked, H. et al. Chromatin immunoprecipitation-on-chip reveals stress-dependent p53 occupancy in primary normal cells but not in established cell lines. Cancer Res. 68, 9671–9677 (2008).
Noureddine, M. A. et al. Probing the functional impact of sequence variation on p53–DNA interactions using a novel microsphere assay for protein–DNA binding with human cell extracts. PLoS Genet. 5, e1000462 (2009).
Ho, J. & Benchimol, S. Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ. 10, 404–408 (2003).
Badie, C., Itzhaki, J. E., Sullivan, M. J., Carpenter, A. J. & Porter, A. C. Repression of CDK1 and other genes with CDE and CHR promoter elements during DNA damage-induced G2/M arrest in human cells. Mol. Cell. Biol. 20, 2358–2366 (2000).
Ahn, J. et al. Down-regulation of the stathmin/Op18 and FKBP25 genes following p53 induction. Oncogene 18, 5954–5958 (1999).
Xu, X. et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nature Genet. 28, 266–271 (2001).
Zhai, W. & Comai, L. Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol. Cell. Biol. 20, 5930–5938 (2000).
Hoffman, W. H., Biade, S., Zilfou, J. T., Chen, J. & Murphy, M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J. Biol. Chem. 277, 3247–3257 (2002).
Ho, J. S., Ma, W., Mao, D. Y. & Benchimol, S. p53-dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol. Cell. Biol. 25, 7423–7431 (2005).
Sachdeva, M. et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc. Natl Acad. Sci. USA 106, 3207–3212 (2009).
Johnson, R. A., Ince, T. A. & Scotto, K. W. Transcriptional repression by p53 through direct binding to a novel DNA element. J. Biol. Chem. 276, 27716–27720 (2001).
Murphy, M. et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 13, 2490–2501 (1999).
Wang, B., Feng, P., Xiao, Z. & Ren, E. C. LIM and SH3 protein 1 (Lasp1) is a novel p53 transcriptional target involved in hepatocellular carcinoma. J. Hepatol. 50, 528–537 (2009).
Wang, B., Xiao, Z. & Ren, E. C. Redefining the p53 response element. Proc. Natl Acad. Sci. USA 106, 14373–14378 (2009).
Budhram-Mahadeo, V. et al. p53 suppresses the activation of the Bcl-2 promoter by the Brn-3a POU family transcription factor. J. Biol. Chem. 274, 15237–15244 (1999).
Li, B. & Lee, M. Y. Transcriptional regulation of the human DNA polymerase δ catalytic subunit gene POLD1 by p53 tumor suppressor and Sp1. J. Biol. Chem. 276, 29729–29739 (2001).
Zaky, A. et al. Regulation of the human AP-endonuclease (APE1/Ref-1) expression by the tumor suppressor p53 in response to DNA damage. Nucleic Acids Res. 36, 1555–1566 (2008).
Zhan, M. et al. Transcriptional repression of protein kinase Cα via Sp1 by wild type p53 is involved in inhibition of multidrug resistance 1 P-glycoprotein phosphorylation. J. Biol. Chem. 280, 4825–4833 (2005).
Schavinsky-Khrapunsky, Y., Huleihel, M., Aboud, M. & Torgeman, A. Role of protein kinase C and the Sp1–p53 complex in activation of p21(WAF-1) expression by 12-O-tetradecanoylphorbol-13-acetate in human T cells. Oncogene 22, 5315–5324 (2003).
Pietrzak, M. & Puzianowska-Kuznicka, M. p53-dependent repression of the human MCL-1 gene encoding an anti-apoptotic member of the BCL-2 family: the role of Sp1 and of basic transcription factor binding sites in the MCL-1 promoter. Biol. Chem. 389, 383–393 (2008).
Innocente, S. A. & Lee, J. M. p53 is a NF-Y- and p21-independent, Sp1-dependent repressor of cyclin B1 transcription. FEBS Lett. 579, 1001–1007 (2005).
Innocente, S. A. & Lee, J. M. p73 is a p53-independent, Sp1-dependent repressor of cyclin B1 transcription. Biochem. Biophys. Res. Commun. 329, 713–718 (2005).
