Abstract
Acid-sensing ion channels are proton-activated, sodium-selective channels composed of three subunits, and are members of the superfamily of epithelial sodium channels, mechanosensitive and FMRF-amide peptide-gated ion channels. These ubiquitous eukaryotic ion channels have essential roles in biological activities as diverse as sodium homeostasis, taste and pain. Despite their crucial roles in biology and their unusual trimeric subunit stoichiometry, there is little knowledge of the structural and chemical principles underlying their ion channel architecture and ion-binding sites. Here we present the structure of a functional acid-sensing ion channel in a desensitized state at 3 Å resolution, the location and composition of the ∼8 Å ‘thick’ desensitization gate, and the trigonal antiprism coordination of caesium ions bound in the extracellular vestibule. Comparison of the acid-sensing ion channel structure with the ATP-gated P2X4 receptor reveals similarity in pore architecture and aqueous vestibules, suggesting that there are unanticipated yet common structural and mechanistic principles.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature 386, 173–177 (1997)
Coric, T., Zheng, D., Gerstein, M. & Canessa, C. M. Proton sensitivity of ASIC1 appeared with the rise of fishes by changes of residues in the region that follows TM1 in the ectodomain of the channel. J. Physiol. (Lond.) 568, 725–735 (2005)
Coric, T., Passamaneck, Y. J., Zhang, P., Di Gregorio, A. & Canessa, C. M. Simple chordates exhibit a proton-independent function of acid-sensing ion channels. FASEB J. 22, 1914–1923 (2008)
Kellenberger, S. & Schild, L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. 82, 735–767 (2002)
Hesselager, M., Timmermann, D. B. & Ahring, P. K. pH dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. J. Biol. Chem. 279, 11006–11015 (2004)
Jasti, J., Furukawa, H., Gonzales, E. B. & Gouaux, E. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449, 316–323 (2007)
Carnally, S. M. et al. Direct visualization of the trimeric structure of the ASIC1a channel, using AFM imaging. Biochem. Biophys. Res. Commun. 372, 752–755 (2008)
Zha, X. M. et al. Oxidant regulated inter-subunit disulfide bond formation between ASIC1a subunits. Proc. Natl Acad. Sci. USA 106, 3573–3578 (2009)
Coscoy, S., Lingueglia, E., Lazdunski, M. & Barbry, P. The Phe-Met-Arg-Phe-amide-activated sodium channel is a tetramer. J. Biol. Chem. 273, 8317–8322 (1998)
Kellenberger, S., Hoffmann-Pochon, N., Gautschi, I., Schneeberger, E. & Schild, L. On the molecular basis of ion permeation in the epithelial Na+ channel. J. Gen. Physiol. 114, 13–30 (1999)
Bassler, E. L., Ngo-Anh, T. J., Geisler, H. S., Ruppersberg, J. P. & Gründer, S. Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J. Biol. Chem. 276, 33782–33787 (2001)
Benos, D. J., Mandel, L. J. & Simon, S. A. Cationic selectivity and competition at the sodium entry site in frog skin. J. Gen. Physiol. 76, 233–247 (1980)
Palmer, L. G. Ion selectivity of the apical membrane Na channel in the toad urinary bladder. J. Membr. Biol. 67, 91–98 (1982)
Kellenberger, S., Gautschi, I. & Schild, L. A single point mutation in the pore region of the epithelial Na+ channel changes ion selectivity by modifying molecular sieving. Proc. Natl Acad. Sci. USA 96, 4170–4175 (1999)
Snyder, P. M., Olson, D. R. & Bucher, D. B. A pore segment in DEG/ENaC Na+ channels. J. Biol. Chem. 274, 28484–28490 (1999)
Brake, A. J., Wagenbach, M. J. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519–523 (1994)
Valera, S. et al. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 371, 516–519 (1994)
Nicke, A. et al. P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J. 17, 3016–3028 (1998)
Aschrafi, A., Sadtler, S., Niculescu, C., Rettinger, J. & Schmalzing, G. Trimeric architecture of homomeric P2X2 and heteromeric P2X1+2 receptor subtypes. J. Mol. Biol. 342, 333–343 (2004)
Surprenant, A. & North, R. A. Signaling at purinergic P2X receptors. Annu. Rev. Physiol. 71, 333–359 (2008)
Kawate, T., Michel, J. C., Birdsong, W. T. & Gouaux, E. Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 10.1038/nature08198 (this issue)
Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006)
Gründer, S. et al. A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel. EMBO J. 16, 899–907 (1997)
