Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conserved Mediator–CDK8 kinase module association regulates Mediator–RNA polymerase II interaction

Abstract

The CDK8 kinase module (CKM) is a conserved, dissociable Mediator subcomplex whose component subunits were genetically linked to the RNA polymerase II (RNAPII) C-terminal domain (CTD) and individually recognized as transcriptional repressors before Mediator was identified as a pre-eminent complex in eukaryotic transcription regulation. We used macromolecular EM and biochemistry to investigate the subunit organization, structure and Mediator interaction of the Saccharomyces cerevisiae CKM. We found that interaction of the CKM with Mediator's middle module interferes with CTD-dependent RNAPII binding to a previously unknown middle-module CTD-binding site and with the holoenzyme formation process. Taken together, our results reveal the basis for CKM repression, clarify the origin of the connection between CKM subunits and the CTD and suggest that a combination of competitive interactions and conformational changes that facilitate holoenzyme formation underlie the mechanism of transcription regulation by Mediator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EM analysis and subunit organization of yeast CKM.
Figure 2: Mediator-CKM interaction in yeast.
Figure 3: Human Mediator-CKM interaction.
Figure 4: Mediator-CTD and Mediator-RNAPII interaction in yeast.
Figure 5: Interplay between CKM and RNAPII interaction with Mediator.
Figure 6: A model for CKM-dependent repression through obstruction of CTD-dependent Mediator-RNAPII interaction.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Referenced accessions

Protein Data Bank

References

  1. Takagi, Y. & Kornberg, R.D. Mediator as a general transcription factor. J. Biol. Chem. 281, 80–89 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Baek, H.J., Malik, S., Qin, J. & Roeder, R.G. Requirement of TRAP/mediator for both activator-independent and activator-dependent transcription in conjunction with TFIID-associated TAF(II)s. Mol. Cell Biol. 22, 2842–2852 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Flanagan, P.M., Kelleher, R.J. III, Sayre, M.H., Tschochner, H. & Kornberg, R.D. A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350, 436–438 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Flanagan, P.M. et al. Resolution of factors required for the initiation of transcription by yeast RNA polymerase II. J. Biol. Chem. 265, 11105–11107 (1990).

    CAS  PubMed  Google Scholar 

  5. Cai, G., Imasaki, T., Takagi, Y. & Asturias, F.J. Mediator structural conservation and implications for the regulation mechanism. Structure 17, 559–567 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hengartner, C.J. et al. Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol. Cell 2, 43–53 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Liao, S.M. et al. A kinase–cyclin pair in the RNA polymerase II holoenzyme. Nature 374, 193–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Nonet, M.L. & Young, R.A. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123, 715–724 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Donner, A.J., Ebmeier, C.C., Taatjes, D.J. & Espinosa, J.M. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat. Struct. Mol. Biol. 17, 194–201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Knuesel, M.T., Meyer, K.D., Donner, A.J., Espinosa, J.M. & Taatjes, D.J. The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol. Cell Biol. 29, 650–661 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Donner, A.J., Szostek, S., Hoover, J.M. & Espinosa, J.M. CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol. Cell 27, 121–133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Borggrefe, T., Davis, R., Erdjument-Bromage, H., Tempst, P. & Kornberg, R.D. A complex of the Srb8, -9, -10, and -11 transcriptional regulatory proteins from yeast. J. Biol. Chem. 277, 44202–44207 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Hengartner, C.J. et al. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev. 9, 897–910 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Myers, L.C. et al. The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev. 12, 45–54 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spahr, H. et al. Mediator influences Schizosaccharomyces pombe RNA polymerase II-dependent transcription in vitro. J. Biol. Chem. 278, 51301–51306 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Taatjes, D.J., Naar, A.M., Andel, F. III, Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058–1062 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Knuesel, M.T., Meyer, K.D., Bernecky, C. & Taatjes, D.J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 23, 439–451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elmlund, H. et al. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc. Natl. Acad. Sci. USA 103, 15788–15793 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bernecky, C., Grob, P., Ebmeier, C.C., Nogales, E. & Taatjes, D.J. Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly. PLoS Biol. 9, e1000603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Puig, O. et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Schneider, E.V. et al. The structure of CDK8/CycC implicates specificity in the CDK/cyclin family and reveals interaction with a deep pocket binder. J. Mol. Biol. 412, 251–266 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Kang, J.S. et al. The structural and functional organization of the yeast mediator complex. J. Biol. Chem. 276, 42003–42010 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Dotson, M.R. et al. Structural organization of yeast and mammalian mediator complexes. Proc. Natl. Acad. Sci. USA 97, 14307–14310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Imasaki, T. et al. Architecture of the Mediator head module. Nature 475, 240–243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robinson, P.J., Bushnell, D.A., Trnka, M.J., Burlingame, A.L. & Kornberg, R.D. Structure of the Mediator Head module bound to the carboxy-terminal domain of RNA polymerase II. Proc. Natl. Acad. Sci. USA 109, 17931–17935 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Larivière, L. et al. Structure of the Mediator head module. Nature 492, 448–451 (2012).