Liedtke, C., Groger, N., Manns, M. P. & Trautwein, C. The human caspase-8 promoter sustains basal activity through SP1 and ETS-like transcription factors and can be up-regulated by a p53-dependent mechanism. J. Biol. Chem. 278, 27593–27604 (2003).
Smeenk, L. et al. Characterization of genome-wide p53-binding sites upon stress response. Nucleic Acids Res. 36, 3639–3654 (2008).
Kaneshiro, K., Tsutsumi, S., Tsuji, S., Shirahige, K. & Aburatani, H. An integrated map of p53-binding sites and histone modification in the human ENCODE regions. Genomics 89, 178–188 (2007).
Yan, J., Menendez, D., Yang, X., Resnick, M. A. & Jetten, A. M. A regulatory loop composed of RAP80-HDM2-p53 provides RAP80 enhanced p53 degradation by HDM2 in response to DNA damage. J. Biol. Chem. 284, 19280–19289 (2009).
McLure, K. G. & Lee, P. W. How p53 binds DNA as a tetramer. EMBO J. 17, 3342–3350 (1998).
Brazdova, M. et al. Role of tumor suppressor p53 domains in selective binding to supercoiled DNA. Nucleic Acids Res. 30, 4966–4974 (2002).
Li, A. G. et al. Mechanistic insights into maintenance of high p53 acetylation by PTEN. Mol. Cell 23, 575–587 (2006).
Cai, B. H. et al. Functional four-base A/T gap core sequence CATTAG of p53 response elements specifically bound tetrameric p53 differently than two-base A/T gap core sequence CATG bound both dimeric and tetrameric p53. Nucleic Acids Res. 37, 1984–1990 (2009).
Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protoc. 4, 44–57 (2009).
Gurova, K. V. et al. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors. Proc. Natl Acad. Sci. USA 102, 17448–17453 (2005).
Ryan, K. M., Ernst, M. K., Rice, N. R. & Vousden, K. H. Role of NF-κB in p53-mediated programmed cell death. Nature 404, 892–897 (2000).
Webster, G. A. & Perkins, N. D. Transcriptional cross talk between NF-κB and p53. Mol. Cell. Biol. 19, 3485–3495 (1999).
Benatti, P. et al. A balance between NF-Y and p53 governs the pro- and anti-apoptotic transcriptional response. Nucleic Acids Res. 36, 1415–1428 (2008).
Lecona, E. et al. Upregulation of annexin A1 expression by butyrate in human colon adenocarcinoma cells: role of p53, NF-Y, and p38 mitogen-activated protein kinase. Mol. Cell. Biol. 28, 4665–4674 (2008).
Matsui, T. et al. Negative regulation of Chk2 expression by p53 is dependent on the CCAAT-binding transcription factor NF-Y. J. Biol. Chem. 279, 25093–25100 (2004).
Dornan, D. et al. Interferon regulatory factor 1 binding to p300 stimulates DNA-dependent acetylation of p53. Mol. Cell. Biol. 24, 10083–10098 (2004).
Tanaka, N. et al. Cooperation of the tumour suppressors IRF-1 and p53 in response to DNA damage. Nature 382, 816–818 (1996).
Liu, G., Schwartz, J. A. & Brooks, S. C. Estrogen receptor protects p53 from deactivation by human double minute-2. Cancer Res. 60, 1810–1814 (2000).
Liu, W. et al. Estrogen receptor-α binds p53 tumor suppressor protein directly and represses its function. J. Biol. Chem. 281, 9837–9840 (2006).
Kato, K. et al. Contribution of estrogen receptor α to oncogenic K-Ras-mediated NIH3T3 cell transformation and its implication for escape from senescence by modulating the p53 pathway. J. Biol. Chem. 277, 11217–11224 (2002).
Cordenonsi, M. et al. Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with Smads. Cell 113, 301–314 (2003).
Wilkinson, D. S., Tsai, W. W., Schumacher, M. A. & Barton, M. C. Chromatin-bound p53 anchors activated Smads and the mSin3A corepressor to confer transforming growth factor β-mediated transcription repression. Mol. Cell. Biol. 28, 1988–1998 (2008).
