Metamaterials are man-made structures that allow optical properties to be shaped on length scales far smaller than the wavelength of light. Although metamaterials were initially considered mainly for static applications, this Review summarizes efforts towards an active functionality that enables a much broader range of photonic device applications.
Abstract
Metamaterials, artificial electromagnetic media that are structured on the subwavelength scale, were initially suggested for the negative-index 'superlens'. Later metamaterials became a paradigm for engineering electromagnetic space and controlling propagation of waves: the field of transformation optics was born. The research agenda is now shifting towards achieving tunable, switchable, nonlinear and sensing functionalities. It is therefore timely to discuss the emerging field of metadevices where we define the devices as having unique and useful functionalities that are realized by structuring of functional matter on the subwavelength scale. In this Review we summarize research on photonic, terahertz and microwave electromagnetic metamaterials and metadevices with functionalities attained through the exploitation of phase-change media, semiconductors, graphene, carbon nanotubes and liquid crystals. The Review also encompasses microelectromechanical metadevices, metadevices engaging the nonlinear and quantum response of superconductors, electrostatic and optomechanical forces and nonlinear metadevices incorporating lumped nonlinear components.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ou, J. Y., Plum, E., Jiang, L. & Zheludev, N. I. Reconfigurable photonic metamaterials. Nano Lett. 11, 2142–2144 (2011).
Lapine, M. et al. Structural tunability in metamaterials. Appl. Phys. Lett. 95, 084105 (2009).
Karim, M. F., Liu, A. Q., Alphones, A. & Yu, A. B. A tunable bandstop filter via the capacitance change of micromachined switches. J. Micromech. Microeng. 16, 851–861 (2006).
Gil, I., Martin, F., Rottenberg, X. & De Raedt, W. Tunable stop-band filter at Q-band based on RF-MEMS metamaterials. Electron. Lett. 43, 1153–1154 (2007).
Hand, T. & Cummer, S. Characterization of tunable metamaterial elements using MEMS switches. IEEE Antennas Wireless Propag. Lett. 6, 401–404 (2007).
Tao, H. et al. Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 147401 (2009).
He, X., Lv, Z., Liu, B. & Li, Z. Tunable magnetic metamaterial based multi-split-ring resonator (MSRR) using MEMS switch components. Microsyst. Technol. Micro Nanosyst. Inform. Storage Process. Syst. 17, 1263–1269 (2011).
Zhu, W. M. et al. Switchable magnetic metamaterials using micromachining processes. Adv. Mater. 23, 1792–1796 (2011).
Fu, Y. H. et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators. Adv. Funct. Mater. 21, 3589–3594 (2011).
Ozbey, B. & Aktas, O. Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers. Opt. Express 19, 5741–5752 (2011).
Pryce, I. M., Aydin, K., Kelaita, Y. A., Briggs, R. M. & Atwater, H. A. Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett. 10, 4222–4227 (2010).
Tao, H. et al. Metamaterial silk composites at terahertz frequencies. Adv. Mater. 22, 3527–3531 (2010).
Aksu, S. et al. Flexible plasmonics on unconventional and nonplanar substrates. Adv. Mater. 23, 4422–4430 (2011).
Kasirga, T. S., Ertas, Y. N. & Bayindir, M. Microfluidics for reconfigurable electromagnetic metamaterials. Appl. Phys. Lett. 95, 214102 (2009).
Ou, J. Y., Plum, E. & Zheludev, N. I. MHz bandwidth electro-optical modulator based on a reconfigurable photonic metamaterial. CLEO/QELS Conf. Poster JW4A.11 (2012).
Chen, H-T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).
Shrekenhamer, D. et al. High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Opt. Express 19, 9968–9975 (2011).
Chan, W. L. et al. A spatial light modulator for terahertz beams. Appl. Phys. Lett. 94, 213511 (2009).
Zhang, S. et al. Photoinduced handedness switching in terahertz chiral metamolecules. Nature Commun. 3, 942 (2012).
Feigenbaum, E., Diest, K. & Atwater, H. A. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010).
Gil, M. et al. Electrically tunable split-ring resonators at microwave frequencies based on barium-strontium-titanate thick films. Electron. Lett. 45, 417–418 (2009).
Papasimakis, N. et al. Graphene in a photonic metamaterial. Opt. Express 18, 8353–8359 (2010).
Yan, H. G. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).
Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).
Wang, X. et al. Tunable optical negative-index metamaterials employing anisotropic liquid crystals. Appl. Phys. Lett. 91, 143122 (2007).
Zhao, Q. et al. Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Appl. Phys. Lett. 90, 011112 (2007).
