Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Impact of regional climate change on human health

Abstract

The World Health Organisation estimates that the warming and precipitation trends due to anthropogenic climate change of the past 30 years already claim over 150,000 lives annually. Many prevalent human diseases are linked to climate fluctuations, from cardiovascular mortality and respiratory illnesses due to heatwaves, to altered transmission of infectious diseases and malnutrition from crop failures. Uncertainty remains in attributing the expansion or resurgence of diseases to climate change, owing to lack of long-term, high-quality data sets as well as the large influence of socio-economic factors and changes in immunity and drug resistance. Here we review the growing evidence that climate–health relationships pose increasing health risks under future projections of climate change and that the warming trend over recent decades has already contributed to increased morbidity and mortality in many regions of the world. Potentially vulnerable regions include the temperate latitudes, which are projected to warm disproportionately, the regions around the Pacific and Indian oceans that are currently subjected to large rainfall variability due to the El Niño/Southern Oscillation sub-Saharan Africa and sprawling cities where the urban heat island effect could intensify extreme climatic events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation between simulated, climate-driven variations in Aedes aegypti mosquito density and observed variations in dengue and DHF cases.
Figure 2: WHO estimated mortality (per million people) attributable to climate change by the year 2000.
Figure 3: Simulated ozone air pollution over the eastern United States by using a downscaled climate model linked to a regional air pollution model.

Similar content being viewed by others

References

  1. Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report 1–944 (Cambridge Univ. Press, Cambridge, UK, 2001)

    Google Scholar 

  2. Intergovernmental Panel on Climate Change. Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report 1–1000 (Cambridge Univ. Press, Cambridge, UK, 2001)

    Google Scholar 

  3. Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Kovats, R. S., Campbell-Lendrum, D. H., McMichael, A. J., Woodward, A. & Cox, J. S. Early effects of climate change: Do they include changes in vector-borne disease? Phil. Trans. R. Soc. Ser. B 356, 1057–1068 (2001)

    Article  CAS  Google Scholar 

  5. Patz, J. A., Epstein, P. R., Burke, T. A. & Balbus, J. M. Global climate change and emerging infectious diseases. J. Am. Med. Assoc. 275, 217–223 (1996)

    Article  CAS  Google Scholar 

  6. Beniston, M. The 2003 heatwave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. 31, 2022–2026 (2004)

    Article  Google Scholar 

  7. Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Schar, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–336 (2004)

    Article  ADS  Google Scholar 

  9. International Federation of Red Cross and Red Crescent Societies. World Disaster Report 2004 Ch. 2 (IFRC, 2004)

    Google Scholar 

  10. Kosatsky, T. The 2003 European heat waves. Euro Surveill. Published online July 2005, 10(7), http://www.eurosurveillance.org/em/v10n07/1007-222.asp.

  11. Frumkin, H. Urban sprawl and public health. Public Health Rep. 117, 201–217 (2002)

    Article  Google Scholar 

  12. Aniello, C., Morgan, K., Busbey, A. & Newland, L. Mapping micro-urban heat islands using Landsat Tm and a GIS. Comput. Geosci. 21, 965–969 (1995)

    Article  ADS  Google Scholar 

  13. Kalnay, E. & Cai, M. Impact of urbanization and land-use change on climate. Nature 423, 528–531 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Zhou, L. M. et al. Evidence for a significant urbanization effect on climate in China. Proc. Natl Acad. Sci. USA 101, 9540–9544 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Curriero, F. C., Heiner, K., Zeger, S., Samet, J. M. & Patz, J. A. Temperature and mortality in 11 cities of the eastern United States. Am. J. Epidemiol. 155, 80–87 (2002)

    Article  Google Scholar 

  16. McMichael, A. J., Haines, A., Slooff, R. & Kovats, S. (eds) Climate Change and Human Health (The World Health Organization, Geneva, 1996)

  17. Hajat, S., Kovats, R. S., Atkinson, R. W. & Haines, A. Impact of hot temperatures on death in London: a time series approach. J. Epidemiol. Commun. Health 56, 367–372 (2002)

    Article  CAS  Google Scholar 

  18. Martens, W. J. Health impacts of climate change and ozone depletion: an ecoepidemiologic modeling approach. Environ. Health Perspect. 106 (Suppl 1), 241–251 (1998)

    Article  Google Scholar 

  19. Gouveia, N., Hajat, S. & Armstrong, B. Socioeconomic differentials in the temperature-mortality relationship in São Paulo, Brazil. Int. J. Epidemiol. 32, 390–397 (2003)

    Article  Google Scholar 

  20. The World Health Organisation. The World Health Report 2002 (WHO, Geneva, 2002)

    Google Scholar 

  21. Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M. & Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Change 14, 53–67 (2004)

    Article  Google Scholar 

  22. Gubler, D. J. et al. Climate variability and change in the United States: Potential impacts on vector- and rodent-borne diseases. Environ. Health Perspect. 109, 223–233 (2001)

    PubMed  PubMed Central  Google Scholar 

  23. Kuhn, K. G., Campbell-Lendrum, D. H., Armstrong, B. & Davies, C. R. Malaria in Britain: past, present, and future. Proc. Natl Acad. Sci. USA 100, 9997–10001 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Hales, S., de Wet, N., Maindonald, J. & Woodward, A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360, 830–834 (2002)

    Article  Google Scholar 

  25. Rogers, D. J. & Randolph, S. E. The global spread of malaria in a future, warmer world. Science 289, 1763–1766 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Githeko, A. K. & Ndegwa, W. Predicting malaria epidemics in the Kenyan Highlands using climate data: a tool for decision makers. Glob. Change Hum. Health 2, 54–63 (2001)

    Article  Google Scholar 

  27. Hay, S. I. et al. Climate change and the resurgence of malaria in the East African highlands. Nature 415, 905–909 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Mouchet, J. Malaria epidemics on the Highlands of Madagascar and of East and South Africa. Bull. Soc. Pathol. Exot. 91, 64–66 (1998)

    CAS  PubMed  Google Scholar 

  29. Mouchet, J. et al. Evolution of malaria in Africa for the past 40 years: impact of climatic and human factors. J. Am. Mosq. Control Assoc. 14, 121–130 (1998)

    CAS  PubMed  Google Scholar 

  30. Shanks, G. D., Hay, S. I., Stern, D. I., Biomndo, K. & Snow, R. W. Meteorologic influences on Plasmodium falciparum malaria in the highland tea estates of Kericho, western Kenya. Emerg. Infect. Dis. 8, 1404–1408 (2002)

    Article  Google Scholar 

  31. Tulu, A. N. Determinants of Malaria Transmission in the Highlands of Ethiopia. The Impact of Global Warming on Morbidity and Mortality Ascribed to Malaria. PhD thesis, Univ. London (1996)

    Google Scholar 

  32. Hopp, M. J. & Foley, J. A. Worldwide fluctuations in dengue fever cases related to climate variability. Clim. Res. 25, 85–94 (2003)

    Article  Google Scholar 

  33. Tong, S. L., Hu, W. B. & McMichael, A. J. Climate variability and Ross River virus transmission in Townsville region, Australia, 1985–1996. Trop. Med. Int. Health 9, 298–304 (2004)

    Article  Google Scholar 

  34. Woodruff, R., Guest, C., Garner, G., Becker, N. & Lindsay, M. F. Weather and climate as early warning system indicators for epidemics of Ross River virus: a case study in south-west western Australia. Epidemiology 14, S94–S94 (2003)

    Article  Google Scholar 

  35. Parmenter, R. R., Yadav, E. P., Parmenter, C. A., Ettestad, P. & Gage, K. L. Incidence of plague associated with increased winter-spring precipitation in New Mexico. Am. J. Trop. Med. Hyg. 61, 814–821 (1999)

    Article  CAS  Google Scholar 

  36. Purse, B. V. et al. Climate change and the recent emergence of bluetongue in Europe. Nature Rev. Microbiol. 3, 171–181 (2005)

    Article  CAS  Google Scholar 

  37. Kovats, R. S. et al. The effect of temperature on food poisoning: a time-series analysis of salmonellosis in ten European countries. Epidemiol. Infect. 132, 443–453 (2004)

    Article  CAS  Google Scholar 

  38. Bentham, G. & Langford, I. H. Environmental temperatures and the incidence of food poisoning in England and Wales. Int. J. Biometeorol. 45, 22–26 (2001)

    Article  ADS  CAS  Google Scholar 

  39. Ropelewski, C. F. & Halpert, M. S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weath. Rev. 111, 517–528 (1987)

    Google Scholar 

  40. Bouma, M. J. & van der Kaay, H. J. The El Niño Southern Oscillation and the historic malaria epidemics on the Indian subcontinent and Sri Lanka: an early warning system for future epidemics? Trop. Med. Int. Health 1, 86–96 (1996)

    Article  CAS  Google Scholar 

  41. Poveda, G. et al. Coupling between annual and ENSO timescales in the malaria-climate association in Colombia. Environ. Health Perspect. 109, 489–493 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bouma, M. J. & Dye, C. Cycles of malaria associated with El Niño in Venezuela. J. Am. Med. Assoc. 278, 1772–1774 (1997)

    Article  CAS  Google Scholar 

  43. Lindblade, K. A., Walker, E. D., Onapa, A. W., Katungu, J. & Wilson, M. L. Highland malaria in Uganda: prospective analysis of an epidemic associated with El Niño. Trans. R. Soc. Trop. Med. Hyg. 93, 480–487 (1999)

    Article  CAS  Google Scholar 

  44. Linthicum, K. J. et al. Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 285, 397–400 (1999)

    Article  CAS  Google Scholar 

  45. Anyamba, A., Linthicum, K. J. & Tucker, C. J. Climate-disease connections: Rift Valley Fever in Kenya. Cad Saude Publica 17 (Suppl.), 133–140 (2001)

    Article  Google Scholar 

  46. Cummings, D. A. et al. Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature 427, 344–347 (2004)

    Article  ADS  CAS  Google Scholar 

  47. Cazelles, B., Chavez, M., McMichael, A. J. & Hales, S. Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLoS Med. 2, e106 (2005)

    Article  Google Scholar 

  48. Glass, G. E. et al. Using remotely sensed data to identify areas at risk for hantavirus pulmonary syndrome. Emerg. Infect. Dis. 6, 238–247 (2000)

    Article  CAS  Google Scholar 

  49. Glass, G. E. et al. Satellite imagery characterizes local animal reservoir populations of Sin Nombre virus in the southwestern United States. Proc. Natl Acad. Sci. USA 99, 16817–16822 (2002)

    Article  ADS  CAS  Google Scholar 

  50. Checkley, W. et al. Effect of El Niño and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. Lancet 355, 442–450 (2000)

    CAS  PubMed  Google Scholar 

  51. Pascual, M., Rodo, X., Ellner, S. P., Colwell, R. & Bouma, M. J. Cholera dynamics and El Niño-Southern Oscillation. Science 289, 1766–1769 (2000)

    Article  ADS  CAS  Google Scholar 

  52. Rodo, X., Pascual, M., Fuchs, G. & Faruque, A. S. ENSO and cholera: a non-stationary link related to climate change? Proc. Natl Acad. Sci. 99, 12901–12906 (2002)

    Article  ADS  CAS  Google Scholar 

  53. Colwell, R. R. Global climate and infectious disease: the cholera paradigm. Science 274, 2025–2031 (1996)

    Article  ADS  CAS  Google Scholar 

  54. Koelle, K., Rodo, X., Pascual, M., Yunus, M. & Mostafa, G. Refractory periods and climate forcing in cholera dynamics. Nature 436, 696–700 (2005)

    Article  ADS  CAS  Google Scholar 

  55. Lindblade, K. A., Walker, E. D., Onapa, A. W., Katungu, J. & Wilson, M. L. Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Trop. Med. Int. Health 5, 263–274 (2000)

    Article  CAS  Google Scholar 

  56. McMichael, A. J. Impact of climatic and other environmental changes on food production and population health in the coming decades. Proc. Nutr. Soc. 60, 195–201 (2001)

    Article  CAS  Google Scholar 

  57. McMichael, A. J. et al. in Comparative Quantification of Health Risks: Global and Regional Burden of Disease due to Selected Major Risk Factors (eds Ezzati, M., Lopez, A. D., Rodgers, A. & Murray, C. J. L.) Ch. 20, 1543–1649 (World Health Organization, Geneva, 2004)

    Google Scholar 

  58. Arnell, N. W. The consequences of CO2 stabilization for the impacts of climate change. Clim. Change 53, 413–446 (2002)

    Article  CAS  Google Scholar 

  59. Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heatwaves in the 21st century. Science 305, 994–997 (2004)

    Article  ADS  CAS  Google Scholar 

  60. Tanser, F. C., Sharp, B. & le Sueur, D. Potential effect of climate change on malaria transmission in Africa. Lancet 362, 1792–1798 (2003)

    Article  Google Scholar 

  61. Hay, S. I. et al. Climate variability and malaria epidemics in the highlands of East Africa. Trends Parasitol. 21, 53–63 (2005)

    Article  Google Scholar 

  62. Reiter, P. et al. Global warming and malaria: a call for accuracy. Lancet Infect. Dis. 4, 323–324 (2004)

    Article  Google Scholar 

  63. Meehl, G. A., Covey, C., McAvaney, B., Latif, M. & Stouffer, R. J. Overview of the Coupled Model Intercomparison Project. Bull. Am. Meteorol. Soc. 86, 89–93 (2005)

    Article  ADS  Google Scholar 

  64. Knowlton, K. et al. Assessing ozone-related health impacts under a changing climate. Environ. Health Perspect. 112, 1557–1563 (2004)

    Article  CAS  Google Scholar 

  65. McMichael, A. et al. Human Health and Climate Change in Oceania: A Risk Assessment (Commonwealth of Australia, Canberra, 2003)

    Google Scholar 

  66. Hogrefe, C. et al. Simulating changes in regional air pollution over the eastern United States due to changes in global and regional climate and emissions. J. Geophys. Res. 109, 2627–2638 (2004)

    Article  Google Scholar 

  67. Patz, J. A. et al. Heat Advisory: Climate Change, Air Pollution, and Health in the US (Natural Resources Defense Council, Washington, 2004)

    Google Scholar 

  68. Hayhoe, K. et al. Emissions pathways, climate change, and impacts on California. Proc. Natl Acad. Sci. USA 101, 12422–12427 (2004)

    Article  ADS  CAS  Google Scholar 

  69. Thomson, M. C., Mason, S. J., Phindela, T. & Connor, S. J. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am. J. Trop. Med. Hyg. 73, 214–221 (2005)

    Article  Google Scholar 

  70. Sheridan, S. C. & Kalkstein, L. S. Health watch/warning systems in urban areas. World Res. Rev. 10, 375–383 (1998)

    Google Scholar 

  71. Weisskopf, M. G. et al. Heatwave morbidity and mortality, Milwaukee, Wis, 1999 vs 1995: an improved response? Am. J. Public Health 92, 830–833 (2002)

    Article  Google Scholar 

  72. Sheridan, S. C. & Kalkstein, L. S. Progress in heat watch-warning system technology. Bull. Am. Meteorol. Soc. 85, 1931–1941 (2004)

    Article  ADS  Google Scholar 

  73. Michelozzi, P. et al. Impact of heatwaves on mortality—Rome, Italy, June-August 2003. J. Am. Med. Assoc. 291, 2537–2538 (2004); reprinted from Morb. Mort. Weekly Rep. 53, 369–371 (2004)

    Article  CAS  Google Scholar 

  74. Tan, J. G. et al. An operational heat/health warning system in Shanghai. Int. J. Biometeorol. 48, 157–162 (2004)

    Article  ADS  Google Scholar 

  75. Ebi, K. L., Teisberg, T. J., Kalkstein, L. S., Robinson, L. & Weiher, R. F. Heat watch/warning systems save lives—Estimated costs and benefits for Philadelphia 1995–98. Bull. Am. Meteorol. Soc. 85, 1067–1073 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank contributors to the climate change portion of the WHO Global Burden of Disease Assessment led by T. McMichael for the data and analysis incorporated into Table 1 and Fig. 2. For constructing figures and tables and assisting in manuscript preparation, we thank S. Olson, E. Sowatzke, M. Sternitzky and D. Zaks. We thank C. Tebaldi for providing technical information on the 2003 European heatwave, and C. Hogrefe for providing Fig. 3. We also thank M. Pascual and J. Ahumada for assistance with manuscript revisions. The views expressed in this article are those of the authors and do not necessarily reflect the position of the World Health Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Patz.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patz, J., Campbell-Lendrum, D., Holloway, T. et al. Impact of regional climate change on human health. Nature 438, 310–317 (2005). https://doi.org/10.1038/nature04188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing