Abstract
Based on the conjunction of contact electrification and electrostatic induction, triboelectric nanogenerators (TENGs) can harvest mechanical energy dispersed in our environment. With the characteristics of simple structure, light weight, broad material availability, low cost, and high efficiency even at low operation frequency, TENG can serve as a promising alternative strategy for meeting the needs of distributed energy for the internet of things and network. The major potential applications of TENG can be summarized as four fields containing micro/nano power sources, self-powered sensors, large-scale blue energy, and direct high-voltage power sources. In this paper, the fundamental physics, output performance enhancement, and applications of TENGs are reviewed to timely summarize the development of TENGs and provide a guideline for future research.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Wang Z L, Wang A C. On the origin of contact-electrification. Mater Today30: 34–51 (2019)
Shaw P E. The electrical charges from like solids. Nature118(2975): 659–660 (1926)
Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator. Nano Energy1(2): 328–334 (2012)
Wang Z L. Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss176: 447–458 (2014)
Lin L, Wang S H, Xie Y N, Jing Q S, Niu S M, Hu Y F, Wang Z L. Segmentally structured disk triboelectric nano-generator for harvesting rotational mechanical energy. Nano Lett13(6): 2916–2923 (2013)
Luo J J, Wang Z M, Xu L, Wang A C, Han K, Jiang T, Lai Q S, Bai Y, Tang W, Fan F R, et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat Commun10(1): 5147 (2019)
Wang S H, Lin L, Xie Y N, Jing Q S, Niu S M, Wang Z L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett13(5): 2226–2233 (2013)
Zhu G, Peng B, Chen J, Jing Q S, Wang Z L. Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy14: 126–138 (2015)
Zi Y L, Wang Z L. Nanogenerators: An emerging technology towards nanoenergy. APL Mater5(7): 074103 (2017)
Yi F, Wang X F, Niu S M, Li S M, Yin Y J, Dai K R, Zhang G J, Lin L, Wen Z, Guo H Y, et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci Adv2(6): e1501624 (2016)
Chen J, Huang Y, Zhang N N, Zou H Y, Liu R Y, Tao C Y, Fan X, Wang Z L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat Energy1(10): 16138 (2016)
Wang Z L, Chen J, Lin L. Progress in triboelectric nano-generators as a new energy technology and self-powered sensors. Energy Environ Sci8(8): 2250–2282 (2015)
Wang Z L. Entropy theory of distributed energy for internet of things. Nano Energy58: 669–672 (2019)
Pu X J, Guo H Y, Chen J, Wang X, Xi Y, Hu C G, Wang Z L. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci Adv3(7): e1700694 (2017)
Hinchet R, Yoon H J, Ryu H, Kim M K, Choi E K, Kim D S, Kim S W. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science365(6452): 491–494 (2019)
Pu X, Liu M M, Chen X Y, Sun J M, Du C H, Zhang Y, Zhai J Y, Hu W G, Wang Z L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv3(5): e1700015 (2017)
Zheng Q, Zou Y, Zhang Y L, Liu Z, Shi B J, Wang X X, Jin Y M, Ouyang H, Li Z, Wang Z L. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci Adv2(3): e1501478 (2016)
Chen J, Wang Z L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule1(3): 480–521 (2017)
Fan F R, Tang W, Wang Z L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater28(22): 4283–4305 (2016)
Xiao T X, Liang X, Jiang T, Xu L, Shao J J, Nie J H, Bai Y, Zhong W, Wang Z L. Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv Funct Mater28: 1802634 (2018)
Wang Z L. New wave power. Nature542: 159–160 (2017)
Liang X, Jiang T, Liu G X, Feng Y W, Zhang C, Wang Z L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ Sci13(1): 277–285 (2020)
Jiang T, Yao Y Y, Xu L, Zhang L M, Xiao T X, Wang Z L. Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy31: 560–567 (2017)
Wu C S, Liu R Y, Wang J, Zi Y L, Lin L, Wang Z L. A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. Nano Energy32: 287–293 (2017)
Lin S Q, Xu C, Xu L, Wang Z L. The overlapped electron-cloud model for electron transfer in contact electrification. Adv Funct Mater30(11): 1909724 (2020)
Baytekin H T, Patashinski A Z, Branicki M, Baytekin B, Soh S, Grzybowski B A. The Mosaic of surface charge in contact electrification. Science333(6040): 308–312 (2011)
Xu C, Zi Y L, Wang A C, Zou H Y, Dai Y J, He X, Wang P H, Wang Y C, Feng P Z, Li D W, et al. On the electron-transfer mechanism in the contact-electrification effect. Adv Mater30(15): 1706790 (2018)
Lowell J, Akande A R. Contact electrification-why is it variable? J Phys D: Appl Phys21(1): 125–137 (1988)
Wang Z L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mat Today20(2): 74–82 (2017)
Wang Z L. On the first principle theory of nanogenerators from Maxwell's equations. Nano Erengy68: 104272 (2019)
Zhu G, Pan C F, Guo W X, Chen C Y, Zhou Y S, Yu R M, Wang Z L. Triboelectric-generator-driven pulse electro-deposition for micropatterning. Nano Lett12(9): 4960–4965 (2012)
Wang S H, Lin L, Wang Z L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett12(12): 6339–6346 (2012)
Wang S H, Lin L, Xie Y N, Jing Q S, Niu S M, Wang Z L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett13(5): 2226–2233 (2013)
Zhu G, Chen J, Liu Y, Bai P, Zhou Y S, Jing Q S, Pan C F, Wang Z L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett13(5): 2282–2289 (2013)
Niu S M, Liu Y, Wang S H, Lin L, Zhou Y S, Hu Y F, Wang Z L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv Funct Mater24(22): 3332–3340 (2014)
Yang Y, Zhou Y S, Zhang H L, Liu Y, Lee S, Wang Z L. A single-electrode based triboelectric nanogenerator as self-powered tracking system. Adv Mater25(45): 6594–6601 (2013)
Wang S H, Xie Y N, Niu S M, Lin L, Wang Z L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv Mater26(18): 2818–2824 (2014)
Zi Y L, Niu S M, Wang J, Wen Z, Tang W, Wang Z L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat Commun6: 8376 (2015)
Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X. High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy4: 123–131 (2014)
Lin Z H, Xie Y N, Yang Y, Wang S H, Zhu G, Wang Z L. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano7(5): 4554–4560 (2013)
Han S S, Ko Y J, Kim D Y, Jung J H. Enhanced triboelectric charge through a facile hydrothermal treatment of electrode. Curr Appl Phys16(10): 1364–1368 (2016)
Cui N Y, Gu L, Lei Y M, Liu J M, Qin Y, Ma X H, Hao Y, Wang Z L. Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator. ACS Nano10(6): 6131–6138 (2016)
Wang S H, Zi Y L, Zhou Y S, Li S M, Fan F R, Lin L, Wang Z L. Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J Mater Chem A4(10): 3728–3734 (2016)
Zou H Y, Zhang Y, Guo L T, Wang P H, He X, Dai G Z, Zheng H W, Chen C Y, Wang A C, Xu C, et al. Quantifying the triboelectric series. Nat Commun10(1): 1427 (2019)
Wang J, Wen Z, Zi Y L, Zhou P F, Lin J, Guo H Y, Xu Y L, Wang Z L. All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Adv Funct Mater26(7): 1070–1076 (2016)
Wang J, Li S M, Yi F, Zi Y L, Lin J, Wang X F, Xu Y L, Wang Z L. Sustainably powering wearable electronics solely by biomechanical energy. Nat Commun7: 12744 (2016)
Lin S Q, Xu L, Tang W, Chen X Y, Wang Z L. Electron transfer in nano-scale contact electrification: Atmosphere effect on the surface states of dielectrics. Nano Energy65: 103956 (2019)
Wang J, Wu C S, Dai Y J, Zhao Z H, Wang A, Zhang T J, Wang Z L. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat Commun8(1): 88 (2017)
Zhang C L, Zhou L L, Cheng P, Yin X, Liu D, Li X Y, Guo H Y, Wang Z L, Wang J. Surface charge density of triboelectric nanogenerators: Theoretical boundary and optimization methodology. Appl Mater Today18: 100496 (2020)
Wang S H, Xie Y N, Niu S M, Lin L, Liu C, Zhou Y S, Wang Z L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv Mater26(39): 6720–6728 (2014)
Cheng L, Xu Q, Zheng Y B, Jia X F, Qin Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat Commun9: 3773 (2018)
Xu L, Bu T Z, Yang X D, Zhang C, Wang Z L. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy49: 625–633 (2018)
Liu W L, Wang Z, Wang G, Liu G L, Chen J, Pu X J, Xi Y, Wang X, Guo H Y, Hu C G, et al. Integrated charge excitation triboelectric nanogenerator. Nat Commun10: 1426 (2019)
Zhu G, Chen J, Zhang T J, Jing Q S, Wang Z L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat Commun5: 3426 (2014)
Li X Y, Yin X, Zhao Z H, Zhou L L, Liu D, Zhang C L, Zhang C G, Zhang W, Li S X, Wang J, et al. Long-lifetime triboelectric nanogenerator operated in conjunction modes and low crest factor. Adv Energy Mater10(7): 903024 (2020)
Peng J, Kang S D, Snyder G J. Optimization principles and the figure of merit for triboelectric generators. Sci Adv3(12): eaap8576 (2017)
Niu S M, Wang Z L. Theoretical systems of triboelectric nanogenerators. Nano Energy14: 161–192 (2015)
Liu R Y, Wang J, Sun T, Wang M J, Wu C S, Zou H Y, Song T, Zhang X H, Lee S T, Wang Z L, et al. Silicon nanowire/polymer hybrid solar cell-supercapacitor: A self-charging power unit with a total efficiency of 10.5%. Nano Lett17(7): 4240–4247 (2017)
Niu S M, Wang X F, Yi F, Zhou Y S, Wang Z L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat Commun6: 8975 (2015)
Yin X, Liu D, Zhou L L, Li X Y, Zhang C L, Cheng P, Guo H Y, Song W X, Wang J, Wang Z L. Structure and dimension effects on the performance of layered triboelectric nano-generators in contact-separation mode. ACS Nano13(1): 698–705 (2019)
Pu X, Liu M M, Li L X, Zhang C, Pang Y K, Jiang C Y, Shao L H, Hu W G, Wang Z L. Efficient charging of Li-ion batteries with pulsed output current of triboelectric nano-generators. Adv Sci3(4): 1500255 (2016)
Xi F B, Pang Y K, Li W, Jiang T, Zhang L M, Guo T, Liu G X, Zhang C, Wang Z L. Universal power management strategy for triboelectric nanogenerator. Nano Energy37: 168–176 (2017)
Yang W Q, Chen J, Zhu G, Yang J, Bai P, Su Y J, Jing Q S, Cao X, Wang Z L. Harvesting energy from the natural vibration of human walking. ACS Nano7(12): 11317–11324 (2013)
Yang J, Chen J, Liu Y, Yang W Q, Su Y J, Wang Z L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano8(3): 2649–2657 (2014)
Fan X, Chen J, Yang J, Bai P, Li Z L, Wang Z L. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano9(4): 4236–4243 (2015)
Yi F, Wang X F, Niu S M, Lin S M, Yin Y J, Dai K R, Zhang G J, Lin L, Wen Z, Guo H Y, et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci Adv2(6): e1501624 (2016)
Pu X, Liu M M, Chen X Y, Sun J M, Du C H, Zhang Y, Zhai J Y, Hu W G, Wang Z L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv3(5): e1700015 (2017)
Zheng Q, Zou Y, Zhang Y L, Liu Z, Shi B J, Wang X X, Jin Y M, Ouyang H, Li Z, Wang Z L. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci Adv2(3): e1501478 (2016)
Ouyang H, Liu Z, Li N, Shi B J, Zou Y, Xie F, Ma Y, Li Z, Li H, Zheng Q, et al. Symbiotic cardiac pacemaker. Nat Commun10(1): 1821 (2019)
Zhou L L, Liu D, Li S X, Yin X, Zhang C L, Li X Y, Zhang C G, Zhang W, Cao X, Wang J, et al. Effective removing of hexavalent chromium from wasted water by triboelectric nanogenerator driven self-powered electrochemical system-Why pulsed DC is better than continuous DC? Nano Energy64: 103915 (2019)
Yang Y, Zhang H L, Lin Z H, Zhou Y S, Jing Q S, Su Y J, Yang J, Chen J, Hu C G, Wang Z L. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano7(10): 9213–9222 (2013)
Zhu G, Yang W Q, Zhang T J, Jing Q S, Chen J, Zhou Y S, Bai P, Wang Z L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett14(6): 3208–3213 (2014)
Yang J, Chen J, Liu Y, Yang W Q, Su Y J, Wang Z L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano8(3): 2649–2657 (2014)
Yu A F, Song M, Zhang Y, Zhang Y, Chen L B, Zhai J Y, Wang Z L. Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Res8(3): 765–773 (2015)
Zhou Y S, Zhu G, Niu S M, Liu Y, Bai P, Jing Q S, Wang Z L. Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Adv Mater26(11): 1719–1724 (2014)
Yi F, Lin L, Niu S M, Yang J, Wu W Z, Wang S H, Liao Q L, Zhang Y, Wang Z L. Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor. Adv Funct Mater24(47): 7488–7494 (2014)
Wu C S, Wang X, Lin L, Guo H Y, Wang Z L. Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano10(4): 4652–4659 (2016)
Li Z L, Chen J, Yang J, Su Y J, Fan X, Wu Y, Yu C W, Wang Z L. β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ Sci8(3): 887–896 (2015)
Wen Z, Chen J, Yeh M H, Guo H Y, Li Z L, Fan X, Zhang T J, Zhu L P, Wang Z L. Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy16: 38–46 (2015)
Zhang H L, Yang Y, Su Y J, Chen J, Hu C G, Wu Z K, Liu Y, Wong C P, Bando Y, Wang Z L. Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy2(5): 693–701 (2013)
Guo H Y, Pu X J, Chen J, Meng Y, Yeh M H, Liu G L, Tang Q, Chen B D, Liu D, Qi S, et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci Robot3(20): eaat2516 (2018)
Zou Y, Tan P C, Shi B J, Ouyang H, Jiang D J, Liu Z, Li H, Yu M, Wang C, Qu X C, et al. A bionic stretchable nano-generator for underwater sensing and energy harvesting. Nat Commun10: 2695 (2019)
Yang Y, Zhu G, Zhang H L, Chen J, Zhong X D, Lin Z H, Su Y J, Bai P, Wen X N, Wang Z L. Triboelectric nano-generator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano7(10): 9461–9468 (2013)
Bae J, Lee J, Kim S M, Ha J, Lee B S, Park Y J, Choong C, Kim J B, Wang Z L, Kin H Y, et al. Flutter-driven triboelectrification for harvesting wind energy. Nat Commun5(1): 4929 (2014)
Wang J, Ding W B, Pan L, Wu C S, Yu H, Yang L J, Liao R J, Wang Z L. Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nano-generator. ACS Nano12(4): 3954–3963 (2018)
Chen B, Yang Y, Wang Z L. Scavenging wind energy by triboelectric nanogenerators. Adv Energy Mater8(10): 1702649 (2018)
Zheng L, Lin Z H, Cheng G, Wu W Z, Wen X N, Lee S, Wang Z L. Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy9: 291–300 (2014)
Zhu H R, Tang W, Gao C Z, Han Y, Li T, Cao X, Wang Z L. Self-powered metal surface anti-corrosion protection using energy harvested from rain drops and wind. Nano Energy14: 193–200 (2015)
Xi Y, Wang J, Zi Y L, Li X G, Han C B, Cao X, Hu C G, Wang Z L. High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy38: 101–108 (2017)
Zhao H F, Xiao X, Xu P, Zhao T C, Song L G, Pan X X, Mi J C, Xu M Y, Wang Z L. Dual-tube helmholtz resonator-based triboelectric nanogenerator for highly efficient harvesting of acoustic energy. Adv Energy Mater9(46): 1902824 (2019)
Zi Y L, Guo H Y, Wen Z, Yeh M H, Hu C G, Wang Z L. Harvesting low-frequency (5 Hz) irregular mechanical energy: A possible killer application of triboelectric nano-generator. ACS Nano10(4): 4797–4805 (2016)
Wen X N, Yang W Q, Jing Q S, Wang Z L. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano8(7): 7405–7412 (2014)
Zhang L M, Han C B, Jiang T, Zhou T, Li X H, Zhang C, Wang Z L. Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy22: 87–94 (2016)
Leung S F, Fu H C, Zhang M L, Hassan A H, Jiang T, Salama K N, Wang Z L, He J H. Blue energy fuels: Converting ocean wave energy to carbon-based liquid fuels via CO2 reduction. Energy Environ Sci, in press, DOI 10.1039/c9ee03566d.
Yang Y, Zhang H L, Liu R Y, Wen X N, Hou T C, Wang Z L. Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv Energy Mater3(12): 1563–1568 (2013)
Wang X F, Niu S M, Yin Y J, Yi F, You Z, Wang Z L. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv Energy Mater5(24): 1501467 (2015)
Cheng P, Guo H Y, Wen Z, Zhang C L, Yin X, Li X Y, Liu D, Song W X, Sun X H, Wang J, et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy57: 432–439 (2019)
Yang X D, Xu L, Lin P, Zhong W, Bai Y, Luo J J, Chen J, Wang Z L. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy60: 404–412 (2019)
Li A Y, Zi Y L, Guo H Y, Wang Z L, Fernández F M. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat Nanotechnol12(5): 481–487 (2017)
Chen X Y, Wu Y L, Yu A F, Xu L, Zheng L, Liu Y S, Li H X, Wang Z L. Self-powered modulation of elastomeric optical grating by using triboelectric nanogenerator. Nano Energy38: 91–100 (2017)
Li C J, Yin Y Y, Wang B, Zhou T, Wang J N, Luo J J, Tang W, Cao R, Yuan Z Q, Li N W, et al. Self-powered electrospinning system driven by a triboelectric nanogenerator. ACS Nano11(10): 10439–10445 (2017)
Zi Y L, Wu C S, Ding W B, Wang X F, Dai Y J, Cheng J, Wang J Y, Wang Z J, Wang Z L. Field Emission of electrons powered by a triboelectric nanogenerator. Adv Funct Mater28(21): 1800610 (2018)
Yang H, Pang Y K, Bu T Z, Liu W B, Luo J J, Jiang D D, Zhang C, Wang Z L. Triboelectric micromotors actuated by ultralow frequency mechanical stimuli. Nat Commun10: 2309 (2019)
Cheng J, Ding W B, Zi Y L, Lu Y J, Ji L H, Liu F, Wu C S, Wang Z L. Triboelectric microplasma powered by mechanical stimuli. Nat Commum9(1): 3733 (2018)
Wu C S, Wang A C, Ding W B, Guo H Y, Wang Z L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv Energy Mater9(1): 1802906 (2019)
Nie J H, Wang Z M, Ren Z W, Li S Y, Chen X Y, Wang Z L. Power generation from the interaction of a liquid droplet and a liquid membrane. Nat Commun10: 2264 (2019)
Liu D, Yin X, Guo H Y, Zhou L L, Li X Y, Zhang C L, Wang J, Wang Z L. A constant current triboelectric nano-generator arising from electrostatic breakdown. Sci Adv5(4): eaav6437 (2019)
Nie J H, Ren Z W, Xu L, Lin S Q, Zhan F, Chen X Y, Wang Z L. Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface. Adv Mater32(2): 1905696 (2020)
Lin S Q, Xu L, Wang A C, Wang Z L. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nat Commun11: 399 (2020)
Acknowledgements
This research was supported by the National Key R & D Project from Minister of Science and Technology (2016YFA0202704), National Natural Science Foundation of China (Grant Nos. 61774016, 21773009, 51432005, 5151101243, and 51561145021), and China Postdoctoral Science Foundation (2019M660587). The authors thank our group members and collaborators for their contribution to the development of TENG.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Linglin ZHOU. She received her Ph.D. degree from University of Science and Technology of China in 2018. Now she is a postdoctoral fellow in Beijing Institute of Nano-energy and Nanosystems, Chinese Academy of Sciences, China. Her current research focuses on the improvement of triboelectric nanogenerators and their applications in environmental pollutants treatment.
Di LIU. He received his B.S. degree in material science and engineering from Nanjing University of Aeronautics and Astronautics, China. Now he is a Ph.D. candidate in Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, China. His current research interest is triboelectric nanogenerators for energy harvesting and self-powered systems.
Jie WANG. He received his Ph.D. degree from Xi'an Jiaotong University in 2008, China. He is currently a professor at Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, China. His current research interests focus on supercapacitors, nanogenerators, and self-powered system.
Zhong Lin WANG. He is the hightower chair in materials science and engineering and Regents' Professor at Georgia Tech, and founding director of the Beijing Institute of Nanoenergy and Nanosystems, China. Dr. Wang pioneered the field of nanogenerators and self-powered sensors, and coined piezotronics and piezo-phototronics for the third-generation semiconductors.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Zhou, L., Liu, D., Wang, J. et al. Triboelectric nanogenerators: Fundamental physics and potential applications. Friction 8, 481–506 (2020). https://doi.org/10.1007/s40544-020-0390-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40544-020-0390-3