Zhang, F. L. et al. Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal. Appl. Phys. Lett. 97, 134103 (2010).
Zhang, F. L. et al. Electrically controllable fishnet metamaterial based on nematic liquid crystal. Opt. Express 19, 1563–1568 (2011).
Zhang, F. et al. Magnetic control of negative permeability metamaterials based on liquid crystals. Appl. Phys. Lett. 92, 193104 (2008).
Xiao, S. M. et al. Tunable magnetic response of metamaterials. Appl. Phys. Lett. 95, 033115 (2009).
Kang, B. et al. Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure. Opt. Express 18, 16492–16498 (2010).
Minovich, A. et al. Liquid crystal based nonlinear fishnet metamaterials. Appl. Phys. Lett. 100, 121113 (2012).
Zheludev, N. All change, please. Nature Photon. 1, 551–553 (2007).
Krasavin, A. V., MacDonald, K. F., Schwanecke, A. S. & Zheludev, N. I. Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics. Appl. Phys. Lett. 89, 031118 (2006).
Bennett, P. J. et al. A photonic switch based on a gigantic, reversible optical nonlinearity of liquefying gallium. Appl. Phys. Lett. 73, 1787–1789 (1998).
Driscoll, T. et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl. Phys. Lett. 93, 024101 (2008).
Seo, M. et al. Active terahertz nanoantennas based on VO2 phase transition. Nano Lett. 10, 2064–2068 (2010).
Huang, W-x. et al. Optical switching of a metamaterial by temperature controlling. Appl. Phys. Lett. 96, 261908 (2010).
Appavoo, K. & Haglund, R. F. Jr Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial. Nano Lett. 11, 1025–1031 (2011).
Driscoll, T. et al. Memory metamaterials. Science 325, 1518–1521 (2009).
Samson, Z. L. et al. Metamaterial electro-optic switch of nanoscale thickness. Appl. Phys. Lett. 96, 143105 (2010).
Gholipour, B. et al. Chalcogenide glass photonics: non-volatile, bi-directional, all-optical switching in phase-change metamaterials. CLEO/QELS Conf. Paper CF2A.3 (2012).
Simpson, R. E. et al. Interfacial phase-change memory. Nature Nanotech. 6, 501–505 (2011).
Tsiatmas, A., Fedotov, A. V. & Zheludev, N. I. Plasmonics without losses? (The case for terahertz superconducting plasmonics). New J. Phys. (in the press). Preprint at http://arxiv.org/abs/1105.3045 (2011).
Ricci, M., Orloff, N. & Anlage, S. M. Superconducting metamaterials. Appl. Phys. Lett. 87, 034102 (2005).
Fedotov, V. A. et al. Temperature control of Fano resonances and transmission in superconducting metamaterials. Opt. Express 18, 9015–9019 (2010).
Chen, H-T. et al. Tuning the resonance in high-temperature superconducting terahertz metamaterials. Phys. Rev. Lett. 105, 247402 (2010).
Gu, J. Q. et al. Terahertz superconductor metamaterial. Appl. Phys. Lett. 97, 071102 (2010).
Jin, B. B. et al. Low loss and magnetic field-tunable superconducting terahertz metamaterial. Opt. Express 18, 17504–17509 (2010).
Tsiatmas, A. et al. Superconducting plasmonics and extraordinary transmission. Appl. Phys. Lett. 97, 111106 (2010).
Wu, J. B. et al. Tuning of superconducting niobium nitride terahertz metamaterials. Opt. Express 19, 12021–12026 (2011).
Pimenov, A., Loidl, A., Przyslupski, P. & Dabrowski, B. Negative refraction in ferromagnet-superconductor superlattices. Phys. Rev. Lett. 95, 247009 (2005).
Kurter, C. et al. Superconducting RF metamaterials made with magnetically active planar spirals. IEEE Trans. Appl. Supercond. 21, 709–712 (2011).
Ricci, M. C. et al. Tunability of superconducting metamaterials. IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
Savinov, V., Fedotov, V. A., de Groot, P. A. & Zheludev, N. I. Electro-optical modulation of sub-terahertz radiation with superconducting metamaterial. CLEO/QELS Conf. Paper CTh1D.1 (2012).
Kurter, C. et al. Classical analogue of electromagnetically induced transparency with a metal–superconductor hybrid metamaterial. Phys. Rev. Lett. 107, 043901 (2011).
Kurter, C. et al. Switching nonlinearity in a superconductor-enhanced metamaterial. Appl. Phys. Lett. 100, 121906 (2012).
Du, C. G., Chen, H. Y. & Li, S. Q. Quantum left-handed metamaterial from superconducting quantum-interference devices. Phys. Rev. B 74, 113105 (2006).
Lazarides, N. & Tsironis, G. P. RF superconducting quantum interference device metamaterials. Appl. Phys. Lett. 90, 163501 (2007).
Rakhmanov, A. L., Zagoskin, A. M., Savel'ev, S. & Nori, F. Quantum metamaterials: electromagnetic waves in a Josephson qubit line. Phys. Rev. B 77, 144507 (2008).
Savinov, V. et al. Flux exclusion quantum superconducting metamaterial: towards quantum-level switching. Sci. Rep. 2, 450 (2012).
Wood, B. et al. A d.c. magnetic metamaterial. Nature Mater. 7, 295–297 (2008).
Navau, C., Chen, D. X., Sanchez, A. & Del-Valle, N. Magnetic properties of a dc metamaterial consisting of parallel square superconducting thin plates. Appl. Phys. Lett. 94, 242501 (2009).
Sanchez, A., Navau, C., Prat-Camps, J. & Chen, D. X. Antimagnets: controlling magnetic fields with superconductor-metamaterial hybrids. New J. Phys. 13, 093034 (2011).
Gomory, F. et al. Experimental realization of a magnetic cloak. Science 335, 1466–1468 (2012).
Padilla, W. J., Taylor, A. J., Highstrete, C., Lee, M. & Averitt, R. D. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 96, 107401 (2006).
Chen, H-T. et al. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Opt. Lett. 32, 1620–1622 (2007).
Cho, D. J. et al. Ultrafast modulation of optical metamaterials. Opt. Express 17, 17652–17657 (2009).
Dani, K. M. et al. Subpicosecond optical switching with a negative index metamaterial. Nano Lett. 9, 3565–3569 (2009).
Nikolaenko, A. E. et al. Carbon nanotubes in a photonic metamaterial. Phys. Rev. Lett. 104, 153902 (2010).
Nikolaenko, A. E. et al. Nonlinear graphene metamaterial. Appl. Phys. Lett. 100, 181109 (2012).
Ren, M. X. et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011).
Ren, M., Plum, E., Xu, J. & Zheludev, N. I. Giant nonlinear optical activity in a plasmonic metamaterial. Nature Commun. 3, 833 (2012).
Wurtz, G. A. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature Nanotech. 6, 106–110 (2011).
Zhang, J., MacDonald, K. F. & Zheludev, N. I. Controlling light-with-light without nonlinearity. Light 1, e18 (2012).
Zharov, A. A., Shadrivov, I. V. & Kivshar, Y. S. Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett. 91, 037401 (2003).
Lapine, M., Gorkunov, M. & Ringhofer, K. H. Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements. Phys. Rev. E 67, 065601 (2003).
Shadrivov, I. V., Kozyrev, A. B., van der Weide, D. & Kivshar, Y. S. Nonlinear magnetic metamaterials. Opt. Express 16, 20266–20271 (2008).
Shadrivov, I. V., Kozyrev, A. B., van der Weide, D. W. & Kivshar, Y. S. Tunable transmission and harmonic generation in nonlinear metamaterials. Appl. Phys. Lett. 93, 161903 (2008).
Powell, D. A., Shadrivov, I. V. & Kivshar, Y. S. Nonlinear electric metamaterials. Appl. Phys. Lett. 95, 084102 (2009).
Carbonell, J., Boria, V. E. & Lippens, D. Nonlinear effects in split ring resonators loaded with heterostructure barrier varactors. Microwave Opt. Technol. Lett. 50, 474–479 (2008).
Wiltshire, M. C. K. Tuning Swiss roll metamaterials. J. Phys. D Appl. Phys. 42, 205001 (2009).
Shadrivov, I. V., Morrison, S. K. & Kivshar, Y. S. Tunable split-ring resonators for nonlinear negative-index metamaterials. Opt. Express 14, 9344–9349 (2006).
Wang, B. N., Zhou, J. F., Koschny, T. & Soukoulis, C. M. Nonlinear properties of split-ring resonators. Opt. Express 16, 16058–16063 (2008).
Huang, D., Poutrina, E. & Smith, D. R. Analysis of the power dependent tuning of a varactor-loaded metamaterial at microwave frequencies. Appl. Phys. Lett. 96, 104104 (2010).
Poutrina, E., Huang, D. & Smith, D. R. Analysis of nonlinear electromagnetic metamaterials. New J. Phys. 12, 093010 (2010).
Powell, D. A., Shadrivov, I. V., Kivshar, Y. S. & Gorkunov, M. V. Self-tuning mechanisms of nonlinear split-ring resonators. Appl. Phys. Lett. 91, 144107 (2007).
