Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards

Abstract

The dopamine system is thought to be involved in making decisions about reward. Here we recorded from the ventral tegmental area in rats learning to choose between differently delayed and sized rewards. As expected, the activity of many putative dopamine neurons reflected reward prediction errors, changing when the value of the reward increased or decreased unexpectedly. During learning, neural responses to reward in these neurons waned and responses to cues that predicted reward emerged. Notably, this cue-evoked activity varied with size and delay. Moreover, when rats were given a choice between two differently valued outcomes, the activity of the neurons initially reflected the more valuable option, even when it was not subsequently selected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Choice task in which delay and size of reward were manipulated.
Figure 2: Locations, representative waveforms and classification of putative dopamine neurons.
Figure 3: Activity during reward reflects prediction errors in a subpopulation of cue-responsive dopamine neurons.
Figure 4: Cue-evoked activity in reward-responsive dopamine neurons reflects the value of the predicted rewards.
Figure 5: Cue-evoked activity in reward-responsive dopamine neurons covaries with the delay and size of the predicted reward and its relative value.
Figure 6: Cue-evoked activity on free-choice trials reflects the more valuable option.

Similar content being viewed by others

References

  1. Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    Article  CAS  Google Scholar 

  2. Schultz, W. Getting formal with dopamine and reward. Neuron 36, 241–263 (2002).

    Article  CAS  Google Scholar 

  3. Dayan, P. & Balleine, B.W. Reward, motivation and reinforcement learning. Neuron 36, 285–298 (2002).

    Article  CAS  Google Scholar 

  4. Day, J.J., Roitman, M.F., Wightman, R.M. & Carelli, R.M. Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat. Neurosci. 10, 1020–1028 (2007).

    Article  CAS  Google Scholar 

  5. Mirenowicz, J. & Schultz, W. Importance of unpredictability for reward responses in primate dopamine neurons. J. Neurophysiol. 72, 1024–1027 (1994).

    Article  CAS  Google Scholar 

  6. Fiorillo, C.D., Tobler, P.N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902 (2003).

    Article  CAS  Google Scholar 

  7. Tobler, P.N., Dickinson, A. & Schultz, W. Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. J. Neurosci. 23, 10402–10410 (2003).

    Article  CAS  Google Scholar 

  8. Hollerman, J.R. & Schultz, W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nat. Neurosci. 1, 304–309 (1998).

    Article  CAS  Google Scholar 

  9. Waelti, P., Dickinson, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 43–48 (2001).

    Article  CAS  Google Scholar 

  10. Montague, P.R., Dayan, P. & Sejnowski, T.J. A framework for mesencephalic dopamine systems based on predictive hebbian learning. J. Neurosci. 16, 1936–1947 (1996).

    Article  CAS  Google Scholar 

  11. Bayer, H.M. & Glimcher, P.W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47, 129–141 (2005).

    Article  CAS  Google Scholar 

  12. Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y. & Hikosaka, O. Dopamine neurons can represent context-dependent prediction error. Neuron 41, 269–280 (2004).

    Article  CAS  Google Scholar 

  13. Pan, W.X., Schmidt, R., Wickens, J.R. & Hyland, B.I. Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J. Neurosci. 25, 6235–6242 (2005).

    Article  CAS  Google Scholar 

  14. Morris, G., Nevet, A., Arkadir, D., Vaadia, E. & Bergman, H. Midbrain dopamine neurons encode decisions for future action. Nat. Neurosci. 9, 1057–1063 (2006).

    Article  CAS  Google Scholar 

  15. Kawagoe, R., Takikawa, Y. & Hikosaka, O. Reward-predicting activity of dopamine and caudate neurons—a possible mechanism of motivational control of saccadic eye movement. J. Neurophysiol. 91, 1013–1024 (2004).

    Article  Google Scholar 

  16. Cardinal, R.N., Pennicott, D.R., Sugathapala, C.L., Robbins, T.W. & Everitt, B.J. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292, 2499–2501 (2001).

    Article  CAS  Google Scholar 

  17. Evenden, J.L. & Ryan, C.N. The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology (Berl.) 128, 161–170 (1996).

    Article  CAS  Google Scholar 

  18. Herrnstein, R.J. Relative and absolute strength of response as a function of frequency of reinforcement. J. Exp. Anal. Behav. 4, 267–272 (1961).

    Article  CAS  Google Scholar 

  19. Ho, M.Y., Mobini, S., Chiang, T.J., Bradshaw, C.M. & Szabadi, E. Theory and method in the quantitative analysis of “impulsive choice” behaviour: implications for psychopharmacology. Psychopharmacology (Berl.) 146, 362–372 (1999).

    Article  CAS  Google Scholar 

  20. Mobini, S. et al. Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology (Berl.) 160, 290–298 (2002).

    Article  CAS  Google Scholar 

  21. Kahneman, D. & Tverskey, A. Choices, values and frames. Am. Psychol. 39, 341–350 (1984).

    Article  Google Scholar 

  22. Kalenscher, T. et al. Single units in the pigeon brain integrate reward amount and time-to-reward in an impulsive choice task. Curr. Biol. 15, 594–602 (2005).

    Article  CAS  Google Scholar 

  23. Lowenstein, G.E.J. Choice Over Time (Russel Sage Foundation, New York, 1992).

  24. Thaler, R. Some empirical evidence on dynamic inconsistency. Econ. Lett. 8, 201–207 (1981).

    Article  Google Scholar 

  25. Winstanley, C.A., Theobald, D.E., Cardinal, R.N. & Robbins, T.W. Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J. Neurosci. 24, 4718–4722 (2004).

    Article  CAS  Google Scholar 

  26. Cardinal, R.N., Winstanley, C.A., Robbins, T.W. & Everitt, B.J. Limbic corticostriatal systems and delayed reinforcement. Ann. NY Acad. Sci. 1021, 33–50 (2004).

    Article  Google Scholar 

  27. Kheramin, S. et al. Effects of orbital prefrontal cortex dopamine depletion on intertemporal choice: a quantitative analysis. Psychopharmacology (Berl.) 175, 206–214 (2004).

    Article  CAS  Google Scholar 

  28. Wade, T.R., de Wit, H. & Richards, J.B. Effects of dopaminergic drugs on delayed reward as a measure of impulsive behavior in rats. Psychopharmacology (Berl.) 150, 90–101 (2000).

    Article  CAS  Google Scholar 

  29. Cardinal, R.N., Robbins, T.W. & Everitt, B.J. The effects of d-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology (Berl.) 152, 362–375 (2000).

    Article  CAS  Google Scholar 

  30. Roesch, M.R., Takahashi, Y., Gugsa, N., Bissonette, G.B. & Schoenbaum, G. Previous cocaine exposure makes rats hypersensitive to both delay and reward magnitude. J. Neurosci. 27, 245–250 (2007).

    Article  CAS  Google Scholar 

  31. Roesch, M.R., Taylor, A.R. & Schoenbaum, G. Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation. Neuron 51, 509–520 (2006).

    Article  CAS  Google Scholar 

  32. Tobler, P.N., Fiorillo, C.D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).

    Article  CAS  Google Scholar 

  33. Kiyatkin, E.A. & Rebec, G.V. Heterogeneity of ventral tegmental area neurons: single-unit recording and iontophoresis in awake, unrestrained rats. Neuroscience 85, 1285–1309 (1998).

    Article  CAS  Google Scholar 

  34. Bunney, B.S., Aghajanian, G.K. & Roth, R.H. Comparison of effects of L-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurones. Nat. New Biol. 245, 123–125 (1973).

    Article  CAS  Google Scholar 

  35. Skirboll, L.R., Grace, A.A. & Bunney, B.S. Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science 206, 80–82 (1979).

    Article  CAS  Google Scholar 

  36. Niv, Y., Daw, N.D. & Dayan, P. Choice values. Nat. Neurosci. 9, 987–988 (2006).

    Article  CAS  Google Scholar 

  37. Haber, S.N., Fudge, J.L. & McFarland, N.R. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382 (2000).

    Article  CAS  Google Scholar 

  38. Joel, D. & Weiner, I. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96, 451–474 (2000).

    Article  CAS  Google Scholar 

  39. Yin, H.H., Knowlton, B.J. & Balleine, B.W. Lesions of dorsolateral striatum preserve outcome expectancy, but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 19, 181–189 (2004).

    Article  Google Scholar 

  40. O'Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304, 452–454 (2004).

    Article  CAS  Google Scholar 

  41. Knowlton, B.J., Mangels, J.A. & Squire, L. A neostriatal habit learning system in humans. Science 273, 1399–1402 (1996).

    Article  CAS  Google Scholar 

  42. Hatfield, T., Han, J.S., Conley, M., Gallagher, M. & Holland, P. Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J. Neurosci. 16, 5256–5265 (1996).

    Article  CAS  Google Scholar 

  43. Gallagher, M., McMahan, R.W. & Schoenbaum, G. Orbitofrontal cortex and representation of incentive value in associative learning. J. Neurosci. 19, 6610–6614 (1999).

    Article  CAS  Google Scholar 

  44. Baxter, M.G., Parker, A., Lindner, C.C.C., Izquierdo, A.D. & Murray, E.A. Control of response selection by reinforcer value requires interaction of amygdala and orbitofrontal cortex. J. Neurosci. 20, 4311–4319 (2000).

    Article  CAS  Google Scholar 

  45. Gottfried, J.A., O'Doherty, J. & Dolan, R.J. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301, 1104–1107 (2003).

    Article  CAS  Google Scholar 

  46. Parkinson, J.A., Cardinal, R.N. & Everitt, B.J. Limbic cortical-ventral striatal systems underlying appetitive conditioning. Prog. Brain Res. 126, 263–285 (2000).

    Article  CAS  Google Scholar 

  47. Lu, L. et al. Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat. Neurosci. 8, 212–219 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Niv, P. Shepard, G. Morris and W. Schultz for thoughtful comments on this manuscript, and S. Warrenburg at International Flavors and Fragrances for his assistance in obtaining odor compounds. This work was supported by grants from the US National Institute on Drug Abuse (R01-DA015718, G.S.; K01-DA021609, M.R.R.), the National Institute of Mental Health (F31-MH080514, D.J.C.), the National Institute on Aging (R01-AG027097, G.S.) and the National Institute of Neurological Disorders and Stroke (T32-NS07375, M.R.R.).

Author information

Authors and Affiliations

Authors

Contributions

M.R.R., D.J.C. and G.S. conceived the experiments. M.R.R. and D.J.C. carried out the recording work and assisted with electrode construction, surgeries and histology. The data were analyzed by M.R.R. and G.S., who also wrote the manuscript with assistance from D.J.C.

Corresponding author

Correspondence to Matthew R Roesch.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Data (PDF 2158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roesch, M., Calu, D. & Schoenbaum, G. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat Neurosci 10, 1615–1624 (2007). https://doi.org/10.1038/nn2013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2013

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing