Abstract
No crustal rocks are known to have survived since the time of the intense meteor bombardment that affected Earth1 between its formation about 4,550 Myr ago and 4,030 Myr, the age of the oldest known components in the Acasta Gneiss of northwestern Canada2. But evidence of an even older crust is provided by detrital zircons in metamorphosed sediments at Mt Narryer3 and Jack Hills4,5,6,7,8 in the Narryer Gneiss Terrane9, Yilgarn Craton, Western Australia, where grains as old as ∼4,276 Myr have been found4. Here we report, based on a detailed micro-analytical study of Jack Hills zircons10, the discovery of a detrital zircon with an age as old as 4,404 ± 8 Myr—about 130 million years older than any previously identified on Earth. We found that the zircon is zoned with respect to rare earth elements and oxygen isotope ratios (δ18O values from 7.4 to 5.0‰), indicating that it formed from an evolving magmatic source. The evolved chemistry, high δ18O value and micro-inclusions of SiO2 are consistent with growth from a granitic melt11,2 with a δ18O value from 8.5 to 9.5‰. Magmatic oxygen isotope ratios in this range point toward the involvement of supracrustal material that has undergone low-temperature interaction with a liquid hydrosphere. This zircon thus represents the earliest evidence for continental crust and oceans on the Earth.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ryder, G. Chronology of early bombardment in the inner solar system. Geol. Soc. Am. Abstr. Progm 21, A299 ( 1992).
Bowring, S A. & Williams, I. S. Priscoan (4.00–4.03) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol. 134, 3–16 (1999).
Froude, D. O. et al. Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons. Nature 304, 616– 618 (1983).
Compston, W. & Pidgeon, R. T. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321, 766–769 (1986).
Wilde, S. A. & Pidgeon, R. T. in 3rd International Archaean Symposium (Perth), Excursion Guidebook (eds Ho, S. E., Glover, J. E., Myers, J. S. & Muhling, J. R.) 82–95 (University of Western Australia Extension Publication, Vol. 21, Perth, 1990).
Kober, B., Pidgeon, R. T. & Lippolt, H. J. Single-zircon dating by step-wise Pb-evaporation constrains the Archean history of detrital zircons from the Jack Hills, Western Australia. Earth Planet. Sci. Lett. 91, 286–296 (1989).
Amelin, Y. V. Geochronology of the Jack Hills detrital zircons by precise U-Pb isotope dilution analysis of crystal fragments. Chem. Geol. 146, 25–38 (1998).
Amelin, Y., Lee, D.-C., Halliday, A. N. & Pidgeon, R. T. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252– 255 (1999).
Myers, J. S. in Early Precambrian Processes (eds Coward, M. P. & Ries, A. C.) 143–154 (Geological Society of London Special Publication No. 95, 1995).
Peck, W. H., Valley, J. W., Wilde, S. A. & Graham, C. M. Oxygen isotope ratios and rare earth elements in 3.3 to >4.0 Ga zircons: ion microprobe evidence for Early Archaean high δ18O continental crust. Geochim. Cosmochim. Acta (submitted).
Hinton, R. W. & Upton, B. G. J. The chemistry of zircon; variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim. Cosmochim. Acta 55, 3287– 3302 (1991).
Valley, J. W., Chiarenzelli, J. R. & McLelland, J. M. Oxygen isotope geochemistry of zircon. Earth Planet. Sci. Lett. 126, 187– 206 (1994).
Maas, R., Kinny, P. D., Williams, I. S., Froude, D. O. & Compston, W. The earth's oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta 56, 1281–1300 (1992).
Compston, W., Williams, I. S., Kirschvink, J. L., Zhang, Z. & Ma, G. Zircon U-Pb ages for the Early Cambrian time-scale. J. Geol. Soc. Lond. 149, 171– 184 (1992).
Williams, I. S. in Applications of Microanalytical Techniques to Understanding Mineralizing Processes (eds McKibben, M. A., Shanks III, W. C. & Ridley, W. I.) 1–95 (Reviews in Economic Geology, Vol. 7, Society of Economic Geologists, Littleton, Colorado, 1998).
