Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Langerin is a natural barrier to HIV-1 transmission by Langerhans cells

Abstract

Human immunodeficiency virus-1 (HIV-1) is primarily transmitted sexually. Dendritic cells (DCs) in the subepithelium transmit HIV-1 to T cells through the C-type lectin DC-specific intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin (DC-SIGN). However, the epithelial Langerhans cells (LCs) are the first DC subset to encounter HIV-1. It has generally been assumed that LCs mediate the transmission of HIV-1 to T cells through the C-type lectin Langerin, similarly to transmission by DC-SIGN on dendritic cells (DCs). Here we show that in stark contrast to DC-SIGN, Langerin prevents HIV-1 transmission by LCs. HIV-1 captured by Langerin was internalized into Birbeck granules and degraded. Langerin inhibited LC infection and this mechanism kept LCs refractory to HIV-1 transmission; inhibition of Langerin allowed LC infection and subsequent HIV-1 transmission. Notably, LCs also inhibited T-cell infection by viral clearance through Langerin. Thus Langerin is a natural barrier to HIV-1 infection, and strategies to combat infection must enhance, preserve or, at the very least, not interfere with Langerin expression and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immature LCs do not efficiently mediate HIV-1 transmission.
Figure 2: Langerin is the HIV-1 receptor on immature LCs.
Figure 3: Langerin restricts HIV-1 transmission to T cells by LCs.
Figure 4: Langerin inhibits LC infection and subsequently transmission to T cells.

Similar content being viewed by others

References

  1. Lederman, M.M., Offord, R.E. & Hartley, O. Nat. Rev. Immunol. 6, 371–382 (2006).

    Article  CAS  Google Scholar 

  2. Geijtenbeek, T.B. et al. Cell 100, 587–597 (2000).

    Article  CAS  Google Scholar 

  3. Turville, S.G. et al. Blood 103, 2170–2179 (2004).

    Article  CAS  Google Scholar 

  4. Turville, S.G. et al. Nat. Immunol. 3, 975–983 (2002).

    Article  CAS  Google Scholar 

  5. Veazey, R.S. et al. Nature 438, 99–102 (2005).

    Article  CAS  Google Scholar 

  6. Patterson, B.K. et al. Am. J. Pathol. 161, 867–873 (2002).

    Article  Google Scholar 

  7. Kawamura, T., Kurtz, S.E., Blauvelt, A. & Shimada, S. J. Dermatol. Sci. 40, 147–155 (2005).

    Article  CAS  Google Scholar 

  8. Pope, M. et al. Cell 78, 389–398 (1994).

    Article  CAS  Google Scholar 

  9. Reece, J.C. et al. J. Exp. Med. 187, 1623–1631 (1998).

    Article  CAS  Google Scholar 

  10. Kawamura, T. et al. Proc. Natl. Acad. Sci. USA 100, 8401–8406 (2003).

    Article  CAS  Google Scholar 

  11. Kawamura, T. et al. J. Exp. Med. 192, 1491–1500 (2000).

    Article  CAS  Google Scholar 

  12. Collins, K.B., Patterson, B.K., Naus, G.J., Landers, D.V. & Gupta, P. Nat. Med. 6, 475–479 (2000).

    Article  CAS  Google Scholar 

  13. Banchereau, J. & Steinman, R.M. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  14. McDonald, D. et al. Science 300, 1295–1297 (2003).

    Article  CAS  Google Scholar 

  15. Valladeau, J. et al. Immunity 12, 71–81 (2000).

    Article  CAS  Google Scholar 

  16. Hunger, R.E. et al. J. Clin. Invest. 113, 701–708 (2004).

    Article  CAS  Google Scholar 

  17. Masterson, A.J. et al. Blood 100, 701–703 (2002).

    Article  CAS  Google Scholar 

  18. Garcia, E. et al. Traffic 6, 488–501 (2005).

    Article  CAS  Google Scholar 

  19. Richters, C.D. et al. Clin. Exp. Immunol. 98, 330–336 (1994).

    Article  CAS  Google Scholar 

  20. Nguyen, D.G. & Hildreth, J.E. Eur. J. Immunol. 33, 483–493 (2003).

    Article  CAS  Google Scholar 

  21. Kawamura, T., Qualbani, M., Thomas, E.K., Orenstein, J.M. & Blauvelt, A. Eur. J. Immunol. 31, 360–368 (2001).

    Article  CAS  Google Scholar 

  22. Miller, C.J. & Hu, J. J. Infect. Dis. 179(suppl. 3), 413–417 (1999).

    Article  Google Scholar 

  23. Ward, E.M., Stambach, N.S., Drickamer, K. & Taylor, M.E. J. Biol. Chem. 281, 15450–15456 (2006).

    Article  CAS  Google Scholar 

  24. Cohn, M.A. et al. J. Infect. Dis. 184, 410–417 (2001).

    Article  CAS  Google Scholar 

  25. Picut, C.A., Lee, C.S., Dougherty, E.P., Andersen, K.L. & Lewis, R.M. J. Histochem. Cytochem. 35, 745–753 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Colledge, R. Mebius and M. Litjens for their comments on the manuscript, S. Santegoets for helping to set up the MUTZ3 culture, P. Gallay (Scripps Research Institute) for providing us with the pseudotyped HIV-1 viruses and S. Saeland (Schering Plough) for the Langerin plasmid. We are grateful to the Boerhaave Clinic for providing us with essential materials. We thank E.-C. Park and B. Seed (US National Institutes of Health AIDS Research and Reference Reagent Program) for providing the pSyn gp120 IgG reagent. L.d.W., A.N. and M.A.W.P.d.J. were supported by grants from the Dutch Scientific Research program (VIDI NWO 917-46-367; NWO 912-04-025); A.N. was also supported by the Dutch AIDS Foundation (20005033).

Author information

Authors and Affiliations

Authors

Contributions

L.d.W. designed, executed and interpreted most experiments and prepared the manuscript. A.N. generated viruses and helped with several experiments. M.P. generated the Langerin lentiviral construct under supervision of V.P., who also helped with the manuscript preparation. D.F. executed and interpreted the electron microscopy analysis. M.A.W.P.d.J. helped with LC isolations. T.d.G. contributed reagents and knowledge on LC isolation. Y.v.K. provided supervision and helped with the manuscript preparation. T.B.H.G. supervised all aspects of this study including study design, execution and interpretation, and manuscript preparation.

Corresponding author

Correspondence to Teunis B H Geijtenbeek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

LCs are a natural barrier against HIV-1 transmission. (PDF 835 kb)

Supplementary Fig. 2

Immature LCs inhibit T cell infection. (PDF 162 kb)

Supplementary Fig. 3

The novel HIV-1 blocking antibody 10E2 stains Langerin on LCs in situ. (PDF 858 kb)

Supplementary Fig. 4

Primary emigrant LCs resemble immature isolated LCs. (PDF 177 kb)

Supplementary Fig. 5

Langerin binds HIV-1 gp120 and inhibits LC infection. (PDF 836 kb)

Supplementary Fig. 6

Lewis X is a potential microbicide that blocks HIV-1 gp120 binding to DC-SIGN, but not Langerin. (PDF 101 kb)

Supplementary Table 1

Summary of data obtained with different donors for LC isolation (PDF 8 kb)

Supplementary Methods (PDF 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Witte, L., Nabatov, A., Pion, M. et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 13, 367–371 (2007). https://doi.org/10.1038/nm1541

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1541

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing