Published online by Cambridge University Press: 04 March 2009
An analysis of relationships between Craig-style interpolation, compactness, and other related model-theoretic properties is carried out in the softer framework of categories of pre-institutions. While the equivalence between sentence interpolation and the Robinson property under compactness and Boolean closure is well known, a similar result under different assumptions (not involving compactness) is newly established for presentation interpolation. The standard concept of naturality of model transformation is enriched by a new property, termed restriction adequacy, which proves useful for the reduction of interpolation along pre-institution transformations. A distinct reduction theorem for the Robinson property is presented as well. A variant of the ultraproduct concept is further introduced, and the related closure property for pre-institutions is shown to be equivalent to compactness