Nelson, D. R. Compilation of SHRIMP U-Pb geochronology data, 1996. Geol. Surv. Western Australia Rec. 1997/2, 1–11 (1997).
Taylor, S. R. Solar System Evolution: A New Perspective 289 (Cambridge Univ. Press, Cambridge, 1992).
Nelson, D. R., Robinson, B. W. & Myers, J. S. Complex geological histories extending from >4.0 Ga deciphered from xenocryst zircon microstructures. Earth Planet. Sci. Lett. 181, 89–102 ( 2000).
Williams, I. S., Compston, W., Black, L. P., Ireland, T. R. & Foster, J. J. Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages. Contrib. Mineral. Petrol. 88, 322–327 (1984).
Mattinson, J. M. A study of complex discordance in zircons using step-wise dissolution techniques. Contrib. Mineral. Petrol. 16, 117– 129 (1994).
Valley, J. W., Kinny, P. D., Schulze, D. J. & Spicuzza, M. J. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib. Mineral. Petrol. 133, 1– 11 (1998).
King, E. M., Valley, J. W., Davis, D. W. & Edwards, G. R. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior province: indicator of magmatic source. Precamb. Res. 92, 365–387 (1998).
Muehlenbachs, K. in Stable Isotopes (eds Valley, J. W. et al.) MSA Rev. Min. 16, 425–444 ( 1986).
Schopf, J. W. Microfossils in the early Archean Apex Chert: New evidence for the antiquity of life. Science 260, 640– 646 (1993).
Hayes, J. M., Kaplan, I. R. & Wedeking, K. W. in Earth's Earliest Biosphere; its Origin and evolution 93–134 (Princeton Univ. Press, Princeton, NJ, 1983).
Pidgeon, R. T. et al. in Eighth Int. Conf. Geochron., Cosmochron. Isotope Geol. (eds Lanphere, M. A., Dalrymple, G. B. & Turrin, B. D.) 251 (US Geological Survey Circular 1107, Denver, Colorado, 1994).
Claoué-Long, J. C., Compston, W., Roberts, J. & Fanning, C. M. in Geochronology, Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.) 3– 21 (Soc. of Sedimentary Geology, SEPM Sp. Publ. 4, 1995).
Valley, J. W., Graham, C. M., Harte, B., Eiler, J. M. & Kinny, P. D. in Applications of Microanalysis to Understanding Mineralizing Processes (eds McKibben, M. A., Shanks III, W. C. & Ridley, W. I.) 73–98 ( xReviews in Economic Geology, Vol. 7, Society of Economic Geologists, Littleton, Colorado, 1998).
Eiler, J. M., Graham, C. M. & Valley, J. W. SIMS analysis of oxygen isotopes: matrix effects in complex minerals and glasses. Chem. Geol. 138, 221–244 (1997).
Acknowledgements
We thank A. Nemchin for assistance with the cathodoluminescence imaging, J. Craven for assistance in stable isotope analysis by ion microprobe and J. Fournelle for assistance with electron microprobe analysis. Initial fieldwork was supported by the Australian Research Council and analytical work by NERC, NSF and the US Department of Energy. D. Nelson and K. McNamara kindly commented on the manuscript.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Wilde, S., Valley, J., Peck, W. et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001). https://doi.org/10.1038/35051550
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/35051550
This article is cited by
-
Hexose phosphorylation for a non-enzymatic glycolysis and pentose phosphate pathway on early Earth
Scientific Reports (2024)
-
Metallic lead (Pb) nanospheres discovered in Hadean and Eoarchean zircon crystals at Jack Hills
Scientific Reports (2023)
-
I-type and S-type granites in the Earth’s earliest continental crust
Communications Earth & Environment (2023)
-
The crystal timekeeper zircon
Nature Geoscience (2023)
-
Physical non-equilibria for prebiotic nucleic acid chemistry
Nature Reviews Physics (2023)