Urist, M. & Prives, C. p53 leans on its siblings. Cancer Cell 1, 311–313 (2002).
Perez, C. A., Ott, J., Mays, D. J. & Pietenpol, J. A. p63 consensus DNA-binding site: identification, analysis and application into a p63MH algorithm. Oncogene 26, 7363–70 (2007).
Murray-Zmijewski, F., Lane, D. P. & Bourdon, J. C. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 13, 962–972 (2006).
Bond, G. L. et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119, 591–602 (2004).
Bond, G. L. et al. MDM2 SNP309 accelerates colorectal tumour formation in women. J. Med. Genet. 43, 950–952 (2006).
Menendez, D. et al. A single-nucleotide polymorphism in a half-binding site creates p53 and estrogen receptor control of vascular endothelial growth factor receptor 1. Mol. Cell. Biol. 27, 2590–2600 (2007). This paper describes the in cis cooperation between p53 at a half site and ER to mediate transactivation.
Hata, S. et al. PAX4 has the potential to function as a tumor suppressor in human melanoma. Int. J. Oncol. 33, 1065–1071 (2008).
Brun, T., Duhamel, D. L., Hu He, K. H., Wollheim, C. B. & Gauthier, B. R. The transcription factor PAX4 acts as a survival gene in INS-1E insulinoma cells. Oncogene 26, 4261–4271 (2007).
Ryan, K. M., Phillips, A. C. & Vousden, K. H. Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell Biol. 13, 332–337 (2001).
Bossi, G. et al. Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene 25, 304–309 (2006).
Blandino, G., Levine, A. J. & Oren, M. Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18, 477–485 (1999).
Weisz, L., Oren, M. & Rotter, V. Transcription regulation by mutant p53. Oncogene 26, 2202–2211 (2007).
Di Agostino, S. et al. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10, 191–202 (2006).
Adorno, M. et al. A mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137, 87–98 (2009).
Greenblatt, M. S., Chappuis, P. O., Bond, J. P., Hamel, N. & Foulkes, W. D. TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: distinctive spectrum and structural distribution. Cancer Res. 61, 4092–4097 (2001).
Crook, T. et al. p53 mutation with frequent novel codons but not a mutator phenotype in BRCA1- and BRCA2-associated breast tumours. Oncogene 17, 1681–1689 (1998).
Petitjean, A. et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 28, 622–629 (2007).
Ribeiro, R. C. et al. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc. Natl Acad. Sci. USA 98, 9330–9335 (2001).
Jordan, J. J. Diversity within the Master Regulatory p53 Transcriptional Network: Impact of Sequence, Binding Motifs and Mutations. Dissertation, Univ. North Carolina (2008).
Saller, E. et al. Increased apoptosis induction by 121F mutant p53. EMBO J. 18, 4424–4437 (1999).
Baroni, T. E. et al. Restoring function to p53 cancer mutations. Proceedings of the American Association for Cancer Research 43, 1142 (2002).
Menendez, D., Inga, A. & Resnick, M. A. The biological impact of the human master regulator p53 can be altered by mutations that change the spectrum and expression of its target genes. Mol. Cell. Biol. 26, 2297–2308 (2006).
Olivier, M. et al. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin. Cancer Res. 12, 1157–1167 (2006).
Iacopetta, B. et al. Functional categories of TP53 mutation in colorectal cancer: results of an International Collaborative Study. Ann. Oncol. 17, 842–847 (2006).
Ashur-Fabian, O. et al. Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation. Proc. Natl Acad. Sci. USA 101, 12236–12241 (2004).
Avivi, A., Ashur-Fabian, O., Amariglio, N., Nevo, E. & Rechavi, G. p53 — a key player in tumoral and evolutionary adaptation: a lesson from the Israeli blind subterranean mole rat. Cell Cycle 4, 368–372 (2005).
Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nature Med. 10, 1321–1328 (2004).
Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).
Bykov, V. J. et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nature Med. 8, 282–288 (2002).
Boeckler, F. M. et al. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc. Natl Acad. Sci. USA 105, 10360–10365 (2008).
Krieg, A. J., Hammond, E. M. & Giaccia, A. J. Functional analysis of p53 binding under differential stresses. Mol. Cell. Biol. 26, 7030–7045 (2006).
Scharer, E. & Iggo, R. Mammalian p53 can function as a transcription factor in yeast. Nucleic Acids Res. 20, 1539–1545 (1992).
Ishioka, C. et al. Screening patients for heterozygous p53 mutations using a functional assay in yeast. Nature Genet. 5, 124–129 (1993).
Menendez, D., Inga, A., Jordan, J. J. & Resnick, M. A. Changing the p53 master regulatory network: ELEMENTary, my dear Mr Watson. Oncogene 26, 2191–2201 (2007).
Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).
Clarke, A. R. & Hollstein, M. Mouse models with modified p53 sequences to study cancer and ageing. Cell Death Differ. 10, 443–450 (2003).
Tan, T. & Chu, G. p53 binds and activates the xeroderma pigmentosum DDB2 gene in humans but not mice. Mol. Cell. Biol. 22, 3247–3254 (2002).
Wang, T. et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl Acad. Sci. USA 104, 18613–18618 (2007). The species-specific expansion of the p53 regulatory network by retroelements containing p53 target sequences is presented in this paper.
Contente, A., Zischler, H., Einspanier, A. & Dobbelstein, M. A promoter that acquired p53 responsiveness during primate evolution. Cancer Res. 63, 1756–1758 (2003).
Hanawalt, P. C., Ford, J. M. & Lloyd, D. R. Functional characterization of global genomic DNA repair and its implications for cancer. Mutat. Res. 544, 107–114 (2003).
Toledo, F. & Wahl, G. M. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int. J. Biochem. Cell Biol. 39, 1476–1482 (2007).
Wang, Y. V. et al. Quantitative analyses reveal the importance of regulated Hdmx degradation for p53 activation. Proc. Natl Acad. Sci. USA 104, 12365–12370 (2007).
Dumaz, N. & Meek, D. W. Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J. 18, 7002–7010 (1999).
Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).
Le Cam, L. et al. E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 127, 775–88 (2006).
Prives, C. & Manley, J. L. Why is p53 acetylated? Cell 107, 815–818 (2001).
Cianfrocca, R. et al. RelA/NF-κB recruitment on the bax gene promoter antagonizes p73-dependent apoptosis in costimulated T cells. Cell Death Differ. 15, 354–363 (2008).
Osada, M. et al. Differential recognition of response elements determines target gene specificity for p53 and p63. Mol. Cell Biol. 25, 6077–6089 (2005).
Acknowledgements
This work was supported by intramural research funds from the National Institute of Environmental Health Sciences project 1 Z01 ES065079 (to D.M. and M.A.R.) and partially supported by the Italian Association for Cancer Research (to A.I.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information S1
Rules for assessing functionality of p53 response elements Presented are rules derived from experimental results obtained using yeast- and mammalian based functional assays1–6, in which > 60 different p53 response elements (REs) were tested. (PDF 234 kb)
Supplementary information S2
Examples of noncanonical p53 REs from validated targets* (PDF 170 kb)
Supplementary information S3
Novel validated p53 REs that differ widely from consensus* (PDF 164 kb)
Related links
Rights and permissions
About this article
Cite this article
Menendez, D., Inga, A. & Resnick, M. The expanding universe of p53 targets. Nat Rev Cancer 9, 724–737 (2009). https://doi.org/10.1038/nrc2730
Issue Date:
DOI: https://doi.org/10.1038/nrc2730
This article is cited by
-
High prevalence of acquired cancer-related mutations in 146 human pluripotent stem cell lines and their differentiated derivatives
Nature Biotechnology (2024)
-
Targeting tumor-stroma communication by blocking endothelin-1 receptors sensitizes high-grade serous ovarian cancer to PARP inhibition
Cell Death & Disease (2023)
-
Tumor suppressor p53 mediates interleukin-6 expression to enable cancer cell evasion of genotoxic stress
Cell Death Discovery (2023)
-
Eleven immune-gene pairs signature associated with TP53 predicting the overall survival of gastric cancer: a retrospective analysis of large sample and multicenter from public database
Journal of Translational Medicine (2021)
-
Cooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance
Communications Biology (2021)