Pfister, Y. et al. A gating mutation in the internal pore of ASIC1a. J. Biol. Chem. 281, 11787–11791 (2006)
Dani, J. A. Ion-channel entrances influence permeation. Net charge, size, shape, and binding considerations. Biophys. J. 49, 607–618 (1986)
Immke, D. C. & McCleskey, E. W. Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 37, 75–84 (2003)
Paukert, M., Babini, E., Pusch, M. & Gründer, S. Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: implications for channel gating. J. Gen. Physiol. 124, 383–394 (2004)
Chalfie, M. & Wolinsky, E. The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans . Nature 345, 410–416 (1990)
Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349, 588–593 (1991)
Hong, K. & Driscoll, M. A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans . Nature 367, 470–473 (1994)
Brown, A. L., Fernandez-Illescas, S. M., Liao, Z. & Goodman, M. B. Gain-of-function mutations in the MEC-4 DEG/ENaC sensory mechanotransduction channel alter gating and drug blockade. J. Gen. Physiol. 129, 161–173 (2007)
Snyder, P. M., Bucher, D. B. & Olson, D. R. Gating induces a conformational change in the outer vestibule of ENaC. J. Gen. Physiol. 116, 781–790 (2000)
Champigny, G., Voilley, N., Waldmann, R. & Lazdunski, M. Mutations causing neurodegeneration in Caenorhabditis elegans drastically alter the pH sensitivity and inactivation of the mammalian H+-gated Na+ channel MDEG1. J. Biol. Chem. 273, 15418–15422 (1998)
Hille, B. Ion Channels of Excitable Membranes 3rd edn, Ch. 10 (Sinauer Associates, 2001)
Harding, M. M. Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Crystallogr. D 58, 872–874 (2002)
Kellenberger, S., Auberson, M., Gautschi, I., Schneeberger, E. & Schild, L. Permeability properties of ENaC selectivity filter mutants. J. Gen. Physiol. 118, 679–692 (2001)
Neupert-Laves, K. & Dobler, M. The crystal structure of a K+ complex of valinomycin. Helv. Chim. Acta 58, 432–442 (1975)
Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001)
Askwith, C. C., Benson, C. J., Welsh, M. J. & Snyder, P. M. DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc. Natl Acad. Sci. USA 98, 6459–6463 (2001)
Jiang, L. H. et al. Subunit arrangement in P2X receptors. J. Neurosci. 23, 8903–8910 (2003)
Silberberg, S. D., Chang, T. H. & Swartz, K. J. Secondary structure and gating rearrangements of transmembrane segments in rat P2X4 receptor channels. J. Gen. Physiol. 125, 347–359 (2005)
Shaikh, S. A. & Tajkhorshid, E. Potential cation and H+ binding sites in acid sensing ion channel-1. Biophys. J. 95, 5153–5164 (2008)
Cushman, K. A., Marsh-Haffner, J., Adelman, J. P. & McCleskey, E. W. A conformation change in the extracellular domain that accompanies desensitization of acid-sensing ion channel (ASIC) 3. J. Gen. Physiol. 129, 345–350 (2007)
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)
Collaborative Computational Project, Number 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D. 50, 760–763 (1994)
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D. 53, 240–255 (1997)
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)
Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–383 (2007)
Acknowledgements
We thank the personnel at beamlines 5.0.2 of the Advanced Light Source. We also thank C. Canessa for chicken ASIC1 DNA, L. Vaskalis for assistance with illustrations, and Gouaux laboratory members for discussion. This work was supported by a National Institute of General Medical Sciences (NIGMS)-National Research Service Award (NRSA) to E.B.G. and the National Institutes of Health (NIH) (E.G.). E.G. is an investigator with the Howard Hughes Medical Institute.
Author Contributions E.G. and E.B.G. designed the project. E.B.G. performed cloning, cell culture, FSEC screening, purification, crystallography and electrophysiology. T.K. provided the zebrafish ΔP2X4 crystal structure. E.B.G. and E.G. wrote the manuscript.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
This file contains Supplementary Tables 1-2, Supplementary Figures 1-8 with Legends and a Supplementary Reference. (PDF 652 kb)
Rights and permissions
About this article
Cite this article
Gonzales, E., Kawate, T. & Gouaux, E. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460, 599–604 (2009). https://doi.org/10.1038/nature08218
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature08218