Shadrivov, I. V., Fedotov, V. A., Powell, D. A., Kivshar, Y. S. & Zheludev, N. I. Electromagnetic wave analogue of an electronic diode. New J. Phys. 13, 033025 (2011).
Larouche, S., Rose, A., Poutrina, E., Huang, D. & Smith, D. R. Experimental determination of the quadratic nonlinear magnetic susceptibility of a varactor-loaded split ring resonator metamaterial. Appl. Phys. Lett. 97, 011109 (2010).
Katko, A. R. et al. Phase conjugation and negative refraction using nonlinear active metamaterials. Phys. Rev. Lett. 105, 123905 (2010).
Huang, D., Rose, A., Poutrina, E., Larouche, S. & Smith, D. R. Wave mixing in nonlinear magnetic metacrystal. Appl. Phys. Lett. 98, 204102 (2011).
Rose, A., Huang, D. & Smith, D. R. Controlling the second harmonic in a phase-matched negative-index metamaterial. Phys. Rev. Lett. 107, 063902 (2011).
Kanazawa, T., Tamayama, Y., Nakanishi, T. & Kitano, M. Enhancement of second harmonic generation in a doubly resonant metamaterial. Appl. Phys. Lett. 99, 024101 (2011).
Agranovich, V. M., Shen, Y. R., Baughman, R. H. & Zakhidov, A. A. Linear and nonlinear wave propagation in negative refraction metamaterials. Phys. Rev. B 69, 165112 (2004).
Shadrivov, I. V., Zharov, A. A. & Kivshar, Y. S. Second-harmonic generation in nonlinear left-handed metamaterials. J. Opt. Soc. Am. B 23, 529–534 (2006).
Gil, I., Bonache, J., Garcia-Garcia, J. & Martin, F. Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators. IEEE Trans. Microwave Theory Techniques 54, 2665–2674 (2006).
Velez, A., Bonache, J. & Martin, F. Doubly tuned metamaterial transmission lines based on complementary split-ring resonators. Electromagnetics 28, 523–530 (2008).
Wang, Y. F., Yin, J. C., Yuan, G. S., Dong, X. C. & Du, C. L. Tunable I-shaped metamaterial by loading varactor diode for reconfigurable antenna. Appl. Phys. A 104, 1243–1247 (2011).
Lapine, M., Shadrivov, I. V., Powell, D. A. & Kivshar, Y. S. Magnetoelastic metamaterials. Nature Mater. 11, 30–33 (2012).
Lapine, M., Shadrivov, I. V., Powell, D. A. & Kivshar, Y. S. Metamaterials with conformational nonlinearity. Sci. Rep. 1, 138 (2011).
Zhao, R. K., Tassin, P., Koschny, T. & Soukoulis, C. M. Optical forces in nanowire pairs and metamaterials. Opt. Express 18, 25665–25676 (2010).
Zhang, J., MacDonald, F. M. & Zheludev, N. I. Optical gecko toe: optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces. Phys. Rev. B 85, 205123 (2012).
Acknowledgements
We thank I. Yangs for discussions, and T. Roy and D. Powel for assistance with preparing the manuscript. We acknowledge the support of the Defence Science and Technology Laboratory (UK), Engineering and Physical Sciences Research Council (UK), Royal Society (London), Australian Research Council and collaboration support through the Centre for Ultrahigh-bandwidth Devices for Optical Systems (Australia), and Ministry of Education, Singapore, grant number MOE2011-T3-1-005.
Author information
Authors and Affiliations
Contributions
N.I.Z initiated the sections on reconfigurable, electro-optical, phase change, superconducting and ultrafast metadevices; Y.S.K initiated the sections on liquid crystal metadevices, nonlinear metadevices with varactors and metadevices driven by electromagnetic forces; both authors contributed equally to editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Zheludev, N., Kivshar, Y. From metamaterials to metadevices. Nature Mater 11, 917–924 (2012). https://doi.org/10.1038/nmat3431
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3431
This article is cited by
-
Non-local skyrmions as topologically resilient quantum entangled states of light
Nature Photonics (2024)
-
Analysis of light scattering of a Gaussian beam by a perfect electromagnetic conductor (PEMC) sphere
Indian Journal of Physics (2024)
-
Ceramic-based meta-material absorber with high-temperature stability
Rare Metals (2024)
-
Overcoming delamination in two-photon lithography for improving fabrication of 3D microstructures
Micro and Nano Systems Letters (2023)
-
Dielectric Mie voids: confining light in air
Light: Science & Applications (2023)