    Article  PubMed  Google Scholar 

  29. Näär, A.M., Taatjes, D.J., Zhai, W., Nogales, E. & Tjian, R. Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev. 16, 1339–1344 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Asturias, F.J., Jiang, Y.W., Myers, L.C., Gustafsson, C.M. & Kornberg, R.D. Conserved structures of mediator and RNA polymerase II holoenzyme. Science 283, 985–987 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Davis, J.A., Takagi, Y., Kornberg, R.D. & Asturias, F.A. Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol. Cell 10, 409–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, Z., Fang, J., Chittuluru, J., Asturias, F.J. & Penczek, P.A. Iterative stable alignment and clustering of 2D transmission electron microscope images. Structure 20, 237–247 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cai, G. et al. Interaction of the Mediator Head module with RNA Polymerase II. Structure 20, 899–910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Svejstrup, J.Q. et al. Evidence for a mediator cycle at the initiation of transcription. Proc. Natl. Acad. Sci. USA 94, 6075–6078 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Penczek, P.A., Kimmel, M. & Spahn, C.M. Identifying conformational states of macromolecules by eigen-analysis of resampled cryo-EM images. Structure 19, 1582–1590 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brignole, E.J., Smith, S. & Asturias, F.J. Conformational flexibility of metazoan fatty acid synthase enables catalysis. Nat. Struct. Mol. Biol. 16, 190–197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cai, G. et al. Mediator head module structure and functional interactions. Nat. Struct. Mol. Biol. 17, 273–279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Hohn, M. et al. SPARX, a new environment for Cryo-EM image processing. J. Struct. Biol. 157, 47–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Voss, N.R., Yoshioka, C.K., Radermacher, M., Potter, C.S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Sato, S. et al. Identification of mammalian Mediator subunits with similarities to yeast Mediator subunits Srb5, Srb6, Med11, and Rox3. J. Biol. Chem. 278, 15123–15127 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants R01 67167 (F.J.A.) and RO1 GM41628 (R.C.C. and J.W.C.) and by a grant to the Stowers Institute from the Helen Nelson Medical Research Fund at the Greater Kansas City Community Foundation. Information about the human Mediator-CDK8 interaction came from reanalysis of samples originally provided by S. Malik and R. Roeder (Rockefeller University, New York, New York, USA). We thank Y. Takagi (Indiana University School of Medicine, Indianapolis, Indiana, USA) for providing a plasmid for GST-CTD expression, purified recombinant Gcn4 and head module and for helpful comments about the manuscript. We thank R.A. Young (Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA) for providing yeast strains Z695 and Z735 bearing the Srb8-1 and Srb10-1 mutations. We also acknowledge the National Resource for Automated Macromolecular Microscopy (NRAMM).

Author information

Authors and Affiliations

Authors

Contributions

All experiments, except those dealing with Mediator-CKM interaction in human cells, were designed by K.-L.T. and F.J.A. and carried out by K.-L.T. K.-L.T. and F.J.A. discussed and interpreted results and wrote the manuscript. Human Mediator-CKM interaction experiments (Fig. 3) were designed, discussed and interpreted by C.T.-S., S.S., R.C.C. and J.W.C. and carried out by C.T.-S. and S.S.

Corresponding author

Correspondence to Francisco J Asturias.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Note (PDF 559 kb)

Supplementary Video 1

A movie illustrating the different orientations of Mediator-bound CKM. (MOV 2065 kb)

Supplementary Video 2

A movie illustrating the CTD-dependent interaction of RNAPII with Mediator. (MOV 1189 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, KL., Sato, S., Tomomori-Sato, C. et al. A conserved Mediator–CDK8 kinase module association regulates Mediator–RNA polymerase II interaction. Nat Struct Mol Biol 20, 611–619 (2013). https://doi.org/10.1038/nsmb.2549

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing