
SAS® 9.4 Global
Statements: Reference

SAS® Documentation
August 27, 2024

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2017. SAS® 9.4 Global Statements: Reference. Cary, NC: SAS
Institute Inc.

SAS® 9.4 Global Statements: Reference

Copyright © 2017, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire
this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal
and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of
copyrighted materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at
private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software
by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR
227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other
notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only
those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

September 2024

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P8:lestmtsglobal

Contents

Syntax Conventions for the SAS Language . v
What’s New in SAS 9.4 Global Statements . xi

Chapter 1 / About SAS Global Statements . 1
Definition of Global Statements . 1
Using Global Statements . 2
Other Statement Documentation . 2

Chapter 2 / Dictionary of SAS Global Statements . 5
Global Statements by Category . 6
Dictionary . 9

Chapter 3 / Dictionary of SAS Global Statement Environment Variables . 225
Dictionary . 225

iv Contents

Syntax Conventions for the SAS
Language

Overview of Syntax Conventions for the
SAS Language

SAS uses standard conventions in the documentation of syntax for SAS language
elements. These conventions enable you to easily identify the components of SAS
syntax. The conventions can be divided into these parts:

n syntax components

n style conventions

n special characters

n references to SAS libraries and external files

Syntax Components
The components of the syntax for most language elements include a keyword and
arguments. For some language elements, only a keyword is necessary. For other
language elements, the keyword is followed by an equal sign (=). The syntax for
arguments has multiple forms in order to demonstrate the syntax of multiple
arguments, with and without punctuation.

keyword
specifies the name of the SAS language element that you use when you write
your program. Keyword is a literal that is usually the first word in the syntax. In a
CALL routine, the first two words are keywords.

In these examples of SAS syntax, the keywords are bold:

CHAR (string, position)

CALL RANBIN (seed, n, p, x);

v

ALTER (alter-password)

BEST w.

REMOVE <data-set-name>

In this example, the first two words of the CALL routine are the keywords:

CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword without
arguments:

DO;
... SAS code ...

END;

Some system options require that one of two keyword values be specified:

DUPLEX | NODUPLEX

Some procedure statements have multiple keywords throughout the statement
syntax:

CREATE <UNIQUE> INDEX index-name ON table-name (column-1 <,
column-2, …>)

argument
specifies a numeric or character constant, variable, or expression. Arguments
follow the keyword or an equal sign after the keyword. The arguments are used
by SAS to process the language element. Arguments can be required or
optional. In the syntax, optional arguments are enclosed in angle brackets (<
>).

In this example, string and position follow the keyword CHAR. These arguments
are required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In this example of SAS code, the argument string has
a value of 'summer', and the argument position has a value of 4:

x=char('summer', 4);

In this example, string and substring are required arguments, whereas modifiers
and startpos are optional.

FIND(string, substring <, modifiers> <, startpos>

argument(s)
specifies that one argument is required and that multiple arguments are
allowed. Separate arguments with a space. Punctuation, such as a comma (,) is
not required between arguments.

The MISSING statement is an example of this form of multiple arguments:

MISSING character(s);

<LITERAL_ARGUMENT> argument-1 <<LITERAL_ARGUMENT> argument-2 ... >
specifies that one argument is required and that a literal argument can be
associated with the argument. You can specify multiple literals and argument

vi Syntax Conventions for the SAS Language

pairs. No punctuation is required between the literal and argument pairs. The
ellipsis (...) indicates that additional literals and arguments are allowed.

The BY statement is an example of this argument:

BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …>;

argument-1 <options> <argument-2 <options> ...>
specifies that one argument is required and that one or more options can be
associated with the argument. You can specify multiple arguments and
associated options. No punctuation is required between the argument and the
option. The ellipsis (...) indicates that additional arguments with an associated
option are allowed.

The FORMAT procedure PICTURE statement is an example of this form of
multiple arguments:

PICTURE name <(format-options)>
<value-range-set-1 <(picture-1-options)>
<value-range-set-2 <(picture-2-options)> …>>;

argument-1=value-1 <argument-2=value-2 ...>
specifies that the argument must be assigned a value and that you can specify
multiple arguments. The ellipsis (...) indicates that additional arguments are
allowed. No punctuation is required between arguments.

The LABEL statement is an example of this form of multiple arguments:

LABEL variable-1=label-1 <variable-2=label-2 …>;

argument-1 <, argument-2, ...>
specifies that one argument is required and that you can specify multiple
arguments that are separated by a comma or other punctuation. The ellipsis (...)
indicates a continuation of the arguments, separated by a comma. Both forms
are used in the SAS documentation.

Here are examples of this form of multiple arguments:

AUTHPROVIDERDOMAIN (provider-1:domain-1 <, provider-2:domain-2, …>

INTO :macro-variable-specification-1 <, :macro-variable-specification-2, …>

Note: In most cases, example code in SAS documentation is written in lowercase
with a monospace font. You can use uppercase, lowercase, or mixed case in the
code that you write.

Style Conventions
The style conventions that are used in documenting SAS syntax include uppercase
bold, uppercase, and italic:

Style Conventions vii

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In this
example, the keyword ERROR is written in uppercase bold:

ERROR <message>;

UPPERCASE
identifies arguments that are literals.

In this example of the CMPMODEL= system option, the literals include BOTH,
CATALOG, and XML:

CMPMODEL=BOTH | CATALOG | XML |

italic
identifies arguments or values that you supply. Items in italic represent user-
supplied values that are either one of the following:

n nonliteral arguments. In this example of the LINK statement, the argument
label is a user-supplied value and therefore appears in italic:

LINK label;

n nonliteral values that are assigned to an argument.

In this example of the FORMAT statement, the argument DEFAULT is
assigned the variable default-format:

FORMAT variable(s) <format > <DEFAULT = default-format>;

Special Characters
The syntax of SAS language elements can contain the following special characters:

=
an equal sign identifies a value for a literal in some language elements such as
system options.

In this example of the MAPS system option, the equal sign sets the value of
MAPS:

MAPS=location-of-maps

< >
angle brackets identify optional arguments. A required argument is not enclosed
in angle brackets.

In this example of the CAT function, at least one item is required:

CAT (item-1 <, item-2, …>)

|
a vertical bar indicates that you can choose one value from a group of values.
Values that are separated by the vertical bar are mutually exclusive.

viii Syntax Conventions for the SAS Language

In this example of the CMPMODEL= system option, you can choose only one of
the arguments:

CMPMODEL=BOTH | CATALOG | XML

...
an ellipsis indicates that the argument can be repeated. If an argument and the
ellipsis are enclosed in angle brackets, then the argument is optional. The
repeated argument must contain punctuation if it appears before or after the
argument.

In this example of the CAT function, multiple item arguments are allowed, and
they must be separated by a comma:

CAT (item-1 <, item-2, …>)

'value' or "value"
indicates that an argument that is enclosed in single or double quotation marks
must have a value that is also enclosed in single or double quotation marks.

In this example of the FOOTNOTE statement, the argument text is enclosed in
quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | "text">;

;
a semicolon indicates the end of a statement or CALL routine.

In this example, each statement ends with a semicolon:

data namegame;
 length color name $8;
 color = 'black';
 name = 'jack';
 game = trim(color) || name;
run;

References to SAS Libraries and External
Files

Many SAS statements and other language elements refer to SAS libraries and
external files. You can choose whether to make the reference through a logical
name (a libref or fileref) or use the physical filename enclosed in quotation marks.

If you use a logical name, you typically have a choice of using a SAS statement
(LIBNAME or FILENAME) or the operating environment's control language to make
the reference. Several methods of referring to SAS libraries and external files are
available, and some of these methods depend on your operating environment.

References to SAS Libraries and External Files ix

In the examples that use external files, SAS documentation uses the italicized
phrase file-specification. In the examples that use SAS libraries, SAS
documentation uses the italicized phrase SAS-library enclosed in quotation marks:

infile file-specification obs = 100;
libname libref 'SAS-library';

x Syntax Conventions for the SAS Language

What’s New in SAS 9.4 Global
Statements

Overview
This document supports global statements for SAS 9.4 and SAS Viya.

A highlighted, abbreviated notation of the SAS version and maintenance release
specifies when a feature was added to SAS. For example, SAS 9.4M5 indicates that
a feature was added during the fifth maintenance release of SAS 9.4.

These are the new SAS Viya 3.5 features, designated using the notation SAS Viya
3.5:

n The FILENAME statement Azure access method enables access to data in
Microsoft Azure Data Lake Storage.

n The FILENAME statement S3 access method enables access to data in Amazon
S3 files.

These are the new SAS Viya 3.4 features, designated using the notation SAS Viya
3.4:

n The LIBNAME statement now supports the LIBRARYDEFINITION option.

n The JSON LIBNAME statement now supports a NOALLDATA option.

n The LOCKDOWN statement for SAS Viya has moved to SAS Viya
Administration: Programming Run-Time Servers. For more information, see SAS
Viya LOCKDOWN Statement.

For information about LOCKDOWN on SAS 9.4, see SAS 9.4 LOCKDOWN
Statement.

Support for the FILENAME statement, FILESRVC access method is new for SAS
Viya 3.3.

In the March 2024 update to SAS 9.4M8, the FILENAME Azure access method is
enhanced to support all host environments supported by SAS, except z/OS.

These are the new and enhanced features for SAS 9.4M8:

n The FILENAME statement Azure access method is supported for SAS 9.4.

xi

http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=calsrvpgm&docsetTarget=p04d9diqt9cjqnn1auxc3yl1ifef.htm
http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=calsrvpgm&docsetTarget=p04d9diqt9cjqnn1auxc3yl1ifef.htm
http://documentation.sas.com/?cdcId=bicdc&cdcVersion=9.4&docsetId=biasag&docsetTarget=n23000intelplatform00srvradm.htm
http://documentation.sas.com/?cdcId=bicdc&cdcVersion=9.4&docsetId=biasag&docsetTarget=n23000intelplatform00srvradm.htm

n The FILENAME statement S3 access method is supported for SAS 9.4.

n The TD_1MB_ROW environment variable, which specifies whether response row
sizes up to 1MB are supported for data on Teradata, is new.

Beginning with SAS 9.4M5, DATA step statements are available in the new SAS
DATA Step Statements: Reference.

These are the new and enhanced features for SAS 9.4M5:

n The FILENAME statement, ZIP access method supports the GZIP option to
specify an external GZIP file.

n The FILENAME statement, EMAIL (SMTP) access method now supports
attaching more than one file using multiple !EM_ATTACH! directives.

n The JSON LIBNAME statement now supports an ALLDATA="name" option.

These are the new and enhanced features for SAS 9.4M4:

n The FILENAME statement, EMAIL (SMTP) access method supports the
SENSITIVITY= option to specify the sensitivity of an email message.

n The default behavior of the CFG= option has changed for the FILENAME
statement, Hadoop access method. If CFG= is not provided, the
SAS_HADOOP_CONFIG_PATH and SAS_HADOOP_JAR_PATH environment
variables are scanned for the location of the required configuration files.

n The FILENAME statement, Hadoop access method supports Knox security.

n The JSON LIBNAME statement enables you to associate a libref with a JSON
document.

n The CVP LIBNAME statement enables you to associate a libref with the
character variable padding (CVP) engine.

These are the new and enhanced features for SAS 9.4M3:

n The FILENAME statement, FTP access method now supports Secure FTP using
Transport Layer Security (TLS).

n The FILENAME statement, Hadoop access method now supports the
SAS_HADOOP_CONFIG_PATH environment variable.

n Wildcards (*) are now supported in the FILENAME statement, ZIP access
method’s MEMBER= syntax for reading or checking the existence of entries in
the ZIP file.

n For the FILENAME statement, ZIP access method, a new option,
NAMEENCODING=, enables you to specify an encoding for ZIP file entry names
and comments that is different from the current session encoding.

These are the new and enhanced features for SAS 9.4:

n read data from user-specified text and to access ZIP files

n specify the name of an authentication domain metadata object in order to
connect to the WebDAV server, delete a directory and all of its members, and
create a new directory off the parent directory when using the WebDAV access
method

xii What’s New in SAS 9.4 Global Statements

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

n automatically create SAS data files with an enhanced file format that extends
the observation count beyond the 32-bit long limitation

n specify whether SAS creates compressed data sets whose observations can be
randomly accessed or sequentially accessed

n specify an Accept: header and create a connection between the client and the
proxy and between the proxy and the server when accessing a URL through a
proxy when using the URL access method

n transfer data in image (binary) mode when using the SFTP access method

n control whether your SAS client has access to a set of directories and files

n embed attachments in an email using HTML. In addition, you can now specify a
message/rfc822 content type.

n submit HDFS commands through WebHDFS

n open an AES (Advanced Encryption Standard) encrypted SAS data file

New SAS Statements
These SAS statements are new:

FILENAME Statement: Azure Access Method
enables you to access data in Microsoft Azure Data Lake Storage.

FILENAME Statement: S3 Access Method
enables you to access objects in the Simple Storage Service (S3) of Amazon
Web Services (AWS).

FILENAME, FILESRVC Access Method
enables you to store and access files within the SAS Viya file service.

FILENAME, DATAURL Access Method
enables you to read data from user-specified text.

FILENAME, ZIP Access Method
enables you to access ZIP files.

LIBNAME, JSON Engine
associates a libref with a JSON data table and enables you to read JSON data
tables.

LIBNAME, CVP Engine
associates a libref with the character variable padding (CVP) engine to expand
character variable lengths so that character data truncation does not occur
when a file requires transcoding.

New SAS Statements xiii

Enhanced SAS Statements
These SAS statements have been enhanced:

FILENAME, EMAIL (SMTP) Access Method
n In SAS 9.4M5, you can attach more than one file to an email using multiple !

EM_ATTACH! directives.

n In SAS 9.4M4, you can set an email sensitivity flag on emails that originate
from SAS.

n In SAS 9.4M2, you can embed attachments in an email using HTML. In
addition, you can now specify a message/rfc822 content type.

n The default time-out that the EMAIL access method waits for the SMTP
server to respond is 30 seconds. Some SMTP servers require more time
before they send an acknowledgment to a command from the client. You can
use the new EMAILACKWAIT= system option to specify the wait time.

n You can use the EMAIL access method with secure SMTP servers by
specifying either the new SSL or TLS protocol options in the EMAILHOST
system option. TLS and SSL encrypt data between the client and the
outgoing SMTP Server. This encryption does not guarantee an encrypted
connection between the client (sender) and the recipient of the message.
Message-level encryption and digital signing are currently not supported.

FILENAME, FTP Access Method
In SAS 9.4M3, the following enhancements were made:

n Filenames can contain UTF-8 characters. Only hosts whose FTP servers
support the OPTS UTF8 ON or OPTS UTF-8 ON FTP protocol commands
can read these filenames.

n The FTP access method now supports Secure FTP by using Transport Layer
Security (TLS). Three new statement options, AUTHTLS, PBSZ=, and
PROT=, enable you to issue the FTP AUTH TLS command, specify the FTP
Data Channel Protection Buffer Size, and specify the FTP Data Channel
security command, respectively. A new environment variable,
SAS_FTP_AUTHTLS, lets you specify how TLS authentication is enabled.

FILENAME, Hadoop Access Method
n In SAS 9.4M4, the default behavior of the FILENAME statement, Hadoop

access method CFG= option has changed. If CFG= is not provided, the
SAS_HADOOP_CONFIG_PATH and SAS_HADOOP_JAR_PATH environment
variables are scanned for the location of the required configuration files. In
addition, Knox security is now supported.

n In SAS 9.4M3, the Hadoop access method now supports the
SAS_HADOOP_CONFIG_PATH environment variable. You no longer have to
merge properties from multiple Hadoop configuration files into a single

xiv What’s New in SAS 9.4 Global Statements

configuration file and specify the CFG= option. In addition, the Hadoop
CONCAT= and DIR= options are now mutually exclusive because the
SAS_HADOOP_CONFIG_PATH environment variable is available.

n In SAS 9.4M2, you can now submit HDFS commands through WebHDFS. The
new SAS environment variable SAS_HADOOP_RESTFUL must be defined
and set to the value 1. In addition, the Hadoop configuration file must include
the properties for the WebHDFS location.

n A new option, NEW, is used in output mode in conjunction with the DIR
option to create the directory that is specified in the FILENAME Hadoop
statement.

FILENAME, SFTP Access Method
n Stream-record format has been added to the RECFM= option. Data is

transferred in image (binary) mode. The amount of data that is read is
controlled by the current LRECL value or by the value of the NBYTE=
variable in the INFILE statement.

n A new option, OPTIONSX, enable you to submit private keys and
passphrases that are blotted in the SAS log. Private keys and passphrases
are necessary when you submit code that contains a FILENAME SFTP
statement from SAS Enterprise Guide that runs on a Windows workspace
server and authentication is required.

FILENAME, URL Access Method
n A new option, ACCEPT, specifies an Accept: header.

n A new option, CONNECT, creates a connection between the client and the
proxy and between the proxy and the server when accessing a URL through a
proxy.

FILENAME, WebDAV Access Method
n A new option, AUTHDOMAIN, specifies the name of an authentication

domain metadata object in order to connect to the WebDAV server. The
authentication domain references credentials (user ID and password)
without your having to explicitly specify the credentials.

n A new option, DEL_ALL, enables you to delete a directory and all of its
members.

n A new option, MKDIR, specifies a new directory that is created off the parent
directory that was specified in the external file option.

FILENAME, ZIP Access Method
In SAS 9.4M5, you can use the GZIP option to specify an external GZIP file.

In SAS 9.4M3, the following enhancements were made:

n A new option, NAMEENCODING=, enables you to specify an encoding for
ZIP file entry names and comments that is different from the current session
encoding.

n Wildcards (*) are now supported in the MEMBER= syntax for reading or
checking the existence of entries in the ZIP file.

Enhanced SAS Statements xv

LIBNAME
n In SAS Viya 3.4, a new library definition option, LIBRARYDEFINITION,

specifies to generate and execute the LIBNAME statement using predefined
option name/value pairs stored by the Data Sources microservice.

n The EXTENDOBSCOUNTER= option is now set to YES by default, which
creates SAS data files with an enhanced file format. The enhanced file
format extends the observation count beyond the 32-bit-long limitation.

n A new option, POINTOBS, specifies whether SAS creates compressed data
sets whose observations can be randomly accessed or sequentially
accessed.

LOCK
A new option, NOMSG, disables error and warning messages to the SAS log.

SASFILE
The new option ENCRYPTKEY= enables the SASFILE statement to open an AES
(Advanced Encryption Standard) encrypted SAS data file.

Locked-Down State Restrictions
The LOCKDOWN statement and LOCKDOWN system option are new in SAS 9.4M1.
With LOCKDOWN, if you are running in a client/server environment (for example,
you use SAS Enterprise Guide), the SAS server administrator can create an
environment where your SAS client has access to a set of directories and files. All
other directories and files would be inaccessible. In addition to there being
restrictions on directories and files, several language elements are not available
when SAS is in a locked-down state.

In SAS 9.4M2, the following FILENAME statement access methods are not
available when SAS is in a locked-down state:

n EMAIL (SMTP)

n FTP

n Hadoop

n SOCKET (TCPIP)

n URL (HTTP)

However, your server administrator can re-enable the access method so that it is
accessible in the locked-down state. When the Hadoop and URL access methods
are in a locked-down state, the HADOOP, HTTP, and SOAP procedures are also
placed in a locked-down state. If the Hadoop or URL access method is re-enabled,
the HADOOP, HTTP, and SOAP procedures are automatically re-enabled.

For more information, see “SAS Processing Restrictions for Servers in a Locked-
Down State” in SAS Language Reference: Concepts.

xvi What’s New in SAS 9.4 Global Statements

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en

1
About SAS Global Statements

Definition of Global Statements . 1

Using Global Statements . 2

Other Statement Documentation . 2

Definition of Global Statements
A SAS global statement is a string of SAS keywords, SAS names, special characters,
and operators that instructs SAS to perform an operation or that gives information
to SAS. Global statements can also request information, change the execution of
the program from one mode to another, or set values for system options.

Global statements can be specified in a SAS program in the following locations:

n open code

n a DATA step

n a PROC step

n a SAS macro

Notes:

Global statements are not executable statements; they are declarative statements
that take effect as soon as SAS compiles the program statements.

Global statements cannot be specified in an IF-THEN/ELSE statement because IF-
THEN/ELSE statements require executable statements.

Although it is syntactically valid to specify global statements in conditionally
executed blocks of code (for example, in a DO group of an IF-THEN/ELSE
statement), it is important to remember that global statements take effect during
the compilation phase and that conditionally executed code blocks take effect
during the execution phase. This means that global statements that are specified in
conditionally executed code blocks take effect regardless of whether the condition
is true.

1

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1ndp9h2xot0p0n1smoe9u1tlj0o.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n14fu9c6l8rxbxn1nvdhlaqtsyho.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1wmtflcaooy5hn109qeaaoa57te.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1lk7u75dae3hjn1c1ymzcu4xg9u.htm&docsetTargetAnchor=p14u47o4ollqstn1w6zhkh41k3oa&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p10bvg3wauedhan1qly0hiokirlv.htm&docsetTargetAnchor=p1k16go42b9kyxn18c6u0ul5qn9v&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p10bvg3wauedhan1qly0hiokirlv.htm&docsetTargetAnchor=p1k16go42b9kyxn18c6u0ul5qn9v&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1j60arf27ll4nn1ejavv3nby4pa.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0l9z26c8qrhl8n1hqs6raontpbn.htm&docsetTargetAnchor=p1bvjcjeoe69vln1ht5wdx2vndtm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0l9z26c8qrhl8n1hqs6raontpbn.htm&docsetTargetAnchor=n0wuuvsvdyxtbtn198yuc16s19ht&locale=en

Some Global ODS statements deliver output in a variety of formats such as HTML,
PDF, and RTF.

Global statements are grouped by functionality in Global Statements by Category.

Using Global Statements
Global statements generally provide information to SAS, request information or
data, move between different modes of execution, or set values for system options.
Other global statements (ODS statements) deliver output in a variety of formats,
such as in Hypertext Markup Language (HTML). You can use global statements
anywhere in a SAS program. However, global statements are not supported on the
CAS server. Global statements are not executable; they take effect as soon as SAS
compiles program statements.

Global statements can be divided into functional categories. For a list of global
statements by category, see “Global Statements by Category” on page 6.

Other SAS software products have additional statements that are used with those
products. For more information, see “Other Statement Documentation” on page
2.

Other Statement Documentation
In addition to the statements documented in SAS Global Statements: Reference,
statements are also documented in these publications:

n SAS DATA Step Statements: Reference

n Base SAS Procedures Guide

n SAS Cloud Analytic Services: User’s Guide

n SAS Viya Administration: Programming Run-Time Servers

n SAS Companion for Windows

n SAS Companion for UNIX Environments

n SAS Companion for z/OS

n SAS Language Interfaces to Metadata

n SAS Macro Language: Reference

n SAS Output Delivery System: User’s Guide

n SAS Scalable Performance Data Engine: Reference

n SAS XMLV2 and XML LIBNAME Engines: User’s Guide

2 Chapter 1 / About SAS Global Statements

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0km5hb8txc8ern1rvoxohe2u6fy.htm&docsetTargetAnchor=n1i3hx5eopbxysn1srg06hooj1gr&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0hcv8gpxqebnpn1is52we2enltx.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=n0mc4eolqoned0n16oy88mpj0e4g.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p1vvsv8ucnjzjnn1wq5wrlp74mdb.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=v_002&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calsrvpgm&docsetTarget=p04d9diqt9cjqnn1auxc3yl1ifef.htm
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=v_001&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engxml&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

n SAS/ACCESS for Relational Databases: Reference

n SAS/CONNECT User’s Guide

n SAS/SHARE User’s Guide

n Application Messaging with SAS

n SAS DS2 Language Reference

n SAS FedSQL Language Reference

n SAS LIBNAME Engine for SAS Federation Server: User's Guide

Other Statement Documentation 3

http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=appmsgdg&docsetVersion=9.4&docsetTarget=n0wbhc5unt28jkn1nctwvv4nlu4s.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engfedsrv&docsetVersion=9.4&docsetTarget=n1rth6a0blxn95n1tpwivr3xgh8t.htm&locale=en

4 Chapter 1 / About SAS Global Statements

2
Dictionary of SAS Global
Statements

Global Statements by Category . 6

Dictionary . 9
CATNAME Statement . 9
CHECKPOINT EXECUTE_ALWAYS Statement . 13
Comment Statement . 14
DM Statement . 16
ENDSAS Statement . 18
FILENAME Statement . 19
FILENAME Statement: Azure Access Method . 30
FILENAME Statement: CATALOG Access Method . 32
FILENAME Statement: CLIPBOARD Access Method . 36
FILENAME Statement: DATAURL Access Method . 39
FILENAME Statement: EMAIL (SMTP) Access Method . 42
FILENAME Statement: FILESRVC Access Method . 59
FILENAME Statement: FTP Access Method . 67
FILENAME Statement: Hadoop Access Method . 86
FILENAME Statement: S3 Access Method . 92
FILENAME Statement: SFTP Access Method . 95
FILENAME Statement: SOCKET Access Method . 103
FILENAME Statement: URL Access Method . 108
FILENAME Statement: WebDAV Access Method . 114
FILENAME Statement: ZIP Access Method . 123
FOOTNOTE Statement . 128
%INCLUDE Statement . 132
LIBNAME Statement . 139
LIBNAME Statement: CVP Engine . 157
LIBNAME Statement: JMP Engine . 162
LIBNAME Statement: JSON Engine . 164
LIBNAME Statement: WebDAV Server Access . 184
%LIST Statement . 189
LOCK Statement . 191
MISSING Statement . 194
Null Statement . 196

5

OPTIONS Statement . 198
PAGE Statement . 199
RESETLINE Statement . 200
RUN Statement . 201
%RUN Statement . 203
SASFILE Statement . 204
SKIP Statement . 211
SYSECHO Statement . 212
TITLE Statement . 212
X Statement . 221

Global Statements by Category
This table lists and describes SAS global statements, organized by function into
these categories:

Table 2.1 Global Statements by Category

Statements
Category

Functionality

Action Signals the end of data lines or acts as a placeholder.

See Action for a list of statements.

Data Access Associates reference names with SAS libraries, SAS catalogs,
external files and output devices, and accesses remote files.

See Data Access for a list of statements.

Information Gives SAS additional information about the program data vector.

See Information for a list of statements.

Log Control Alters the appearance of the SAS log.

See Log Control for a list of statements.

Output Control Adds titles and footnotes to your SAS output; delivers output in a
variety of formats.

See Output Control for a list of statements.

Program Control Governs how SAS processes your SAS program.

See Program Control for a list of statements.

This table provides brief descriptions of SAS global statements. For more detailed
information, see the individual statements.

6 Chapter 2 / Dictionary of SAS Global Statements

Category Language Elements Description

Action Null Statement (p. 196) Signals the end of data lines or acts as a placeholder.

Data Access CATNAME Statement (p.
9)

Logically combines two or more catalogs into one by
associating them with a catref (a shortcut name); clears one
or all catrefs; lists the concatenated catalogs in one
concatenation or in all concatenations.

FILENAME Statement (p.
19)

Associates a SAS fileref with an external file or an output
device, disassociates a fileref and external file, or lists
attributes of external files.

FILENAME Statement:
Azure Access Method (p.
30)

Enables you to access data in Microsoft Azure Data Lake
Storage.

FILENAME Statement:
CATALOG Access Method
(p. 32)

Enables you to reference a SAS catalog as an external file.

FILENAME Statement:
CLIPBOARD Access Method
(p. 36)

Enables you to read text data from and write text data to
the clipboard on the host computer.

FILENAME Statement:
DATAURL Access Method
(p. 39)

Enables you to read data from user-specified text.

FILENAME Statement:
EMAIL (SMTP) Access
Method (p. 42)

Enables you to send electronic mail programmatically from
SAS using the SMTP (Simple Mail Transfer Protocol) email
interface.

FILENAME Statement:
FILESRVC Access Method
(p. 59)

Enables you to store and retrieve user content using the
SAS Viya Files service.

FILENAME Statement: FTP
Access Method (p. 67)

Enables you to access remote files by using the FTP
protocol.

FILENAME Statement:
Hadoop Access Method (p.
86)

Enables you to access files on a Hadoop Distributed File
System (HDFS) whose location is specified in a
configuration file.

FILENAME Statement: S3
Access Method (p. 92)

Enables you to access Amazon S3 files.

FILENAME Statement: SFTP
Access Method (p. 95)

Enables you to access remote files by using the SFTP
protocol.

FILENAME Statement:
SOCKET Access Method (p.
103)

Enables you to read from or write to a TCP/IP socket.

FILENAME Statement: URL
Access Method (p. 108)

Enables you to access remote files by using the URL access
method.

Global Statements by Category 7

Category Language Elements Description

FILENAME Statement:
WebDAV Access Method (p.
114)

Enables you to access remote files by using the WebDAV
protocol.

FILENAME Statement: ZIP
Access Method (p. 123)

Enables you to access ZIP files.

LIBNAME Statement (p.
139)

Associates or disassociates a SAS library with a libref (a
shortcut name), clears one or all librefs, lists the
characteristics of a SAS library, concatenates SAS libraries,
or concatenates SAS catalogs.

LIBNAME Statement: CVP
Engine (p. 157)

Associates a libref for the character variable padding (CVP)
engine to expand character variable lengths so that
character data truncation does not occur when a file
requires transcoding.

LIBNAME Statement: JMP
Engine (p. 162)

Associates a libref with a JMP data table and enables you
to read and write JMP data tables.

LIBNAME Statement: JSON
Engine (p. 164)

Provides read-only sequential access to JSON data.

LIBNAME Statement:
WebDAV Server Access (p.
184)

Associates a libref with a SAS library and enables access to
a WebDAV (Web-based Distributed Authoring And
Versioning) server.

Information MISSING Statement (p. 194) Assigns characters in your input data to represent special
missing values for numeric data.

Log Control Comment Statement (p.
14)

Specifies the purpose of the statement or program.

PAGE Statement (p. 199) Skips to a new page in the SAS log.

RESETLINE Statement (p.
200)

Restarts the program line numbers in the SAS log to 1.

SKIP Statement (p. 211) Creates a blank line in the SAS log.

Output Control FOOTNOTE Statement (p.
128)

Writes up to 10 lines of text at the bottom of the procedure
or DATA step output.

TITLE Statement (p. 212) Specifies title lines for SAS output.

Program Control CHECKPOINT
EXECUTE_ALWAYS
Statement (p. 13)

Indicates to execute the DATA step or PROC step that
immediately follows without considering the checkpoint-
restart data.

DM Statement (p. 16) Enables you to turn SAS Command Line commands into
SAS global programming statements in the SAS Display
Manager environment.

ENDSAS Statement (p. 18) Stops SAS program execution as soon as the statement is
encountered in a SAS program.

8 Chapter 2 / Dictionary of SAS Global Statements

Category Language Elements Description

%INCLUDE Statement (p.
132)

Brings a SAS programming statement, data lines, or both,
into a current SAS program.

%LIST Statement (p. 189) Displays lines that are entered in the current session.

LOCK Statement (p. 191) Acquires, lists, or releases an exclusive lock on an existing
SAS file.

OPTIONS Statement (p.
198)

Specifies or changes the value of one or more SAS system
options.

RUN Statement (p. 201) Executes the previously entered SAS statements.

%RUN Statement (p. 203) Ends source statements following a %INCLUDE *
statement.

SASFILE Statement (p. 204) Opens a SAS data set and allocates enough buffers to hold
the entire file in memory.

SYSECHO Statement (p.
212)

Sends a global statement complete event and passes a text
string back to the IOM client.

Dictionary

CATNAME Statement
Logically combines two or more catalogs into one by associating them with a catref (a shortcut
name); clears one or all catrefs; lists the concatenated catalogs in one concatenation or in all
concatenations.

Valid in: Anywhere

Category: Data Access

Syntax

CATNAME <libref.> catref

< (libref-1.catalog-1 <(ACCESS=READONLY)>

<…libref-n.catalog–n <(ACCESS=READONLY)>>)>;

CATNAME <libref.> catref CLEAR | _ALL_ CLEAR;

CATNAME Statement 9

CATNAME <libref.> catref LIST | _ALL_ LIST;

Arguments
libref

is any previously assigned SAS libref. If you do not specify a libref, SAS
concatenates the catalog in the Work library, using the catref that you specify.

Range 1 to 8 bytes

Restriction The libref must have been previously assigned.

catref
is a unique catalog reference name for a catalog or a catalog concatenation that
is specified in the statement. Separate the catref from the libref with a period,
as in libref.catref. Any SAS name can be used for this catref.

catalog
is the name of a catalog that is available for use in the catalog concatenation.

Options
CLEAR

disassociates a currently assigned catref or libref.catref.

Tip Specify a specific catref or libref.catref to disassociate it from a single
concatenation. Specify _ALL_ CLEAR to disassociate all currently assigned
catref or libref.catref concatenations.

ALL CLEAR
disassociates all currently assigned catref or libref.catref concatenations.

LIST
writes the catalog names that are included in the specified concatenation to the
SAS log.

Tip Specify catref or libref.catref to list the attributes of a single concatenation.
Specify _ALL_ to list the attributes of all catalog concatenations in your
current session.

ALL LIST
writes all catalog names that are included in any current catalog concatenation
to the SAS log.

ACCESS=READONLY
assigns a read-only attribute to the catalog. SAS allows users to read from the
catalog entries but not to update information or to write new information.

10 Chapter 2 / Dictionary of SAS Global Statements

Details

Why Use CATNAME?
CATNAME is useful because it enables you to access entries in multiple catalogs
by specifying a single catalog reference name (libref.catref or catref). After you
create a catalog concatenation, you can specify the catref in any context that
accepts a simple (non-concatenated) catref.

Rules for Catalog Concatenation
To use catalog concatenation effectively, you must understand the rules that
determine how catalog entries are located among the concatenated catalogs:

n When a catalog entry is opened for input or update, the concatenated catalogs
are searched and the first occurrence of the specified entry is used.

n When a catalog entry is opened for output, it is created in the first catalog that
is listed in the concatenation.

Note: A new catalog entry is created in the first catalog even if there is an entry
with the same name in another part of the concatenation.

Note: If the first catalog in a concatenation that is opened for update does not
exist, the item is written to the next catalog that exists in the concatenation.

n When you want to delete or rename a catalog entry, only the first occurrence of
the entry is affected.

n Anytime a list of catalog entries is displayed, only one occurrence of a catalog
entry name is shown.

Note: Even if the name occurs multiple times in the concatenation, only the
first occurrence is shown.

Comparisons

n The CATNAME statement is like a LIBNAME statement for catalogs. The
LIBNAME statement enables you to assign a shortcut name to a SAS library so
that you can use the shortcut name to find the files and use the data that they
contain. CATNAME enables you to assign a short name <libref.>catref (libref is
optional) to one or more catalogs so that SAS can find the catalogs and use all
or some of the entries in each catalog.

n The CATNAME statement explicitly concatenates SAS catalogs. You can use
the LIBNAME statement to implicitly concatenate SAS catalogs.

CATNAME Statement 11

Examples

Example 1: Assigning and Using a Catalog Concatenation
You might need to access entries in several SAS catalogs. The most efficient way to
access the information is to logically concatenate the catalogs. Catalog
concatenation enables access to the information without actually creating a new,
separate, and possibly very large catalog.

Assign librefs to the SAS libraries that contain the catalogs that you want to
concatenate:

libname mylib1 'data-library-1';
libname mylib2 'data-library-2';

Assign a catref, which can be any valid SAS name, to the list of catalogs that you
want to logically concatenate:

 catname allcats (mylib1.catalog1 mylib2.catalog2);

The SAS log displays this message:

Example Code 2.1 Log Output from CATNAME Statement

NOTE: Catalog concatenation WORK.ALLCATS has been created.

Because no libref is specified, the libref is Work by default. When you want to
access a catalog entry in either of these catalogs, use the libref Work and the
catalog reference name ALLCATS instead of the original librefs and catalog names.
For example, to access a catalog entry named APPKEYS.KEYS in the catalog
MYLIB1.CATALOG1, specify

work.allcats.appkeys.keys

Example 2: Creating a Nested Catalog Concatenation
After you create a concatenated catalog, you can use CATNAME to combine your
concatenation with other single catalogs or other concatenated catalogs. Nested
catalog concatenation is useful, because you can use a single catref to access many
different catalog combinations.

libname local 'my_dir';
libname main 'public_dir';
catname private_catalog (local.my_application_code
 local.my_frames
 local.my_formats);
catname combined_catalogs (private_catalog
 main.public_catalog);

In the above example, you could work on private copies of your application entries
by using PRIVATE_CATALOG. If you want to see how your entries function when
they are combined with the public version of the application, you can use
COMBINED_CATALOGS.

12 Chapter 2 / Dictionary of SAS Global Statements

See Also

Statements:

n “FILENAME Statement” on page 19

n “FILENAME Statement: CATALOG Access Method” on page 32

n “LIBNAME Statement” on page 139 for a discussion of implicitly concatenating
SAS catalogs

CHECKPOINT EXECUTE_ALWAYS Statement
Indicates to execute the DATA step or PROC step that immediately follows without considering the
checkpoint-restart data.

Valid in: Anywhere

Category: Program Control

Syntax

CHECKPOINT EXECUTE_ALWAYS;

Without Arguments
The CHECKPOINT EXECUTE_ALWAYS statement indicates to SAS that the DATA
step or PROC step that immediately follows is to be executed without considering
the checkpoint data.

Details

If checkpoint-restart mode is enabled and a batch program terminates without
completing, the program can be rerun beginning with the DATA step or PROC step
that was executing when it terminated. DATA or PROC steps that completed before
the batch program terminated are not reexecuted. If a DATA step or a PROC step
must be reexecuted, you can add the CHECKPOINT EXECUTE_ALWAYS statement
before the step. Using the CHECKPOINT EXECUTE_ALWAYS statement ensures
that SAS always executes the step without regard to the checkpoint-restart data.

See Also

n “Checkpoint Mode and Restart Mode” in SAS Language Reference: Concepts

CHECKPOINT EXECUTE_ALWAYS Statement 13

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n1nzmsupywf45qn1m6j1eczg1cb4.htm&docsetTargetAnchor=p0vrr5cxunbzstn1t9iv03tuplfa&locale=en

System Options:

n “STEPCHKPT System Option” in SAS System Options: Reference

n “STEPCHKPTLIB= System Option” in SAS System Options: Reference

n “STEPRESTART System Option” in SAS System Options: Reference

Comment Statement
Specifies the purpose of the statement or program.

Valid in: Anywhere

Category: Log Control

Syntax

*message;

or

/*message*/

Arguments
*message;

specifies the text that explains or documents the statement or program.

Range These comments can be any length and are terminated with a
semicolon.

Restrictions These comments must be written as separate statements.

These comments cannot contain internal semicolons.

A macro statement or macro variable reference that is contained
inside this form of comment is processed by the SAS macro facility.
This form of comment cannot be used to hide text from the SAS
macro facility.

Tip When using comments within a macro definition or to hide text
from the SAS macro facility, use this style comment:
 /* message */

/*message*/
specifies the text that explains or documents the statement or program.

Range These comments can be any length.

Restriction This type of comment cannot be nested.

14 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n04szwnn2n131pn111blufwcpq4q.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0rdyp3hnqofhnn1c9796j7ucjlu.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p19n2m0z6wfm8rn1czx1vcb20m8u.htm&locale=en

Windows
specifics

If you use the Enhanced Editor, you can comment out a block of
code by highlighting the block and then pressing CTRL-/ (forward
slash). To uncomment a block of code, highlight the block and
press CTRL-SHIFT-/ (forward slash).

Tips These comments can contain semicolons and unmatched
quotation marks.

You can write these comments within statements or anywhere a
single blank can appear in your SAS code.

Details

You can use the comment statement anywhere in a SAS program to document the
purpose of the program, explain unusual segments of the program, or describe
steps in a complex program or calculation. SAS ignores text in comment statements
during processing.

CAUTION
Avoid placing the /* comment symbols in columns 1 and 2. In some operating
environments, SAS might interpret a /* in columns 1 and 2 as a request to end the SAS
program or session.

Note: You can add these lines to your code to fix unmatched comment tags,
unmatched quotation marks, and missing semicolons.

/* '; * "; */;
quit;
run;

Example: Using the Comment Statement

These examples illustrate the two types of comments:

n This example uses the *message; format:

*This code finds the number in the BY group;

n This example uses the *message; format:

 | This uses one comment statement |
 | to draw a box. |
 ---------------------------------------;

n This example uses the /*message*/ format:

 input @1 name $20. /* last name */
 @200 test 8. /* score test */
 @50 age 3.; /* customer age */

Comment Statement 15

n This example uses the /*message*/ format:

 /* For example 1 use: x=abc;
 for example 2 use: y=ghi; */

DM Statement
Enables you to turn SAS Command Line commands into SAS global programming statements in the
SAS Display Manager environment.

Valid in: Anywhere

Category: Program Control

See: SAS Command Line
“Commands under UNIX” in SAS Companion for UNIX Environments
“SAS Commands under Windows” in SAS Companion for Windows

Syntax

DM <window> 'command(s)' <window> <CONTINUE> ;

Arguments
window

specifies the active window.

Default If you omit the window name, SAS uses the Program Editor window as
the default.

Example dm log 'clear';

'command(s)'
can be any windowing environment command or text editor command and must
be enclosed in single quotation marks. If you want to issue several commands,
separate them with semicolons.

See “Commands under UNIX” in SAS Companion for UNIX Environments, “SAS
Commands under Windows” in SAS Companion for Windows, and SAS
Windowing Environment.

CONTINUE
causes SAS to execute any SAS statements that follow the DM statement in the
Program Editor window and, if a windowing command in the DM statement
called a window, makes that window active.

Note For example, if you specify Log as the active window and have other SAS
statements that follow the DM statement (for example, in an autoexec

16 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0scdyu08q1u22n15f2tpqrqgu4v.htm&docsetTargetAnchor=p1hn2kzboyidiln12jmeay965qug&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n0w11b16wu11ptn1dcp3gen6gofs.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n12pbrdi6hyw3gn1cjcrubshdxuk.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n0w11b16wu11ptn1dcp3gen6gofs.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n12pbrdi6hyw3gn1cjcrubshdxuk.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n12pbrdi6hyw3gn1cjcrubshdxuk.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n19oho2cmrd8lyn1eyr5rnbcmu5l.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n19oho2cmrd8lyn1eyr5rnbcmu5l.htm&locale=en

file), those statements are not submitted to SAS until control returns to
the SAS interface.

Tip Any windows that are activated by the SAS statements (such as the
Output window) appear before the window that is to be made active.

Details

The SAS Display Manager (DM) is also known as the SAS Windowing Environment.

For a list of SAS commands under the Windows operating environment, see “SAS
Commands under Windows” in SAS Companion for Windows. For a list of SAS
commands under the UNIX operating environment, see “Commands under UNIX” in
SAS Companion for UNIX Environments.

Execution occurs when the DM statement is submitted to SAS. You can use this
statement to modify the windowing environment:

n Change SAS interface features during a SAS session.

n Change SAS interface features at the beginning of each SAS session by placing
the DM statement in an autoexec file.

n Perform utility functions in windowing applications, such as saving a file with
the FILE command or clearing a window with the CLEAR command.

Window placement affects the outcome of the statement:

n If you name a window before the commands, those commands apply to that
window.

n If you name a window after the commands, SAS executes the commands and
then makes that window the active window. The active window is opened and
contains the cursor.

Examples

Example 1: Using the DM Statement
n dm 'color text cyan; color command red';

n dm log 'clear; pgm; color numbers green'
 output;

n dm 'caps on';

n dm log 'clear' output;

DM Statement 17

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n19oho2cmrd8lyn1eyr5rnbcmu5l.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n12pbrdi6hyw3gn1cjcrubshdxuk.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n12pbrdi6hyw3gn1cjcrubshdxuk.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n0w11b16wu11ptn1dcp3gen6gofs.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n0w11b16wu11ptn1dcp3gen6gofs.htm&locale=en

Example 2: Using the CONTINUE Option with SAS Statements
That Do Not Activate a Window
This example causes SAS to display the first window of the SAS/AF application,
executes the DATA step, moves the cursor to the first field of the SAS/AF
application window, and makes that window active.

dm 'af c=your-program' continue;
data temp;
 . . . more SAS statements . . .
run;

Example 3: Using the CONTINUE Option with SAS Statements
That Activate a Window
This example displays the first window of the SAS/AF application and executes the
PROC PRINT step, which activates the Output window. Closing the Output window
moves the cursor to the last active window.

dm 'af c=your-program' continue;
proc print data=temp;
run;

Example 4: Using the DM Statement to Display the Results
Viewer Window
This examples causes SAS to display the Results Viewer window. You can also
define a function key to perform this action.

dm 'next "results viewer"' continue;

ENDSAS Statement
Stops SAS program execution as soon as the statement is encountered in a SAS program.

Valid in: Anywhere

Category: Program Control

Syntax

ENDSAS;

Without Arguments
The ENDSAS statement can be specified in either a DATA step or a PROC step.
When the DATA or PROC step runs, the ENDSAS statement stops program
execution as soon as the statement is encountered in a SAS program.

18 Chapter 2 / Dictionary of SAS Global Statements

Details

Note: ENDSAS statements are always executed at the point that they are
encountered in a DATA step. Use the ABORT RETURN statement to stop
processing when an error condition occurs (for example, in the clause of an IF-
THEN statement or a SELECT statement).

Comparisons

You can also terminate a SAS job or session by using the BYE or the ENDSAS
command from any SAS window command line. For more information, see the
online Help for SAS windows.

See Also

“SYSSTARTID Automatic Macro Variable” in SAS Macro Language: Reference

FILENAME Statement
Associates a SAS fileref with an external file or an output device, disassociates a fileref and external
file, or lists attributes of external files.

Valid in: Anywhere

Category: Data Access

Restrictions: On Windows, the fully qualified path to the external file (including the name of the
external file) cannot exceed 260 bytes in length. For more information, see
“Referencing Files Using UNC Paths” in SAS Companion for Windows.
When SAS is in a locked-down state, the FILENAME statement is not available for
files that are not in the lockdown path list. For more information, see “SAS
Processing Restrictions for Servers in a Locked-Down State” in SAS Language
Reference: Concepts.

Windows
specifics:

The fully qualified path to the external file (including the name of the external file)
cannot exceed 260 bytes in length. For more information, see “Referencing Files
Using UNC Paths” in SAS Companion for Windows.

See: FILENAME Statement under Windows, UNIX, and z/OS
“FILENAME Statement: Windows” in SAS Companion for Windows “FILENAME
Statement: UNIX” in SAS Companion for UNIX Environments “FILENAME
Statement: z/OS” in SAS Companion for z/OS

FILENAME Statement 19

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=v_001&docsetTarget=p0grphxr4jnnvon13h9ras5p8bsv.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n07buc7sg08fdrn1c1jmmr8hl78r.htm&docsetTargetAnchor=n0izvp5o4shxsvn1p17if3qsujwb&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n07buc7sg08fdrn1c1jmmr8hl78r.htm&docsetTargetAnchor=n0izvp5o4shxsvn1p17if3qsujwb&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n07buc7sg08fdrn1c1jmmr8hl78r.htm&docsetTargetAnchor=n0izvp5o4shxsvn1p17if3qsujwb&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=chfnoptfmain.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n1cwdt7h01vaken0zl8veh8x3ybc.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n06xm17q99z0x6n1tskpswfrgp27.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=chfnoptfmain.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n1cwdt7h01vaken0zl8veh8x3ybc.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n1cwdt7h01vaken0zl8veh8x3ybc.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n06xm17q99z0x6n1tskpswfrgp27.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n06xm17q99z0x6n1tskpswfrgp27.htm&locale=en

Syntax

Form 1: FILENAME fileref <device-type> 'external-file' <ENCODING='encoding-value'>
<options> <operating-environment-options>;

Form 2: FILENAME fileref <device-type> <options> <operating-environment-options >;

Form 3: FILENAME fileref CLEAR | _ALL_ CLEAR;

Form 4: FILENAME fileref LIST | _ALL_ LIST ;

Arguments
fileref

is any SAS name that you use when you assign a new fileref. When you
disassociate a currently assigned fileref or when you list file attributes with the
FILENAME statement, specify a fileref that was previously assigned with a
FILENAME statement or an operating environment-level command.

Range 1 to 8 bytes

Tip The association between a fileref and an external file lasts only for the
duration of the SAS session or until you change it or discontinue it by
using another FILENAME statement. Change the fileref for a file as often
as you want.

device-type
specifies the type of device or the access method that is used if the fileref
points to an input or output device or location that is not a physical file:

device-type
ACTIVEMQ

specifies an access method that enables you to access an ActiveMQ
messaging broker.

Restriction This device type is not supported in SAS Viya.

Interaction If the DATA step does not recognize the access method option,
the DATA step passes the option to the access method for
handling.

See “FILENAME Statement: ACTIVEMQ Access Method” in
Application Messaging with SAS

AZURE
specifies an access method that enables you to access data in Microsoft
Azure Data Lake Storage.

See “FILENAME Statement: Azure Access Method” on page 30

CATALOG
specifies an access method that enables you to reference a SAS catalog as
an external file.

See “FILENAME Statement: CATALOG Access Method” on page 32

20 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=appmsgdg&docsetVersion=9.4&docsetTarget=p0scb9ccs24n7ln187f8bu64crpl.htm&locale=en
http://documentation.sas.com/?docsetId=appmsgdg&docsetVersion=9.4&docsetTarget=p0scb9ccs24n7ln187f8bu64crpl.htm&locale=en

DATAURL
specifies an access method that enables you to read data from user-
specified text.

See “FILENAME Statement: DATAURL Access Method” on page 39

DISK
specifies that the device is a disk drive.

Tip When you assign a fileref to a file on disk, you are not required to
specify DISK.

DUMMY
specifies that the output to the file is discarded.

Tip Specifying DUMMY can be useful for testing.

EMAIL
specifies an access method that enables you to send electronic mail
programmatically from SAS by using the SMTP (Simple Mail Transfer
Protocol) email interface.

See “FILENAME Statement: EMAIL (SMTP) Access Method” on page 42

FTP
specifies an access method that enables you to access remote files by using
the FTP protocol.

See “FILENAME Statement: FTP Access Method” on page 67

GTERM
indicates that the output device type is a graphics device that receives
graphics data.

HADOOP
specifies an access method that enables you to access files on a Hadoop
Distributed File System (HDFS) whose location is specified in a
configuration file.

See “FILENAME Statement: Hadoop Access Method” on page 86

JMS
specifies a Java Message Service (JMS) destination.

Restriction This device type is not supported in SAS Viya.

PIPE
specifies an unnamed pipe.

Note Some operating environments do not support pipes.

PLOTTER
specifies an unbuffered graphics output device.

FILENAME Statement 21

PRINTER
specifies a printer or printer spool file.

S3
specifies an access method that enables you to access Amazon S3 files.

See “FILENAME Statement: S3 Access Method” on page 92

SFTP
specifies an access method that enables you to access remote files by using
the SFTP protocol.

See “FILENAME Statement: SFTP Access Method” on page 95

SOCKET
specifies an access method that enables you to read from or write to a
TCP/IP socket.

See “FILENAME Statement: SOCKET Access Method” on page 103

TAPE
specifies a tape drive.

TEMP
creates a temporary file that exists only as long as the filename is assigned.
The temporary file can be accessed only through the logical name and is
available only while the logical name exists.

Restriction Do not specify a physical pathname. If you do, SAS returns an
error.

Tip Files manipulated by the TEMP device can have the same
attributes and behave identically to DISK files.

TERMINAL
specifies the user's terminal.

UPRINTER
specifies a Universal Printing printer definition name.

Tip If you do not specify the printer name in the FILENAME statement, the
PRINTERPATH options control which Universal Printer is used and the
destination of the output.

URL
specifies an access method that enables you to access remote files by using
the URL access method.

See “FILENAME Statement: URL Access Method” on page 108

WEBDAV
specifies an access method that enables you to access remote files by using
the WebDAV protocol.

See “FILENAME Statement: WebDAV Access Method” on page 114

22 Chapter 2 / Dictionary of SAS Global Statements

ZIP
specifies an access method that enables you to access ZIP files.

See “FILENAME Statement: ZIP Access Method” on page 123

Requirement device-type must immediately follow fileref in the statement.

Operating
environment

Additional specifications might be required when you specify
some devices. See the SAS documentation for your operating
environment before specifying a value other than DISK. Values
in addition to the ones listed here might be available in some
operating environments.

See “FILENAME Statement: SFTP Access Method” on page 95

'external-file'
is the physical name of an external file. Enclose external filename in quotation
marks. The physical name is the name that is recognized by the operating
environment.

Restrictions On Windows, the fully qualified path to the external file
(including the name of the external file) cannot exceed 260 bytes
in length. For more information, see “Referencing Files Using UNC
Paths” in SAS Companion for Windows.

Operating
environment

For more information about specifying the physical names of
external files, see the SAS documentation for your operating
environment. “Referencing External Files” in SAS Companion for
Windows, “Specifying Pathnames in UNIX Environments” in SAS
Companion for UNIX Environments, and “Specifying Physical
Files” in SAS Companion for z/OS

Tips Specify external-file when you assign a fileref to an external file.

You can associate a fileref with a single file or with an aggregate
file storage location by specifying the fully qualified pathname.

ENCODING= 'encoding-value'
specifies the encoding to use when SAS is reading from or writing to an external
file. The value for ENCODING= indicates that the external file has a different
encoding from the current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding. When you write data to an external
file, SAS transcodes the data from the session encoding to the specified
encoding.

Default SAS assumes that an external file is in the same encoding as the
session encoding.

Restrictions The UPRINTER device type does not support the ENCODING=
argument.

FILENAME Statement 23

http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n07buc7sg08fdrn1c1jmmr8hl78r.htm&docsetTargetAnchor=n0izvp5o4shxsvn1p17if3qsujwb&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n07buc7sg08fdrn1c1jmmr8hl78r.htm&docsetTargetAnchor=n0izvp5o4shxsvn1p17if3qsujwb&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n07buc7sg08fdrn1c1jmmr8hl78r.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n07buc7sg08fdrn1c1jmmr8hl78r.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p1cycu6ky2lsd7n0zqaskousxy5y.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p1cycu6ky2lsd7n0zqaskousxy5y.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n0wtckd5t9kx0gn1dkkrxtdxb32d.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n0wtckd5t9kx0gn1dkkrxtdxb32d.htm&locale=en

Not all device types support the encoding option. For more
information, see the documentation for your operating system.

You cannot use the FILENAME statement to specify an encoding
for a transport file that is created with PROC CPORT. In order for a
transport file to be imported successfully, the encodings of the
source and target SAS sessions must be compatible.

See For valid encoding values, see “Encoding Values in SAS Language
Elements” in SAS National Language Support (NLS): Reference
Guide .

Examples “Example 5: Specifying an Encoding When Reading an External File”
on page 28

“Example 6: Specifying an Encoding When Writing to an External
File” on page 29

CLEAR
disassociates one or more currently assigned filerefs.

Tip Specify fileref to disassociate a single fileref. Specify _ALL_ to disassociate
all currently assigned filerefs.

ALL
specifies that the CLEAR or LIST argument applies to all currently assigned
filerefs.

LIST
writes the attributes of one or more files to the SAS log.

Interaction Specify fileref to list the attributes of a single file. Specify _ALL_ to
list the attributes of all files that have filerefs in your current
session.

Options
RECFM=record-format

specifies the record format of the external file.

Interaction In SAS 9.4, the default value for the global LRECL system option
is 32767. If you are using fixed-length records (RECFM=F), the
default value for LRECL is 256.

Operating
environment

Values for record-format are dependent on the operating
environment. For more information, see the SAS documentation
for your operating environment.

Operating Environment Options
Operating environment options specify details, such as file attributes and
processing attributes, that are specific to your operating environment.

24 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

Operating Environment Information: For a list of valid specifications, see the SAS
documentation for your operating environment.

Details

Operating Environment Information
Operating Environment Information: Using the FILENAME statement requires
operating environment-specific information. See the SAS documentation for your
operating environment before using this statement. Note also that commands are
available in some operating environments that associate a fileref with a file and
that break that association.

Definitions
external file

is a file that is created and maintained in the operating environment from which
you need to read data, SAS programming statements, or autocall macros, or to
which you want to write output. An external file can be a single file or an
aggregate storage location that contains many individual external files. See
“Example 3: Associating a Fileref with an Aggregate Storage Location” on page
27.

Operating Environment Information: Different operating environments call an
aggregate grouping of files by different names, such as a directory, a MACLIB, or
a partitioned data set. For more information about specifying external files, see
the SAS documentation for your operating environment.

fileref
(a file reference name) is a shorthand reference to an external file. After you
associate a fileref with an external file, you can use it as a shorthand reference
for that file in SAS programming statements (such as INFILE, FILE, and
%INCLUDE) and in other commands and statements in SAS software that
access external files.

Reading Delimited Data from an External File
Anytime a text file originates from anywhere other than the local encoding
environment, it might be necessary to specify the ENCODING= option in either
EBCDIC or ASCII environments.

For example, when you read an EBCDIC text file on an ASCII platform, it is
recommended that you specify the ENCODING= option in the FILENAME
statement. However, if you use the DSD and the DLM or DLMSTR= options in the
INFILE statement, the ENCODING= option is a requirement because these options
must contain certain characters in the session encoding (such as quotation marks,
commas, and blanks).

The use of encoding-specific informats should be reserved for use with true binary
files. That is, the files contain both character and non-character fields.

FILENAME Statement 25

Associating a Fileref with an External File (Form 1)
Use this form of the FILENAME statement to associate a fileref with an external
file on disk:

FILENAME fileref 'external-file' <operating-environment-options>;

To associate a fileref with a file other than a disk file, you might need to specify a
device type, depending on your operating environment, as shown in this form:

FILENAME fileref <device-type> <operating-environment-options>;

The association between a fileref and an external file lasts only for the duration of
the SAS session or until you change it or discontinue it with another FILENAME
statement. Change the fileref for a file as often as you want.

To specify a character-set encoding, use this form:

FILENAME fileref <device-type> <operating-environment-options>;

Associating a Fileref with a Terminal, Printer, Universal Printer,
or Plotter (Form 2)
To associate a fileref with an output device, use this form:

FILENAME fileref device-type <operating-environment-options>;

Disassociating a Fileref from an External File (Form 3)
To disassociate a fileref from a file, use a FILENAME statement that specifies the
fileref and the CLEAR option.

FILENAME fileref CLEAR | _ALL_ CLEAR;

Writing File Attributes to the SAS Log (Form 4)
Use a FILENAME statement to write the attributes of one or more external files to
the SAS log. Specify fileref to list the attributes of one file; use _ALL_ to list the
attributes of all the files that have been assigned filerefs in your current SAS
session.

FILENAME fileref LIST | _ALL_ LIST;

Comparisons

The FILENAME statement assigns a fileref to an external file. The LIBNAME
statement assigns a libref to a SAS library. Use the LIBNAME, SAS/ACCESS
statement to access DBMS tables.

26 Chapter 2 / Dictionary of SAS Global Statements

Examples

Example 1: Specifying a Fileref or a Physical Filename
You can specify an external file either by associating a fileref with the file and then
specifying the fileref or by specifying the physical filename in quotation marks:

 filename sales 'your-input-file';
 data jansales;
 /* specifying a fileref */
 infile sales;
 input salesrep $20. +6 jansales febsales
 marsales;
 run;
 data jansales;
 /* physical filename in quotation marks */
 infile 'your-input-file';
 input salesrep $20. +6 jansales febsales
 marsales;
 run;

Example 2: Using a FILENAME and a LIBNAME Statement
This example reads data from a file that has been associated with the fileref
GREEN and creates a permanent SAS data set stored in a SAS library that has been
associated with the libref SAVE.

 filename green 'your-input-file';
 libname save 'SAS-library';
 data save.vegetable;
 infile green;
 input lettuce cabbage broccoli;
 run;

Example 3: Associating a Fileref with an Aggregate Storage
Location
If you associate a fileref with an aggregate storage location, use the fileref, followed
in parentheses by an individual filename, to read from or write to any of the
individual external files that are stored there.

Operating Environment Information: Some operating environments enable you to
read from but not write to members of aggregate storage locations. For more
information, see the SAS documentation for your operating environment.

In this example, each DATA step reads from an external file (REGION1 and
REGION2, respectively) that is stored in the same aggregate storage location and
that is referenced by the fileref SALES.

 filename sales 'aggregate-storage-location';
 data total1;
 infile sales(region1);
 input machine $ jansales febsales marsales;
 totsale=jansales+febsales+marsales;
 run;

FILENAME Statement 27

 data total2;
 infile sales(region2);
 input machine $ jansales febsales marsales;
 totsale=jansales+febsales+marsales;
 run;

Example 4: Routing PUT Statement Output
In this example, the FILENAME statement associates the fileref OUT with a printer
that is specified with an operating environment-dependent option. The FILE
statement directs PUT statement output to that printer.

 filename out printer operating-environment-option;
 data sales;
 file out print;
 input salesrep $20. +6 jansales
 febsales marsales;
 put _infile_;
 datalines;
 Jones, E. A. 124357 155321 167895
 Lee, C. R. 111245 127564 143255
 Desmond, R. T. 97631 101345 117865
 ;

You can use the FILENAME and FILE statements to route PUT statement output to
several devices during the same session. To route PUT statement output to your
display monitor, use the TERMINAL option in the FILENAME statement, as shown
here:

 filename show terminal;
 data sales;
 file show;
 input salesrep $20. +6 jansales
 febsales marsales;
 put _infile_;
 datalines;
 Jones, E. A. 124357 155321 167895
 Lee, C. R. 111245 127564 143255
 Desmond, R. T. 97631 101345 117865
 ;

Example 5: Specifying an Encoding When Reading an External
File
This example creates a SAS data set from an external file. The external file is in
UTF-8 character-set encoding, and the current SAS session is in the Wlatin1
encoding. By default, SAS assumes that an external file is in the same encoding as
the session encoding, which causes the character data to be written to the new SAS
data set incorrectly.

To tell SAS what encoding to use when reading the external file, specify the
ENCODING= option. When you tell SAS that the external file is in UTF-8, SAS then
transcodes the external file from UTF-8 to the current session encoding when
writing to the new SAS data set. Therefore, the data is written to the new data set
correctly in Wlatin1.

28 Chapter 2 / Dictionary of SAS Global Statements

libname myfiles 'SAS-library';

filename extfile 'external-file' encoding="utf-8";
data myfiles.unicode;
 infile extfile;
 input Make $ Model $ Year;
run;

Note: You cannot use the FILENAME statement to specify an encoding for a
transport file that is created with PROC CPORT. In order for a transport file to be
imported successfully, the encodings of the source and target SAS sessions must
be compatible.

Example 6: Specifying an Encoding When Writing to an External
File
This example creates an external file from a SAS data set. The current session
encoding is Wlatin1, but the external file's encoding needs to be UTF-8. By default,
SAS writes the external file using the current session encoding.

To tell SAS what encoding to use when writing data to the external file, specify the
ENCODING= option. When you tell SAS that the external file is to be in UTF-8
encoding, SAS then transcodes the data from Wlatin1 to the specified UTF-8
encoding when writing to the external file.

libname myfiles 'SAS-library';
filename outfile 'external-file' encoding="utf-8";

data _null_;
 set myfiles.cars;
 file outfile;
 put Make Model Year;
run;

See Also

Statements:

n “FILE Statement” in SAS DATA Step Statements: Reference

n “%INCLUDE Statement” on page 132

n “INFILE Statement” in SAS DATA Step Statements: Reference

n “FILENAME Statement: CATALOG Access Method” on page 32

n “FILENAME Statement: ACTIVEMQ Access Method” in Application Messaging
with SAS

n “FILENAME Statement: DATAURL Access Method” on page 39

n “FILENAME Statement: EMAIL (SMTP) Access Method” on page 42

n “FILENAME Statement: FTP Access Method” on page 67

FILENAME Statement 29

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n15o12lpyoe4gfn1y1vcp6xs6966.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&locale=en
http://documentation.sas.com/?docsetId=appmsgdg&docsetVersion=9.4&docsetTarget=p0scb9ccs24n7ln187f8bu64crpl.htm&locale=en
http://documentation.sas.com/?docsetId=appmsgdg&docsetVersion=9.4&docsetTarget=p0scb9ccs24n7ln187f8bu64crpl.htm&locale=en

n “FILENAME Statement: Hadoop Access Method” on page 86

n “FILENAME Statement: JMS Access Method” in Application Messaging with SAS

n “FILENAME Statement: SFTP Access Method” on page 95

n “FILENAME Statement: SOCKET Access Method” on page 103

n “FILENAME Statement: URL Access Method” on page 108

n “FILENAME Statement: WebDAV Access Method” on page 114

n “FILENAME Statement: ZIP Access Method” on page 123

n “LIBNAME Statement” on page 139

n “LOCKDOWN Statement” in SAS Intelligence Platform: Application Server
Administration Guide

System Options:

n “LOCKDOWN System Option in SAS Intelligence Platform: Application Server
Administration Guide

SAS Windowing Interface Commands:

n See the FILE and INCLUDE commands in the Base SAS Help and
Documentation

FILENAME Statement: Azure Access Method
Enables you to access data in Microsoft Azure Data Lake Storage.

Category: Data Access

Restrictions: Support for the Azure access method in SAS 9 begins in SAS 9.4M8.
The Azure access method is not supported on z/OS platforms.

See: “AZUREAUTHCACHELOC System Option” in SAS System Options: Reference
Process for Device Code Authorization
“AZURETENANTID= System Option” in SAS System Options: Reference

Syntax

FILENAME fileref ADLS “object path” <adls-options>;

Arguments
fileref

is a valid fileref.

ADLS
specifies the Azure Data Lake Storage (ADLS) access method.

30 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=appmsgdg&docsetVersion=9.4&docsetTarget=n0wbhc5unt28jkn1nctwvv4nlu4s.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1xiwtwdy48nqxn18vh72yywv8nu.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1xiwtwdy48nqxn18vh72yywv8nu.htm&docsetTargetAnchor=n05gp66gqa1r2jn1l3p8048hpvh6&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1rop72gnqzbnmn1s6yhe9tehgf8.htm&locale=en

object-path
specifies the Azure object that you want to access.

Required Options
The Azure access method accepts these options:

ACCOUNTNAME=“account name”
specifies the name of the Azure storage account.

APPLICATIONID=“application id”
specifies the Azure application ID that is created in the Microsoft Entra ID
(formerly Azure Active Directory).

FILESYSTEM=“file system”
specifies the name of the Azure file system.

Details

Creating an Azure Account
Azure Data Lake Storage (ADLS) is a Microsoft cloud computing service. The
FILENAME statement Azure access method enables you to access your data on
ADLS.

To use ADLS, set up an account with Microsoft Azure. For information about
setting up an account, see the Microsoft Azure portal. You also have to set up your
system to use OAuth authentication tokens. Contact your system administrator for
information about using OAuth tokens.

Example: Obtaining an Authorization Device Code
to Access ADLS Data

This example shows the process for Microsoft device-code authentication and
authorization the first time you run a SAS program to access data on a Microsoft
ADLS server. If you already have a JSON credentials file, then this authentication
and authorization step is not required. For more information, see “Details” in SAS
System Options: Reference. Note the following key points:

n The first time you run a program to access data on a Microsoft ADLS server,
SAS generates the following ERROR messages in the SAS log:

ERROR: Cannot obtain connection to ADLS.
ERROR: To sign in, use a web browser to open the page https://microsoft.com/devicelogin
 and enter the code xxxxxx to authenticate.

n The messages provide instructions for authenticating with the Microsoft ADLS
server.

1 Use a browser to open the Microsoft device authorization page.

FILENAME Statement: Azure Access Method 31

https://portal.azure.com/#home
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1xiwtwdy48nqxn18vh72yywv8nu.htm&docsetTargetAnchor=n05gp66gqa1r2jn1l3p8048hpvh6&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1xiwtwdy48nqxn18vh72yywv8nu.htm&docsetTargetAnchor=n05gp66gqa1r2jn1l3p8048hpvh6&locale=en

2 Enter the code that is provided in the SAS log. After you enter the code and
get the required authorization, you can successfully run the program without
errors.

n SAS maintains an authorization file (.sasadls_userid.json) in your $HOME
directory that contains the credentials needed for future data access. After you
have completed the authorization process, you do not have to repeat it unless
the JSON file is deleted or your credentials change.

n The following program creates a file named example.txt on the ADLS server
and writes a line of text to the file:

Note: You can specify the AZUREAUTHCACHELOC system option to change the
location of the JSON file.

options azuretenantid = "user-tenant-id"; /* 1 */

filename out adls "path/example.txt"
 applicationid="application-id"
 accountname="account-name"
 filesystem="filesystem-name";

data _null_;
 file out;
 put 'line 1';
run;

1 Specify your AZURETENANTID system option tenant ID. Run the program and
complete the authorization and authentication process by opening the web page
that is referenced in the SAS log and enter the device code. After you have
completed the authorization process, re-submit the SAS program. The program
creates a file named example.txt on the ADLS server and writes a line of text
to the file.

Example Code 2.2 Log Output

ERROR: Cannot obtain connection to ADLS. Check options and tokens.
ERROR: To sign in, use a web browser to open the page
 https://microsoft.com/devicelogin and enter the code <CODE> to authenticate.

FILENAME Statement: CATALOG Access Method
Enables you to reference a SAS catalog as an external file.

Valid in: Anywhere

Category: Data Access

32 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1xiwtwdy48nqxn18vh72yywv8nu.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1rop72gnqzbnmn1s6yhe9tehgf8.htm&locale=en

Syntax

FILENAME fileref CATALOG 'catalog' <catalog-options>;

Arguments
fileref

is a valid fileref.

Range 1 to 8 bytes

CATALOG
specifies the access method that enables you to reference a SAS catalog as an
external file. You can then use any SAS commands, statements, or procedures
that can access external files to access a SAS catalog.

Alias LIBRARY

Tips This access method makes it possible for you to invoke an autocall macro
directly from a SAS catalog.

With this access method, you can read any type of catalog entry, but you
can write only to entries of type LOG, OUTPUT, SOURCE, and CATAMS.

If you want to access an entire catalog (instead of a single entry), you
must specify its two-level name in the catalog parameter.

'catalog'
is a valid two-, three-, or four-part SAS catalog name, where the parts represent
library.catalog.entry.entrytype.

Default The default entry type is CATAMS.

Restriction The CATAMS entry type is used only by the CATALOG access
method. The CPORT and CIMPORT procedures do not support this
entry type.

Catalog Options
catalog-options can be any of these values:

LRECL=lrecl
where lrecl is the maximum record length for the data in bytes.

Default For input, the actual LRECL value of the file is the default. For
output, the default is 132.

Interaction Alternatively, you can specify a global logical record length by using
the “LRECL= System Option” in SAS System Options: Reference. In
SAS 9.4, the default value for the global LRECL system option is
32767. If you are using fixed-length records (RECFM=F), the default
value for LRECL is 256.

FILENAME Statement: CATALOG Access Method 33

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1li19l98i6929n1981oqr3wq46u.htm&locale=en

RECFM=recfm
where recfm is one of four record formats:

F
is a fixed-record format. Data is transferred in image (binary) mode.

P
is a print format.

S
is a stream-record format. Data is transferred in image (binary) mode.

Interactions The amount of data that is read is controlled by the value of the
NBYTE= variable in the INFILE statement. The NBYTE= option
specifies a variable that is equal to the amount of data to be
read. This amount must be less than or equal to LRECL.

In SAS 9.4, the default value for the global LRECL system option
is 32767. If you are using fixed-length records (RECFM=F), the
default value for LRECL is 256.

See The NBYTE= option in the INFILE statement.

V
is a variable-record format (the default). In this format, records have varying
lengths, and the records are separated by newlines.

Default V

DESC=description
where description is a text description of the catalog.

MOD
specifies to append to the file.

Default If you omit MOD, the file is replaced.

Details

The CATALOG access method in the FILENAME statement enables you to
reference a SAS catalog as an external file. You can then use any SAS commands,
statements, or procedures that can access external files to access a SAS catalog.
For example, the catalog access method makes it possible for you to invoke an
autocall macro directly from a SAS catalog. See “Example 5: Executing an Autocall
Macro from a SAS Catalog” on page 36.

With the CATALOG access method, you can read any type of catalog entry, but you
can write to only entries of type LOG, OUTPUT, SOURCE, and CATAMS. If you want
to access an entire catalog (instead of a single entry), you must specify its two-
level name in the catalog argument.

34 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1snbljmbl2o4kn1myleql0za4hj&locale=en

Examples

Example 1: Using %INCLUDE with a Catalog Entry
This example submits the source program that is contained in
SASUSER.PROFILE.SASINP.SOURCE:

filename fileref1
 catalog 'sasuser.profile.sasinp.source';
%include fileref1;

Example 2: Using %INCLUDE with Several Entries in a Single
Catalog
This example submits the source code from three entries in the catalog
MYLIB.INCLUDE. When no entry type is specified, the default is CATAMS.

filename dir catalog 'mylib.include';
%include dir(mem1);
%include dir(mem2);
%include dir(mem3);

Example 3: Reading and Writing a CATAMS Entry
This example uses a DATA step to write data to a CATAMS entry, and another
DATA step to read it back in:

filename mydata
 catalog 'sasuser.data.update.catams';
 /* write data to catalog entry update.catams */
data _null_;
 file mydata;
 do i=1 to 10;
 put i;
 end;
run;
 /* read data from catalog entry update.catams */
data _null_;
 infile mydata;
 input;
 put _INFILE_;
run;

Example 4: Writing to a SOURCE Entry
This example writes code to a catalog SOURCE entry and then submits it for
processing:

filename incit
 catalog 'sasuser.profile.sasinp.source';
data _null_;
 file incit;
 put 'proc options; run;';
run;
%include incit;

FILENAME Statement: CATALOG Access Method 35

Example 5: Executing an Autocall Macro from a SAS Catalog
If you store an autocall macro in a SOURCE entry in a SAS catalog, you can point to
that entry and invoke the macro in a SAS job. Use these steps:

1 Store the source code for the macro in a SOURCE entry in a SAS catalog. The
name of the entry is the macro name.

2 Use a LIBNAME statement to assign a libref to that SAS library.

3 Use a FILENAME statement with the CATALOG specification to assign a fileref
to the catalog: libref.catalog.

4 Use the SASAUTOS= option and specify the fileref so that the system knows
where to locate the macro. Also set MAUTOSOURCE to activate the autocall
facility.

This example points to a SAS catalog named MYSAS.MYCAT. It then invokes a
macro named REPORTS, which is stored as a SAS catalog entry named
MYSAS.MYCAT.REPORTS.SOURCE:

libname mysas 'SAS-library';
filename mymacros catalog 'mysas.mycat';
options sasautos=mymacros mautosource;
%reports

See Also

Statements:

n “FILENAME Statement” on page 19

FILENAME Statement: CLIPBOARD Access
Method
Enables you to read text data from and write text data to the clipboard on the host computer.

Valid in: Anywhere

Category: Data Access

Syntax

FILENAME fileref CLIPBRD <BUFFER=paste-buffer-name>;

36 Chapter 2 / Dictionary of SAS Global Statements

Arguments
fileref

is a valid fileref.

Range 1 to 8 bytes

CLIPBRD
specifies the access method that enables you to read data from or write data to
the clipboard on the host computer.

BUFFER=paste-buffer-name
creates and names the paste buffer. You can create any number of paste buffers
by naming them with the BUFFER= argument in the STORE command.

Details

The FILENAME statement, CLIPBOARD Access Method enables you to share data
within SAS and between SAS and applications other than SAS.

Comparisons

The STORE command copies marked text in the current window and stores the
copy in a paste buffer.

You can also copy data to the clipboard by using the Explorer pop-up menu item
Copy Contents to Clipboard .

Examples

Example 1: Using ODS to Write a Data Set as HTML to the
Clipboard
This example uses the Sashelp.Air data set as the input file. The ODS is used to
write the data set in HTML format to the clipboard.

filename _temp_ clipbrd;
 ods noresults;
 ods html file=_temp_ rs=none style=minimal;
 proc print data=Sashelp.'Air'N noobs;
run;
ods results;
filename _temp_;

FILENAME Statement: CLIPBOARD Access Method 37

Example 2: Using the DATA Step to Write a Data Set as Comma-
separated Values to the Clipboard
This example uses the Sashelp.Air data set as the input file. The data is written in
the DATA step as comma-separated values to the clipboard.

filename _temp1_ temp;
filename _temp2_ clipbrd;
proc contents data=Sashelp."Air"N out=info noprint;
proc sort data=info;
 by npos;
run;
data _null_;
 set info end=eof;
 ;
 file _temp1_ dsd;
 put name @@;
 if _n_=1 then do;
 call execute("data _null_;
 set Sashelp.""Air""N;
 file _temp1_ dsd mod;
 put");
 end;
 call execute(trim(name));
 if eof then call execute('; run;');
run;
data _null_;
 infile _temp1_;
 file _temp2_;
 input;
 put _infile_;
run;
filename _temp1_ clear;
filename _temp2_ clear;

Example 3: Using the DATA Step to Write Text to the Clipboard
This example writes three lines to the clipboard.

filename clippy clipbrd;
data _null_;
 file clippy;
 put 'Line 1';
 put 'Line 2';
 put 'Line 3';
run;

Example 4: Using the DATA Step to Retrieve Text from the
Clipboard
This example writes three lines to the clipboard and then retrieves them.

filename clippy clipbrd;
data _null_;
 file clippy;
 put 'Line 1';

38 Chapter 2 / Dictionary of SAS Global Statements

 put 'Line 2';
 put 'Line 3';
run;
data _null_;
 infile clippy;
 input;
 put _infile_;
run;

See Also

Commands:

n The STORE command in the Base SAS Help and Documentation

Statements:

n “FILENAME Statement” on page 19

FILENAME Statement: DATAURL Access Method
Enables you to read data from user-specified text.

Valid in: Anywhere

Category: Data Access

Syntax

FILENAME fileref DATAURL 'data-url-specification' <data-url-options>;

Arguments
fileref

is a valid fileref.

Range 1 to 8 bytes

DATAURL
specifies the access method that enables you to read data from data-url-
specification.

'data-url-specification'
specifies the data.

Requirement The data must be in one of these formats:
n data:, file-data, where data can consist

of characters and URL-encoded

FILENAME Statement: DATAURL Access Method 39

characters. Examples are %20 and %00.
data must be lowercase.

n data: ;base64, base64-data, where data
consists of base64-encoded data. data
must be lowercase.

Example “Example 2: Base64 Encoded Data” on page 41

data-url-options
can be any of these values:

LRECL=record-length
where lrecl is the logical record length of the data.

Interaction In SAS 9.4, the default value for the global LRECL system option
is 32767. If you are using fixed-length records (RECFM=F), the
default value for LRECL is 256.

RECFM=recfm
where recfm is one of three record formats:

F
is a fixed-record format. Thus, all records are of size LRECL with no line
delimiters. Data is transferred in image (binary) mode.

S
is a stream-record format. Data is transferred in image (binary) mode.

V
is a variable-record format (the default). In this format, records have
varying lengths, and the records are transferred in text mode.

Interaction In SAS 9.4, the default value for the global LRECL system option
is 32767. If you are using fixed-length records (RECFM=F), the
default value for LRECL is 256.

Details

The DATAURL access method is similar to the URL access method. The DATAURL
access method reads small amounts of data directly from a data URL specification
instead of reading data from a network location.

Multiple lines of data can be read from data-url-specification. A null byte is a line
delimiter.

40 Chapter 2 / Dictionary of SAS Global Statements

Examples

Example 1: Accessing Simple Data
This example accesses three lines of data by using %00 as URL-encoded null bytes
to terminate each line.

filename in dataurl "data:,line one%00line two%00line three%00";
 data _NULL_;
 infile in;
 input;
 list;
 run;

NOTE: The infile IN is:
 Filename=data:,line one%00line two%00line three%00,
 Lrecl=256,Recfm=Variable

RULE: ----+----1----+----2----+----3----+----4----+----5----+----6----+---
1 line one 8
2 line two 8
3 line three 10
NOTE: 3 records were read from the infile IN.
 The minimum record length was 8.
 The maximum record length was 10.

Example 2: Base64 Encoded Data
This example accesses data by using base64-encoded data.

filename in dataurl "data:;base64,dGhpcyBpcyBhIGJhc2UgNjQgZW5jb2RpbmcgZXhhbXBsZS4=" ;
 data _NULL_;
 infile in;
 input;
 list;
 run;

NOTE: The infile IN is:
 Filename=data:;base64,dGhpcyBpcyBhIGJhc2UgNjQgZW5jb2RpbmcgZXhhbXBsZS4=,
 Lrecl=256,Recfm=Variable

RULE: ----+----1----+----2----+----3----+----4----+----5----+----6----+---
1 this is a base 64 encoding example. 35
NOTE: 1 record was read from the infile IN.
 The minimum record length was 35.
 The maximum record length was 35.

See Also

Statements:

n “FILENAME Statement” on page 19

FILENAME Statement: DATAURL Access Method 41

FILENAME Statement: EMAIL (SMTP) Access
Method
Enables you to send electronic mail programmatically from SAS using the SMTP (Simple Mail
Transfer Protocol) email interface.

Valid in: Anywhere

Category: Data Access

Restriction: When SAS is in a locked-down state, the FILENAME statement, EMAIL access
method is not available. Your server administrator can re-enable this access
method so that it is accessible in the locked-down state. For more information, see
“SAS Processing Restrictions for Servers in a Locked-Down State” in SAS Language
Reference: Concepts.

Syntax

FILENAME fileref EMAIL < 'address' > <email-options>;

Arguments
fileref

is a valid file reference. The fileref is a name that is temporarily assigned to an
external file or to a device type. Note that the fileref cannot exceed eight bytes.

Range 1 to 8 bytes

EMAIL
specifies the EMAIL device type, which provides the access method that
enables you to send electronic mail programmatically from SAS. In order to use
SAS to send a message to an SMTP server, you must enable SMTP email. For
more information, see “The SMTP E-Mail Interface” in SAS Language Reference:
Concepts.

'address'
is the email address to which you want to send the message. You must enclose
the address in single or double quotation marks. To specify more than one
address, you must enclose the group of addresses in parentheses, enclose each
address in single or double quotation marks, and separate each address with
either a comma or a space. To specify a real name along with an address,
enclose the address in angle brackets (< >). Specifying an address as a
FILENAME statement argument is optional if you specify the TO= email option
or the PUT statement !EM_TO! directive, which overrides an address
specification.

42 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1rbxnmpig2bhan1fex9rlzns0td.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1rbxnmpig2bhan1fex9rlzns0td.htm&locale=en

Email Options
You can use any of these email options in the FILENAME statement to specify attributes for
the electronic message. You can also specify these options in the FILE statement. Email
options that you specify in the FILE statement override any corresponding email options that
you specified in the FILENAME statement.

ATTACH='filename.ext' | ATTACH= ('filename.ext' attachment-options)
specifies the physical name of the file or files to be attached to the message and
any options to modify attachment specifications. The physical name is the name
that is recognized by the operating environment. Enclose the physical name in
quotation marks. To attach more than one file, enclose the group of files in
parentheses, enclose each file in quotation marks, and separate each with a
space. Here are examples:

attach="/u/userid/opinion.txt"
attach=('C:\Status\June2001.txt' 'C:\Status\July2001.txt')
attach="user.misc.pds(member)"

The attachment-options include these values:

CONTENT_TYPE='content/type'
specifies the content type for the attached file. You must enclose the value
in quotation marks. If you do not specify a content type, SAS tries to
determine the correct content type based on the filename. For example, if
you do not specify a content type, a filename of home.html is sent with a
content type of text/html.

Alias CT= and TYPE=

Default If SAS cannot determine a content type based on the filename and
extension, the default value is text/plain.

ENCODING='encoding-value'
specifies the text encoding of the attachment that is read into SAS. You
must enclose the value in quotation marks.

See “Encoding Values in SAS Language Elements” in SAS National Language
Support (NLS): Reference Guide

EXTENSION='extension'
specifies a different file extension to be used for the specified attachment.
You must enclose the value in quotation marks. This extension is used by the
recipient's email program for selecting the appropriate utility to use for
displaying the attachment. This example results in the attachment
home.html being received as index.htm.

attach=("home.html" name="index" ext="htm")

Alias EXT=

Note If you specify extension="", the specified attachment has no file
extension.

INLINED="reference-name"
specifies a reference name that can be used to embed attachments in an
email by using HTML. To embed an attachment, set content_type="text/

FILENAME Statement: EMAIL (SMTP) Access Method 43

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

html"; and reference the attachment from the email text with
SRC="cid:reference-name". The reference-name is specified with the
INLINE= option.

An example is attach=("image.jpg" inlined="myimage"). From the email
text, you reference this image by using .

Note If the image is not referenced, then the recipients see it as a regular
attachment.

See “Example 6: Creating an Email with an Embedded Image” on page 58

LRECL=lrecl
where lrecl is the logical record length of the data.

Default 256

Interaction Alternatively, you can specify a global logical record length by
using the “LRECL= System Option” in SAS System Options:
Reference. In SAS 9.4, the default value for the global LRECL
system option is 32767. If you are using fixed-length records
(RECFM=F), the default value for LRECL is 256.

NAME='filename'
specifies a different name to be used for the specified attachment. You must
enclose the value in quotation marks. This example results in the attachment
home.html being received as index.html.

attach=("home.html" name="index")

OUTENCODING='encoding-value'
specifies the resulting text encoding for the attachment to be sent. You must
enclose the value in quotation marks.

Restriction Do not specify EBCDIC encoding values, because the SMTP
email interface does not support EBCDIC.

See “Encoding Values in SAS Language Elements” in SAS National
Language Support (NLS): Reference Guide

BCC='bcc-address'
specifies the recipient or recipients that you want to receive a blind carbon copy
of the email. Individuals that are listed in the bcc field receive a copy of the
email. The BCC field does not appear in the email header, so that these email
addresses cannot be viewed by other recipients.

If a BCC address contains more than one word, then enclose the address in
single or double quotation marks. To specify more than one address, you must
enclose the group of addresses in parentheses, enclose each address in single or
double quotation marks, and separate each address with either a comma or a
space. To specify a real name as well as an address, enclose the address in angle
brackets (< >). Here are examples:

bcc="joe@site.com"
bcc=("joe@site.com" "jane@home.net")
bcc="Joe Smith <joe@site.com>"

44 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1li19l98i6929n1981oqr3wq46u.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1li19l98i6929n1981oqr3wq46u.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

Range 1–255 characters

CC='cc-address'
specifies the recipient or recipients to receive a carbon copy of the email
message. You must enclose the address in single or double quotation marks. To
specify more than one address, enclose the group of addresses in parentheses,
enclose each address in single or double quotation marks, and separate each
address with either a comma or a space. To specify a real name as well as an
address, enclose the address in angle brackets (< >). Here are examples:

cc='joe@site.com'
cc=("joe@site.com" "jane@home.net")
cc="Joe Smith <joe@site.com>"

Range 1–255 characters

CONTENT_TYPE='content/type'
specifies the content type for the message body. If you do not specify a content
type, SAS tries to determine the correct content type. You must enclose the
value in quotation marks.

If you do not specify a content type, SAS uses the default 'text/plain'. When
you use 'message/rfc822', SAS lets you create the entire email. SAS includes
only the FROM, SUBJECT, DATE, and other email options that you specify that
are not part of the MIME standard and that are expected to be in the email
before the first MIME header. Creating the entire email enables you to send
HTML files and to format emails in any way that you want.

Alias CT= and TYPE=

Default text/plain

See “Example 5: Using the MESSAGE/RFC822 Content Type” on page 58

DELIVERYRECEIPT
specifies that a notification be sent when the email message is delivered to the
recipient.

Note If the recipient’s email client does not support “delivery receipt” requests
or if the recipient does not allow these requests, the sender does not
receive a “delivery receipt” notification when the email is delivered.

ENCODING='encoding-value'
specifies the text encoding to use for the message body. For valid encoding
values, see “Encoding Values in SAS Language Elements” in SAS National
Language Support (NLS): Reference Guide.

EXPIRES='dd mon yyyy hh:mm'
specifies the expiration date for the email message.

The format dd mon hh:mm parameters are defined as follows:

dd
is an integer from 01 to 31 that represents the day of the month.

FILENAME Statement: EMAIL (SMTP) Access Method 45

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

mon
are the first three letters of the month name in English.

yyyy
is a four-digit integer that represents the year.

hh
is the number of hours that range from 00 through 23.

mm
is the number of minutes that range from 00 through 59.

Tip If the date and time have passed the current date and time, an error
message occurs and no email is sent.

FROM='from-address'
specifies the email address of the author of the message that is being sent.
Specify this option when the person who is sending the message is not the
author. You must enclose an address in quotation marks. You can specify only
one email address. To specify the author's real name along with the address,
enclose the address in angle brackets (< >). Here are examples:

from='martin@home.com'
from="Brad Martin <martin@home.com>"

Default The default value for FROM= is the email address of the user who
is running SAS. Beginning in SAS 9.4M6, if the SENDER= option is
specified, the default value for FROM= is the email address that is
specified in the SENDER= option.

Range 1–255 characters

Requirement The FROM option is required if the EMAILFROM system option is
set. For more information, see “EMAILFROM System Option” in
SAS System Options: Reference.

Interaction Use the SENDER= option to specify a return email address that is
different from the author-specified email address in the FROM=
option.

See “SENDER='sender-address'” on page 47

IMPORTANCE='LOW'' | NORMAL'' | HIGH'
specifies the priority of the email message. You must enclose the value in
quotation marks. You can specify the priority in the language that matches your
session encoding. However, SAS translates the priority into English because the
actual message header must contain English in accordance with the RFC-2076
specification (Common Internet Message Headers). Here are examples:

filename inventory email 'name@mycompany.com' importance='high';
filename inventory email 'name@mycompany.com' importance='hoch';

Default NORMAL

LRECL=lrecl
where lrecl is the logical record length of the data.

46 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n019az3lkee2bun1grhii379mhw8.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n019az3lkee2bun1grhii379mhw8.htm&locale=en

Default 256

Interaction Alternatively, you can specify a global logical record length by using
the “LRECL= System Option” in SAS System Options: Reference. In
SAS 9.4, the default value for the global LRECL system option is
32767. If you are using fixed-length records (RECFM=F), the default
value for LRECL is 256.

READRECEIPT
specifies that a notification be sent when the email message is read by the
recipient.

Note If the recipient’s email client does not support “read receipt” requests or if
the recipient does not allow these return requests, the sender does not
receive a “read receipt” notification when the recipient reads the email.

REPLYTO='replyto-address'
specifies the email address or addresses of who receives replies. You must
enclose the address in single or double quotation marks. To specify more than
one address, enclose the group of addresses in parentheses, enclose each
address in single or double quotation marks, and separate each address with
either a comma or a space. To specify a real name along with an address,
enclose the address in angle brackets (< >). Here are examples:

replyto='hiroshi@home.com'
replyto=('hiroshi@home.com' 'akiko@site.com')
replyto="Hiroshi Mori <mori@site.com>"

Range 1–255 characters

SENDER='sender-address'
specifies the return email address for the message that is being sent. If a
message cannot be delivered, a notification is sent to the sender email address.
To specify the author's real name along with the address, enclose the address in
angle brackets (< >). Here are examples:

sender='martin@home.com'
sender='Brad Martin <martin@home.com>'

Default The default value for SENDER= is the email address of the user who
is running SAS. Beginning in SAS 9.4M6, if the FROM= option is
specified, the default value for SENDER= is the email address that is
specified in the FROM= option.

Range 1–255 characters

Interaction The SENDER= address can be different from the FROM= address,
which allows for the message to be sent on behalf of the email
address that is specified in the FROM= option.

See “FROM='from-address'” on page 46

FILENAME Statement: EMAIL (SMTP) Access Method 47

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1li19l98i6929n1981oqr3wq46u.htm&locale=en

SENSITIVITY='NORMAL' | PRIVATE' | PERSONAL' | CONFIDENTIAL'' |
COMPANY'

specifies the sensitivity of the email message. You must enclose the value in
single quotation marks. Here is an example that results in a confidential header
being added to the email message:

FILENAME mymail EMAIL TO='to-address' SUBJECT='a subject line'
SENSITIVITY='CONFIDENTIAL';

Default NORMAL

Notes If NORMAL is specified, no sensitivity header is added to the message.

The flags “company-confidential” and “confidential” are equivalent and
have the same effect. The “company-confidential” flag is in compliance
with RFC 2156.

SUBJECT=subject
specifies the subject of the message. If the subject contains special characters
or more than one word (that is, it contains at least one blank space), you must
enclose the text in quotation marks. Here are examples:

subject=Sales
subject="June Sales Report"

Note If you do not enclose a one-word subject in quotation marks, it is
converted to uppercase.

TO='to-address'
specifies the primary recipient or recipients of the email message. You must
enclose the address in single or double quotation marks. To specify more than
one address, enclose the group of addresses in parentheses, enclose each
address in single or double quotation marks, and separate each address with
either a comma or a space. To specify a real name as well as an address, enclose
the address in angle brackets (< >). Here are examples:

to='joe@site.com'
to=("joe@site.com" "jane@home.net")
to="Joe Smith <joe@site.com>"

Range 1–255 characters

Tip Specifying TO= overrides the 'address' argument.

PUT Statement Email Directives
The directives that you can specify in a PUT statement to change the attributes of a message
are as follows:

'!EM_ABORT!'
abnormally end the current message. You can use this directive to stop SAS
from automatically sending the message at the end of the DATA step. By
default, SAS sends a message for each FILE statement.

48 Chapter 2 / Dictionary of SAS Global Statements

'!EM_ATTACH! filename.ext' | '!EM_ATTACH! ("filename.ext" attachment-options)'
replaces the physical name of the file or files to be attached to the message and
any options to modify attachment specifications. The physical name is the name
that is recognized by the operating environment. The directive must be enclosed
in quotation marks and contain a maximum of 256 characters.

To attach more than one file, enclose the group of files in parentheses, enclose
each file in single or double quotation marks, and separate each file with either a
comma or a space. To add attachment-options, enclose the file and the
attachment-options in parentheses, and enclose the file in single or double
quotation marks. Here is an example:

put '!em_attach! ("C:\Status\June2001.txt" "C:\Status\July2001.txt")';

In SAS 9.4M5, you can also attach more than one file using multiple !
EM_ATTACH! directives. Here is an example:

put '!em_attach! opinion.txt';
put '!em_attach! report.html';

The attachment-options include these values:

CONTENT_TYPE='content/type'
specifies the content type for the attached file. You must enclose the value
in quotation marks. If you do not specify a content type, SAS tries to
determine the correct content type based on the filename. For example, if
you do not specify a content type, a filename of home.html is sent with a
content type of text/html. Here is an example:

put "!em_attach! ('small.png' ct='image/png')";

Alias CT= and TYPE=

Default If SAS cannot determine a content type based on the filename and
extension, the default value is text/plain.

ENCODING='encoding-value'
specifies the text encoding to use for the attachment as it is read into SAS.
You must enclose the value in quotation marks. For valid encoding values,
see “Encoding Values in SAS Language Elements” in SAS National Language
Support (NLS): Reference Guide.

EXTENSION='extension'
specifies a different file extension to be used for the specified attachment.
You must enclose the value in quotation marks. This extension is used by the
recipient's email program for selecting the appropriate utility to use for
displaying the attachment. This example results in the attachment
home.html being received as index.htm.

put '!em_attach! ("home.html" name="index" ext="htm")';

Alias EXT=

Default TXT

FILENAME Statement: EMAIL (SMTP) Access Method 49

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

NAME='filename'
specifies a different name to be used for the specified attachment. You must
enclose the value in quotation marks. This example results in the attachment
home.html being received as index.html.

put '!em_attach! ("home.html" name="index")';

LRECL=lrecl
where lrecl is the logical record length of the data.

Default 256

Interaction Alternatively, you can specify a global logical record length by
using the “LRECL= System Option” in SAS System Options:
Reference. In SAS 9.4, the default value for the global LRECL
system option is 32767. If you are using fixed-length records
(RECFM=F), the default value for LRECL is 256.

OUTENCODING='encoding-value'
specifies the resulting text encoding for the attachment to be sent. You must
enclose the value in quotation marks.

Restriction Do not specify EBCDIC encoding values, because the SMTP
email interface does not support EBCDIC.

See “Encoding Values in SAS Language Elements” in SAS National
Language Support (NLS): Reference Guide

'!EM_BCC! bcc-address'
specifies the recipient or recipients that you want to receive a blind carbon copy
of the email. Individuals that are listed in the bcc field receive a copy of the
email. The BCC field does not appear in the email header, so that these email
addresses cannot be viewed by other recipients.

If a BCC address contains more than one word, then enclose the address in
single or double quotation marks. To specify more than one address, you must
enclose the group of addresses in parentheses, enclose each address in single or
double quotation marks, and separate each address with either a comma or a
space. To specify a real name as well as an address, enclose the address in angle
brackets (< >).

put '!em_bcc! joe@site.com';
put '!em_bcc! ("joe@site.com" "jane@home.net")';
put '!em_bcc! Joe Smith <joe@site.com>';

Range 1–255 characters

'!EM_CC! cc-address'
specifies the recipient or recipients to receive a carbon copy of the email
message. You must enclose the address in single or double quotation marks. To
specify more than one address, enclose the group of addresses in parentheses,
enclose each address in single or double quotation marks, and separate each
address with either a comma or a space. To specify a real name as well as an
address, enclose the address in angle brackets (< >). Here are examples:

put '!em_cc! joe@site.com';

50 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1li19l98i6929n1981oqr3wq46u.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1li19l98i6929n1981oqr3wq46u.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

put '!em_cc! ("joe@site.com" "jane@home.com")';
put '!em_cc! Joe Smith <joe@site.com>';

Range 1–255 characters

'!EM_CONTENTTYPE! content/type'
specifies the content type for the attached file. If you do not specify a content
type, SAS tries to determine the correct content type based on the filename. For
example, if you do not specify a content type, a filename of home.html is sent
with a content type of text/html.

Alias !EM_CT! and !EM_TYPE!

Default If SAS cannot determine a content type based on the filename and
extension, the default value is text/plain.

'!EM_DELIVERYRECEIPT!'
specifies that a notification be sent when the email message is delivered to the
recipient.

Note If the recipient’s email client does not support “delivery receipt” requests
or if the recipient does not allow these requests, the sender does not
receive a “delivery receipt” notification when the email is delivered.

'!EM_EXPIRES! dd mon yyyy hh:mm'
replaces the current expiration date for the email message. Here are examples:

put '!em_expires! 15 Aug 2010 08:00';
put '!em_expires! 28 Feb 2011 23:00';

The format dd mon hh:mm parameters are defined as follows:

dd
is an integer from 01 to 31 that represents the day of the month.

mon
are the first three letters of the month name in English.

yyyy
is a four-digit integer that represents the year.

hh
is the number of hours that range from 00 through 23.

mm
is the number of minutes that range from 00 through 59.

Tip If the date and time have passed the current date and time, an error
message occurs and no email is sent.

'!EM_FROM! from-address'
replaces the current address of the author of the message being sent, which
could be either the default or the address that is specified by the FROM= email
option. The directive must be enclosed in quotation marks. You can specify only
one email address. To specify the author's real name along with the address,
enclose the address in angle brackets (< >). Here are examples:

put '!em_from! martin@home.com';

FILENAME Statement: EMAIL (SMTP) Access Method 51

put '!em_from! Brad Martin <martin@home.com>';

Default The default value for !EM_FROM! is the email address of the user
who is running SAS. Beginning in SAS 9.4M6, if the SENDER= option
or the !EM_SENDER! option is specified, the default !EM_FROM!
value is the email address that is specified in the SENDER= option or
the !EM_SENDER! option.

Range 1–255 characters

Interaction Use the !EM_SENDER! option to specify a return email address that
is different from the author-specified email address in the !
EM_FROM! option.

See “'!EM_SENDER! sender-address'” on page 53

'!EM_IMPORTANCE! LOW | NORMAL | HIGH'
specifies the priority of the email message. The directive must be enclosed in
quotation marks. You can specify the priority in the language that matches your
session encoding. However, SAS translates the priority into English because the
actual message header must contain English in accordance with the RFC-2076
specification (Common Internet Message Headers). Here are examples:

put '!em_importance! high';
put '!em_importance! haut';

Default NORMAL

'!EM_NEWMSG!'
clears all attributes of the current message that were set using PUT statement
directives.

'!EM_READRECEIPT!'
specifies that a notification be sent when the email message is read by the
recipient.

Note If the recipient’s email client does not support “read receipt” requests or if
the recipient does not allow these requests, the sender does not receive a
“read receipt” notification when the recipient reads the email.

'!EM_REPLYTO! replyto-address'
specifies the email address or addresses of who receives replies. You must
enclose the address in single or double quotation marks. To specify more than
one address, enclose the group of addresses in parentheses, enclose each
address in single or double quotation marks, and separate each address with
either a comma or a space. To specify a real name along with an address,
enclose the address in angle brackets (< >). Here are examples:

put '!em_replyto! hiroshi@home.com';
put '!em_replyto! ("hiroshi@home.com" "akiko@site.com")';
put '!em_replyto! Hiroshi Mori <mori@site.com>';

Range 1–255 characters

52 Chapter 2 / Dictionary of SAS Global Statements

'!EM_SEND!'
sends the message with the current attributes. By default, SAS sends a message
when the fileref is closed. The fileref closes when the next FILE statement is
encountered or the DATA step ends. If you use this directive, SAS sends the
message when it encounters the directive, and again at the end of the DATA
step. This directive is useful for writing DATA step programs that conditionally
send messages or use a loop to send multiple messages.

'!EM_SENDER! sender-address'
specifies the return email address for the message that is being sent. If a
message cannot be delivered, a notification is sent to the sender email address.
The default value for !EM_SENDER! is the email address of the user who is
running SAS. To specify the author's real name along with the address, enclose
the address in angle brackets (< >). Here are examples:

put '!EM_SENDER! martin@home.com';
put '!EM_SENDER! Brad Martin <martin@home.com>';

Default The default value for !EM_SENDER! is the email address of the user
who is running SAS. Beginning in SAS 9.4M6, if the FROM= option or
the !EM_FROM! option is specified, the default !EM_SENDER! value
is the email address that is specified in the FROM= option or the !
EM_FROM! option.

Range 1–255 characters

Interaction The !EM_SENDER!= address can be different from the FROM= or !
EM_FROM!= address, which allows for the message to be sent on
behalf of the email address that is specified in the FROM= or !
EM_FROM!= option.

See “'!EM_FROM! from-address'” on page 51

'!EM_SENSITIVITY! NORMAL | PRIVATE | PERSONAL | CONFIDENTIAL |
COMPANY-CONFIDENTIAL'

marks the email message with the specified sensitivity. For example:

put '!EM_SENSITIVITY! CONFIDENTIAL';

Notes If NORMAL is specified, no sensitivity header is added to the message.

The flags "company-confidential" and "confidential" are equivalent and
have the same effect. The "company-confidential" flag is in compliance
with RFC 2156.

'!EM_SUBJECT! subject'
replaces the current subject of the message. The directive must be enclosed in
quotation marks. If the subject contains special characters or more than one
word (that is, it contains at least one blank space), you must enclose the text in
quotation marks. Here are examples:

put '!em_subject! Sales';
put '!em_subject! "June Sales Report"';

FILENAME Statement: EMAIL (SMTP) Access Method 53

'!EM_TO! to-address'
specifies the primary recipient or recipients of the email message. You must
enclose the address in single or double quotation marks. To specify more than
one address, enclose the group of addresses in parentheses, enclose each
address in single or double quotation marks, and separate each address with
either a comma or a space. To specify a real name as well as an address, enclose
the address in angle brackets (< >). Here are examples:

put '!em_to! joe@site.com';
put '!em_to! ("joe@site.com" "jane@home.net")';
put '!em_to! Joe Smith <joe@site.com>';

Range 1–255 characters

Tip Specifying !EM_TO! overrides the 'address' argument and the TO= email
option.

Details

The Basics
You can send electronic mail programmatically from SAS using the EMAIL (SMTP)
access method. To send email to an SMTP server, you first specify the SMTP email
interface with the EMAILSYS system option, use the FILENAME statement to
specify the EMAIL device type, and then submit SAS statements in a DATA step or
in SCL code. The email access method has several advantages:

n You can use the logic of the DATA step or SCL to subset email distribution
based on a large data set of email addresses.

n You can automatically send email upon completion of a SAS program that you
submitted for batch processing.

n You can direct output through email based on the results of processing.

In general, DATA step or SCL code that sends email has these components:

n a FILENAME statement with the EMAIL device-type keyword

n email options specified in the FILENAME or FILE statement that indicate email
recipients, subject, attached file or files, and so on

n PUT statements that define the body of the message

n PUT statements that specify email directives (of the form !EM_directive!) that
override the email options (for example, TO=, CC=, SUBJECT=, ATTACH=) or
perform actions such as send, end abnormally, or start a new message.

You can use encoded email passwords. When a password is encoded with PROC
PWENCODE, the output string includes a tag that identifies the string as having
been encoded. An example of a tag is {sas001}. The tag indicates the encoding
method. Encoding a password enables you to avoid email access authentication
with a password in plaintext. Passwords that start with "{sas" trigger an attempt to
be decoded. If the decoding succeeds, then that decoded password is used. If the

54 Chapter 2 / Dictionary of SAS Global Statements

decoding fails, then the password is used as is. For more information, see PROC
PWENCODE in the Base SAS Procedures Guide.

For email messages that you send to another time zone, you can use the
EMAILUTCOFFSET= system option to ensure that the email message has the UTC
offset that represents your local time. You might use this option this if the time on
your computer is not set to a time that uses a UTC offset or your computer does
not account for Daylight Saving Time. The UTC offset specified in the
EMAILUTCOFFSET= system option adds or replaces a UTC offset to the time in the
email's Date: header field. For more information, see “EMAILUTCOFFSET= System
Option” in SAS System Options: Reference.

The default amount of time that the EMAIL access method waits for the SMTP
server to respond is 30 seconds. Some SMTP servers require more time before they
send an acknowledgment to a command from the client. You can use the
EMAILACKWAIT= system option to specify the wait time. For more information,
see “EMAILACKWAIT= System Option” in SAS System Options: Reference.

You can use the EMAIL access method with secure SMTP servers by specifying the
Transport Layer Security (TLS) protocol in the EMAILHOST= system option. TLS
encrypts data between the client and the outgoing SMTP Server. This action does
not guarantee an encrypted connection between the client (sender) and the
recipient of the message. Message-level encryption and digital signing are currently
not supported. For more information, see “EMAILHOST= System Option” in SAS
System Options: Reference.

Note: All discussion of TLS is also applicable to the predecessor protocol, Secure
Sockets Layer (SSL).

PUT Statement Syntax for EMAIL (SMTP) Access Method
In the DATA step, after using the FILE statement to define your email fileref as the
output destination, use PUT statements to define the body of the message. Here is
an example.

options emailsys=smtp;

filename mymail email 'martin@site.com' subject='Sending Email';

data _null_;
 file mymail;
 put 'Hi';
 put 'This message is sent from SAS...';
run;

You can also use PUT statements to specify email directives that override the
attributes of your message. Examples of these attributes include TO=, CC=,
SUBJECT=, CONTENT_TYPE=, and ATTACH=. Or, you can perform actions such as
send, end abnormally, or start a new message. Specify only one directive in each
PUT statement; each PUT statement can contain only the text that is associated
with the directive that it specifies.

For a list of email directives, see “PUT Statement Email Directives” on page 48.

FILENAME Statement: EMAIL (SMTP) Access Method 55

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1pfaz2mryihfpn18zr7e2mxhamm.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1pfaz2mryihfpn18zr7e2mxhamm.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1s3ofo2vn63bln10wnrh4stkty2.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1v9dr6zep9p9en1prhl6tdy3igx.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1v9dr6zep9p9en1prhl6tdy3igx.htm&locale=en

Examples

Example 1: Sending Email with an Attachment Using a DATA
Step
In order to share a copy of your SAS configuration file with another user, you could
send it by submitting this program. The email options are specified in the
FILENAME statement.

options emailsys=smtp;

filename mymail email "JBrown@site.com"
 subject="My SAS Configuration File"
 attach="/u/sas/sasv8.cfg";
data _null_;
 file mymail;
 put 'Jim,';
 put 'This is my SAS configuration file.';
 put 'I think you might like the';
 put 'new options I added.';
run;

This program sends a message and two file attachments to multiple recipients. For
this example, the email options are specified in the FILE statement instead of the
FILENAME statement.

options emailsys=smtp;

filename outbox email "ron@acme.com";
data _null_;
 file outbox
 to=("ron@acme.com" "humberto@acme.com")
 /* Overrides value in */
 /* filename statement */
 cc=("miguel@acme.com" "loren@acme.com")
 subject="My SAS Output"
 attach=("C:\sas\results.out" "C:\sas\code.sas")
 ;
 put 'Folks,';
 put 'Attached is my output from the SAS';
 put 'program I ran last night.';
 put 'It worked great!';
run;

Example 2: Using Conditional Logic in a DATA Step
You can use conditional logic in a DATA step in order to send multiple messages
and control which recipients get which message. For example, in order to send
customized reports to members of two different departments, this program
produces an email message and attachments that are dependent on the
department to which the recipient belongs. In the program, these actions occur:

n In the first PUT statement, the !EM_TO! directive assigns the TO attribute.

n The second PUT statement assigns the SUBJECT attribute using the !
EM_SUBJECT! directive.

56 Chapter 2 / Dictionary of SAS Global Statements

n The !EM_SEND! directive sends the message.

n The !EM_NEWMSG! directive clears the message attributes, which must be
used to clear message attributes between recipients.

n The !EM_ABORT! directive abnormally ends the message before the RUN
statement causes it to be sent again. The !EM_ABORT! directive prevents the
message from being automatically sent at the end of the DATA step.

options emailsys=smtp;

filename reports email "Jim.Smith@work.com";
data _null_;
 file reports;
 length name dept $ 21;
 input name dept;
 put '!EM_TO! ' name;
 put '!EM_SUBJECT! Report for ' dept;
 put name ',';
 put 'Here is the latest report for ' dept '.' ;
 if dept='marketing' then
 put '!EM_ATTACH! c:\mktrept.txt';
 else /* ATTACH the appropriate report */
 put '!EM_ATTACH! c:\devrept.txt';
 put '!EM_SEND!';
 put '!EM_NEWMSG!';
 put '!EM_ABORT!';
 datalines;
Susan marketing
Peter marketing
Alma development
Andre development
;
run;

Example 3: Sending Procedure Output in Email
You can use email to send procedure output. This example illustrates how to send
ODS HTML in the body of an email message. The ODS HTML procedure output
must be sent with the RECORD_SEPARATOR (RS) option set to NONE.

options emailsys=smtp;

filename outbox email
 to='susan@site.com'
 type='text/html'
 subject='Temperature Conversions';
data temperatures;
 do centigrade = -40 to 100 by 10;
 fahrenheit = centigrade*9/5+32;
 output;
 end;
run;
ods html
 body=outbox /* Mail it! */
 rs=none;
title 'Centigrade to Fahrenheit Conversion Table';

FILENAME Statement: EMAIL (SMTP) Access Method 57

proc print;
 id centigrade;
 var fahrenheit;
run;

Example 4: Creating and Emailing an Image
This example illustrates how to create a GIF image and send it from SAS as an
attachment to an email message.

options emailsys=smtp;

filename gsasfile email
 to='Jim@acme.com'
 type='image/gif'
 subject="SAS/GRAPH Output";
goptions dev=gif gsfname=gsasfile;
proc gtestit pic=1;
run;

Example 5: Using the MESSAGE/RFC822 Content Type
This example sends an email from an .mht file.

options emailsys=smtp;

filename myemail email
to="Jim@acme.com"
from="Wiley <wcoyote@acme.com>"
sender="Wiley <wcoyote@acme.com>"
subject="Message/RFC822 Example"
content_type="message/rfc822";
data _null_;
 file myemail;
 infile 'C:\temp\customer.mht';
 input @;
 put _infile_;
run;

Example 6: Creating an Email with an Embedded Image
This example creates an email that contains an embedded image.

options emailsys=smtp;

filename myemail email
to="Jim@acme.com"
from="Wiley <wcoyote@acme.com>"
sender="Wiley <wcoyote@sas.com>"
attach=('C:\Public\Pictures\Sample Pictures\sasLogo.gif' NAME="sasLogo" INLINED="logo"
 'C:\temp\reportToEmail.html' NAME='myreport')
subject="Embedded Image Example"
content_type="text/html";

data _null_;
file myemail;
 put 'Dear customer,

';

58 Chapter 2 / Dictionary of SAS Global Statements

 put 'This is an example email with content type text/html, an attached report ';
 put 'and an embedded image.

';
 put 'Sincerely,

';
 put 'Wiley Coyote
';
 put 'Developer
';
 put 'SAS Research & Development
';
 put '1234 Any Street
 ';
 put 'Sampletown';
 put 'NC 45678

';
 put '';
 run;

See Also

n “How Many Characters Can I Use When I Measure SAS Name Lengths in Bytes?”
in SAS Language Reference: Concepts

n “The SMTP E-Mail Interface” in SAS Language Reference: Concepts

n “Transport Layer Security (TLS) ” in Encryption in SAS

Statements:

n “FILENAME Statement” on page 19

n “LOCKDOWN Statement” in SAS Intelligence Platform: Application Server
Administration Guide

System Options:

n “EMAILACKWAIT= System Option” in SAS System Options: Reference

n “EMAILHOST= System Option” in SAS System Options: Reference

n “EMAILUTCOFFSET= System Option” in SAS System Options: Reference.

FILENAME Statement: FILESRVC Access Method
Enables you to store and retrieve user content using the SAS Viya Files service.

Valid in: Anywhere

Category: Data Access

Restriction: You cannot access data in a SAS Content folder that includes an ampersand (&) in
the folder name.

Requirement: See “Requirements for the FILESRVC Access Method” on page 64.

FILENAME Statement: FILESRVC Access Method 59

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&docsetTargetAnchor=n1dafb5hifrccen17nzww9ull5zn&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&docsetTargetAnchor=n1dafb5hifrccen17nzww9ull5zn&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1rbxnmpig2bhan1fex9rlzns0td.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=p0mpm7e98kokdqn1e1jn850kongr&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1s3ofo2vn63bln10wnrh4stkty2.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1v9dr6zep9p9en1prhl6tdy3igx.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1pfaz2mryihfpn18zr7e2mxhamm.htm&locale=en

Syntax

Form 1: Use this form to access SAS Viya files using a file Uniform Resource Identifier (URI).

FILENAME fileref FILESRVC 'file-uri' <filesrvc-options>;

Form 2: Use this form to access a SAS Viya file using a collection option.

FILENAME fileref FILESRVC collection-option <filesrvc-options>;

Arguments
fileref

is a valid fileref.

Range 1 to 8 characters

FILESRVC
specifies the access method that enables you to create and access user content
(such as reports) stored within the SAS Viya system.

file-uri
is a valid Uniform Resource Identifier (URI) of the content in the Files service.
Here is an example. Note the file identifier contains a universally unique
identifier (UUID) that is generated by the Files service when the content is
created.

/files/files/<UUID>

Collection Options
The collection-option is one of these values:

FOLDERPATH='path'
specifies a path to a SAS Viya folder for directory access.

The fileref is used to access files that are members of the folder.

Here is an example:

filename jobout filesrvc folderpath='/output/user6/log';

Restrictions The maximum path length is 1024.

This option cannot be used with the FOLDERURI or PARENTURI
options.

Interaction If the FILENAME= option is specified, the fileref accesses the
named file that is a member of the provided folder. If the
FILENAME= option is not specified, the fileref is a directory fileref
that presents all file members of the folder as directory members.

FOLDERURI='uri'
specifies a path to a SAS Viya folder by URI.

The fileref is used to access files that are members of the folder. Here is an
example:

60 Chapter 2 / Dictionary of SAS Global Statements

filename jobout filesrvc
 folderuri='/folders/folders/5a308aa7-1c3a-4465-a14c-fd69a9091926';

Restrictions The maximum uri length is 2048 bytes.

This option cannot be used with the FOLDERPATH or PARENTURI
options.

Interaction If the FILENAME= option is specified, the fileref accesses the
named file that is a member of the provided folder. If FILENAME= is
not specified, the fileref is a directory fileref that presents all file
members of the folder as directory members.

PARENTURI='uri'
specifies a SAS Viya object by Uniform Resource Identifier (URI).

The fileref is used to access files that are associated with the parent object.
Here is an example:

filename jobout filesrvc
 parenturi='/jobExecution/jobs/5a308aa7-1c3a-4465-a14c-fd69a9091926';

Restrictions The maximum uri length is 2048 bytes.

This option cannot be used with the FOLDERPATH or FOLDERURI
options.

Interaction If the FILENAME= option is specified, the fileref accesses the
named file that has the provided PARENTURI. If FILENAME= is not
specified, the fileref is a directory fileref that presents all file
associations of the object as directory members.

Note Files with the PARENTURI association are deleted when the parent
object is deleted.

FILESRVC Options
The filesrvc-options can include these values:

CONTENTTYPE='content-type'
specifies a default HTTP Content-Type header to be returned with the file when
the file’s content is retrieved from the Files service.

Alias CT, CTYPE

Default The provided file extension is mapped to a default content type. If a
mapping is not found for a provided file extension, the default
content type is set to application/octet-stream.

Restriction The maximum string length is 64 bytes.

CONTENTDISP='string'
specifies how to deliver the file.

Here is an example that displays content as a file attachment:

CD='attachment; filename="name.ext"'

FILENAME Statement: FILESRVC Access Method 61

Alias CD, CDISP

Restriction The maximum string length is 64 bytes.

DEBUG=ERROR | HTTP
writes debugging information to the SAS log.

ERROR
indicates to write debugging information when HTTP calls fail.

HTTP
indicates to write debugging information for all HTTP calls.

DESCRIPTION='string'
specifies a description for the file.

Alias DESC

Restriction The maximum string length is 256 bytes.

DOCUMENTTYPE='document-type'
sets the document type attribute of the file.

Alias DT

Restriction The maximum document-type length is 64 bytes.

ENCODING='encoding-value'
specifies the encoding to use when SAS is reading from or writing to an external
file. The value for ENCODING= indicates that the external file has a different
encoding from the current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding. When you write data to an external
file, SAS transcodes the data from the session encoding to the specified
encoding.

Default SAS assumes that an external file is in the same encoding as the
session encoding.

See “Encoding Values in SAS Language Elements” in SAS National Language
Support (NLS): Reference Guide

FILENAME='name'
specifies the name of a file.

Alias NAME

Restriction The maximum name length is 128 bytes.

Requirement When specifying a FILENAME, a file collection option must also be
specified using the FOLDERPATH, FOLDERURI, or PARENTURI
option.

Interaction Default content-type for a file is mapped using the file extension
specified in the provided file name. If no mapping is found for a

62 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

provided file extension, the content-type is application/octet-
stream unless specified differently with CONTENTTYPE.

LRECL=
specifies the logical record length. The LRECL value specifies the maximum
number of bytes that can be accessed in one read or write call. Records that are
longer than the specified LRECL might be truncated.

Beginning in SAS Viya 3.4, if files are created in the Files Service using the
FILESRVC file name, LRECL and RECFM attributes are saved in the Files Service
file. If you write a file using the Files Service with an LRECL= value and then
read the file without specifying a value for LRECL=, the file is read using the
value specified during the write.

Default 32,767 bytes

Range 1 to 1G

Interaction You can specify the record format using the RECFM= argument.

MOD
indicates that data written to the file should be appended to the file instead of
overwriting the file.

RECFM=
specifies the record format. The RECFM= option is used for both input and
output. The RECFM= option can be one of these values:

F
is a fixed record format. That is, each record has the same length.

N
is a binary format. The file consists of a stream of bytes with no record
boundaries.

Alias S

V
is a variable record format. Each record ends with a newline character. You
can specify the record delimiter using the TERMSTR= option.

Default V

Interaction You can specify the logical record length using the LRECL=
argument.

TERMSTR=
specifies the record delimiter used for variable record format files (RECFM=V).
Accepted values are CR, CRLF, LF, and NULL.

Defaults CRLF for Windows.

LF for UNIX.

FILENAME Statement: FILESRVC Access Method 63

Details

Requirements for the FILESRVC Access Method
The FILESRVC access method enables you to store and retrieve user content using
the SAS Viya Files service. The FILESRVC access method stores files and
associates files to folders, but it does not create or delete the folders. The
FILESRVC access method can support all file encodings that are supported by the
Files service. For more information, see “Encoding Values in SAS Language
Elements” in SAS National Language Support (NLS): Reference Guide.

In order to use the FILESRVC access method, you must

n set the SERVICESBASEURL= system option before the invocation of your SAS
session. This option specifies the host and port for Files service requests. The
FILENAME statement fails at assignment time if the SERVICESBASEURL=
option is not specified.

n define the SAS_VIYA_TOKEN environment variable. The SAS_VIYA_TOKEN
environment variable contains a valid CAS OAuth access token and enables you
to access SAS Viya services from SAS 9.4. For information about obtaining the
access token, see "Obtain an Access Token Using Password Credentials" in SAS
Viya Administration.

Interacting with the Files Service
The Files service enables you to store, retrieve, and delete user content that is
maintained in the SAS Infrastructure Data Server database repository. The
repository is not considered a complete 'file system.' Rather, the repository
contains individual files that are directly accessible by their file identifier. This file
identifier contains a universally unique identifier (UUID) that is generated by the
Files service when a file is created.

The Files service also assigns a unique name to each file in the repository, but the
name is not human-friendly. A user can change the name, but the name might not
be unique within the repository.

You can access a file in the Files service by using the file identifier. The file
identifier is contained in the URI that is stored in the file information. Use the
system-generated name or user-assigned name to find the file URI and the file
identifier. After you find the file identifier, you can use it to access the file directly
in the Files service.

The Files service does not have a concept of 'folders' in its repository. However, you
can associate files by using a PARENTURI. A PARENTURI is a relative URI for any
object in SAS Viya. You can create a collection of files by specifying the same
PARENTURI for each file.

For information about the SAS Infrastructure Data Server database, see "SAS
Infrastructure Data Server" in SAS Viya Administration.

For more information about the Files service, see the SAS Viya Files API.

64 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p191674k3chjf3n1vze4cfzfn18e.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n1t26fdyhpc8bjn1rpx1eme1c7il.htm&locale=en
http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calauthmdl&docsetTarget=n1pkgyrtk8bp4zn1d0v1ln4869og.htm&locale=en#p0lxoq5bx2i6t8n13b3y3tcjwj9v
http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calsrvinf&docsetTarget=n00000sasinfrdatasrv000admin.htm
http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calsrvinf&docsetTarget=n00000sasinfrdatasrv000admin.htm
https://developer.sas.com/apis/rest/CoreServices/#Files

SAS Viya Folders Service
Unlike the Files service, the SAS Viya Folders service does provide support for
folders. The Folders service also supports associating objects from other SAS Viya
services (including the file objects in the Files service) with the Folders service
folders as members.

The FILESRVC access method provides file operations for interacting with the Files
service. Part of this interaction involves using the Folders service to provide
grouping and directory operations and member operations. The access method can
create files, associate files to a folder, and delete them from a folder. However, the
access method does not support the creation or deletion of folders in the Folders
service.

For more information about the Folders service, see the SAS Viya Folders API.

Generating a FILESRVC Macro Variable
When a single file or a folder is assigned to a FILESRVC fileref, a macro variable is
generated. This macro variable allows for an easy way to access the file or folder.
The macro variable name is _FILESRVC_fileref_URI. For a single file, this macro
variable value is the Uniform Resource Identifier (URI) for the file (for example, /
files/files/UUID). If the file does not exist, the value is blank. When you create a file
using the FILESRVC access method, the macro variable is updated with the file’s
URI. For a folder, the macro variable value is the value of the folder URI.

Note: The FILESRVC access method does not create folders. The folder must
already exist when the folder is specified using the FOLDERPATH= or FOLDERURI=
collection options.

FILESRVC macro variables exist until the end of the SAS session. The value of the
variable is changed only if the fileref is successfully re-assigned to a different Files
service file. If the file is deleted using the FILESRVC access method, the macro
variable remains, but the value of the variable is set to null.

Examples

Example 1: Accessing a File by Name and Folder
This example accesses the sales.csv file in the /Shared Data/Sales folder.

filename myfldr2 filesrvc folderpath='/Shared Data/Sales'
filename='sales.csv';

This example accesses the sales.csv file in the folder denoted by the provided
folder URI.

filename myfldr filesrvc
 folderuri='/folders/folders/5a308aa7-1c3a-4465-a14c-fd69a9091926'
 filename='sales.csv';

FILENAME Statement: FILESRVC Access Method 65

https://developer.sas.com/apis/rest/CoreServices/#Folders

Example 2: Listing Members of a Folder
This example shows how you can write out a list of members of a folder.

Note: You can use “MOPEN Function” in SAS Functions and CALL Routines:
Reference to open a file. If an argument is invalid, then MOPEN returns 0. You can
obtain the text of the corresponding error message from the SYSMSG function.
Invalid arguments do not produce a message in the SAS log and do not set the
ERROR automatic variable.

If a folder contains a file that is not of type text, then MOPEN should only use
binary-record format to read and download the member. If the internal format of
the binary content is unknown, MOPEN should not be used to read and interpret
the content.

filename myfldr filesrvc folderPath='/Users/Test/My Folder';

data _null_;
 did = dopen('myfldr');
 mcount = dnum(did);
 put 'MYFLDR contains ' mcount 'member(s)...';
 do i=1 to mcount;
 memname = dread(did, i);
 put i @5 memname;
 end;
 rc = dclose(did);
run;

Here is the partial log:

MYFLDR contains 35 member(s)...
1 member01.txt
2 member02.txt
...
33 member33.txt
34 mytest.dat
35 mytest.txt

Example 3: Creating a File and Associating It with a Parent URI
This example creates the file class.csv and associates the file with a job object
referenced in the fileref jobout.

filename jobout filesrvc
 parenturi='/jobExecution/jobs/5a308aa7-1c3a-4465-a14c-fd69a9091926';
data _null_;
 set sashelp.class;
 file jobout('class.csv');
 put name "," sex "," age "," height "," weight;
run;

66 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p023sn4hgjgvpjn19ozlet62e0up.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p023sn4hgjgvpjn19ozlet62e0up.htm&locale=en

Example 4: Accessing an Associated File Using a Parent URI
This example accesses the class.csv file by using a parent object URI.

filename jobout filesrvc
 parenturi='/jobExecution/jobs/5a308aa7-1c3a-4465-a14c-fd69a9091926';
data _null_;
 length name $8 sex $1;
 infile jobout('class.csv') dlm=',';
 input name sex age height weight;
run;

See Also

Environment Variables:

n “SAS_VIYA_TOKEN Environment Variable” in Encryption in SAS

Statements:

n “FILENAME Statement” on page 19

System Options:

n “SERVICESBASEURL= System Option” in SAS System Options: Reference

FILENAME Statement: FTP Access Method
Enables you to access remote files by using the FTP protocol.

Valid in: Anywhere

Category: Data Access

Restrictions: The FILENAME FTP access method does not support implicit FTPS
When SAS is in a locked-down state, the FILENAME statement, FTP access
method is not available. Your server administrator can re-enable this access
method so that it is accessible in the locked-down state. For more information, see
“SAS Processing Restrictions for Servers in a Locked-Down State” in SAS Language
Reference: Concepts.

Supports: Explicit FTPES (FTP/TLS)

Syntax

FILENAME fileref FTP 'external-file' <ftp-options>;

FILENAME Statement: FTP Access Method 67

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n1t26fdyhpc8bjn1rpx1eme1c7il.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p191674k3chjf3n1vze4cfzfn18e.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en

Arguments
fileref

is a valid fileref.

Range 1 to 8 bytes

Note In SAS 9.4M3, the locale in which the SAS job is being run must support
UTF-8 characters or your transcoded characters might not be what you
expect. If the SAS program is running on z/OS, the OPTS UTF8 ON
protocol command is not issued and no UTF-8 transcoding occurs.

Tip The association between a fileref and an external file lasts only for the
duration of the SAS session or until you change it or discontinue it with
another FILENAME statement. You can change the fileref for a file as
often as you want.

FTP
specifies the access method that enables you to use File Transfer Protocol
(FTP) to read from or write to a file from any host computer that you can
connect to on a network with an FTP server running.

Tip Use FILENAME with FTP when you want to connect to the host computer,
to log on to the FTP server, to make records in the specified file available
for reading or writing, and to disconnect from the host computer.

'external-file'
specifies the physical name of an external file that you want to read from or
write to. The physical name is the name that is recognized by the operating
environment.

If the file has an IBM 370 format and a record format of FB or FBA, and if the
ENCODING= option is specified, you must also specify the LRECL= option. If
the length of a record is shorter than the value of LRECL, then SAS pads the
record with blanks until the record length is equal to the value of LRECL.

Operating
environment

For details about specifying the physical names of external files,
see the SAS documentation for your operating environment.

Tips If you are not transferring a file but performing a task such as
retrieving a directory listing, then you do not need to specify a
filename. Instead, put empty quotation marks in the statement.
See “Example 1: Retrieving a Directory Listing” on page 81.

You can associate a fileref with a single file or with an aggregate
file storage location.

If you use the DIR option, specify the directory in this argument.

ftp-options
specifies details that are specific to your operating environment such as file
attributes and processing attributes.

Operating
environment

For more information about some of these FTP options, see
the SAS documentation for your operating environment.

68 Chapter 2 / Dictionary of SAS Global Statements

See “FTP Options” on page 69

FTP Options
AUTHDOMAIN="auth-domain"

specifies the name of an authentication domain metadata object in order to
connect to the FTP server. The authentication domain references credentials
(user ID and password) without your having to explicitly specify the credentials.
The auth-domain name is case sensitive, and it must be enclosed in double
quotation marks.

An administrator creates authentication domain definitions while creating a
user definition with the User Manager in SAS Management Console. The
authentication domain is associated with one or more login metadata objects
that provide access to the FTP server and is resolved by the BASE engine calling
the SAS Metadata Server and returning the authentication credentials.

Requirement The authentication domain and the associated login definition
must be stored in a metadata repository, and the metadata server
must be running in order to resolve the metadata object
specification.

Interaction If you specify AUTHDOMAIN=, you do not need to specify USER=
and PASS=.

See For more information about creating and using authentication
domains, see the discussion on credential management in SAS
Intelligence Platform: Security Administration Guide.

AUTHTLS
issues the FTP AUTH TLS command to the FTP server that requests TLS
authentication. The Secure Command Channel Mode is entered by issuing the
AUTH TLS command.

Requirement The AUTH TLS command must be issued to set up Control
Channel protection before the Data Channel can be protected.

Interactions If you specify either the AUTHTLS, PROT=, or PBSZ= option, the
AUTH TLS command is issued. An attempt to negotiate the TLS
security with the FTP server occurs to protect the FTP Control
Channel. If you specify the PROT= or PBSZ= option either
independently or in conjunction with the AUTHTLS option, then an
attempt to negotiate TLS security with the FTP server occurs to
protect the FTP Control and Data Channels.

Instead of using the FILENAME FTP statement to turn TLS
authentication on, you can define the SAS_FTP_AUTHTLS
environment variable. For more information, see
“SAS_FTP_AUTHTLS Environment Variable” on page 225.

See Problem Note 56154: File Transfer Protocol Secure (FTPS, FTPES,
and FTP/TLS) support

FILENAME Statement: FTP Access Method 69

https://support.sas.com/kb/56/154.html
https://support.sas.com/kb/56/154.html

Usage Note 61222: Differences between the FILENAME Access
Methods: FTP, FTP/TLS, and SFTP

“PBSZ=protection-buffer-size” on page 75

“PROT=protection-level” on page 76

BINARY
is fixed-record format. Thus, all records are of size LRECL with no line
delimiters. Data is transferred in image (binary) mode.

The BINARY option overrides the value of RECFM= in the FILENAME FTP
statement, if specified, and forces a binary transfer.

Alias RECFM=F

Interaction If you specify the BINARY option and the S370V or S370VS option,
then SAS ignores the BINARY option.

BLOCKSIZE=blocksize
where blocksize is the size of the data buffer in bytes.

Default 32768

CD='directory'
issues a command that changes the working directory for the file transfer to the
directory that you specify.

Restriction The CD option cannot be used to specify a directory to delete files.
Use the FDELETE= function:

filename delfile ftp '/mydir/myfile.txt' host='myhost.sas.com'
 user='user1' prompt;
data _null_;
 rc=fdelete('delfile');
 put rc=;
run;

Interaction The CD and DIR options are mutually exclusive. If both are specified,
FTP ignores the CD option and SAS writes an informational note to
the log.

CONNHOST=’url’
specifies the Uniform Resource Locator (URL) for the web proxy server when
you are accessing an FTP server through a proxy server. The CONNHOST=
option creates a connection between the client and the proxy server and
between the proxy server and the FTP server. The CONNHOST= option is
equivalent to the PROXY= option in the FILENAME URL access method.

Requirement You must use the CONNHOST= option with the CONNPORT=
option.

Example
filename myfile ftp "list.txt"
 connhost="proxsrv.abc.com"
 connport=3128

70 Chapter 2 / Dictionary of SAS Global Statements

https://support.sas.com/kb/61/222.html
https://support.sas.com/kb/61/222.html

 host="ftp.myFTPdataSite.com"
 user="anonymous"
 pass=XXXXXXXXXXXXXXX;

CONNPASS=’password’
specifies the password to use for proxy server authentication when you are
accessing an FTP server through a proxy server. The CONNPASS= option
contains the password that is paired with the user name that is specified in the
CONNUSER= option.

Example
filename myfile ftp "list.txt"
 connhost="proxsrv.abc.com"
 connport=3128
 host="ftp.myFTPdataSite.com"
 user="anonymous"
 pass=XXXXXXXXXXXXXXX;

CONNPORT=
specifies the port number of the web proxy server that you are connecting to an
FTP server through a proxy server.

Requirements You must use the CONNHOST= option with the CONNPORT=
option.

You must use the CONNPORT= option with the CONNHOST=
option.

Example
filename myfile ftp "list.txt"
 connhost="proxsrv.abc.com"
 connport=3128
 host="ftp.myFTPdataSite.com"
 user="anonymous"
 pass=XXXXXXXXXXXXXXX;

CONNUSER=’username’
specifies the user name to use for proxy server authentication when you are
accessing an FTP server through a proxy server. The CONNUSER= option
contains the user name that is paired with the password that is specified in the
CONNPASS= option.

See “PROXY=url ” on page 111

DEBUG
writes to the SAS log informational messages that are sent to and received from
the FTP server.

DIR
enables you to access directory files, PDS members, or PDSE members. Specify
the directory name in the external-file argument. You must use valid directory
syntax for the specified host.

FILENAME Statement: FTP Access Method 71

Interaction The CD and DIR options are mutually exclusive. If both are specified,
FTP ignores the CD option and SAS writes an informational note to
the log.

Tips If you want FTP to append a file extension of DATA to the member
name that is specified in the FILE or INFILE statement, then use the
FILEEXT option in conjunction with the DIR option. The FILEEXT
option is ignored if you specify a file extension in the FILE or INFILE
statement.

If you want FTP to create the directory, then use the NEW option in
conjunction with the DIR option. The NEW option is ignored if the
directory exists.

If the NEW option is omitted and you specify an invalid directory,
then a new directory is not created and you receive an error
message.

The maximum number of directory or z/OS PDSE members that can
be open simultaneously is limited by the number of sockets that can
be open simultaneously on an FTP server. The number of sockets
that can be open simultaneously is proportional to the number of
connections that are set up during the installation of the FTP server.
You might want to limit the number of sockets that are open
simultaneously to avoid performance degradation.

Example “Example 10: Reading and Writing from Directories” on page 84

ENCODING=encoding-value
specifies the encoding to use when reading from or writing to the external file.
The value for ENCODING= indicates that the external file has a different
encoding from the current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding. When you write data to an external
file, SAS transcodes the data from the session encoding to the specified
encoding.

Default SAS assumes that an external file is in the same encoding as the
session encoding.

Tip The data is transferred in image or binary format and is in local data
format. Thus, you must use appropriate SAS informats to read the data
correctly.

See “Encoding Values in SAS Language Elements” in SAS National Language
Support (NLS): Reference Guide

FILEEXT
specifies that the member type of DATA is automatically appended to the
member name in the FILE or INFILE statement when you use the DIR option.

Tip The FILEEXT option is ignored if you specify a file extension in the
FILE or INFILE statement.

72 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

See LOWCASE_MEMNAME option on page 73

Example “Example 10: Reading and Writing from Directories” on page 84

HOST='host'
where host is the network name of the remote host with the FTP server running.

You can specify either the name of the host (for example,
server.pc.mydomain.com) or the IP address of the computer (for example,
2001:db8::).

HOSTRESPONSELEN='size'
where size is the length of the FTP server response message.

Default 2048 bytes

Range 2048 to 16384 bytes

Restriction If you specify a size that is less than 2048 or is greater than 16384,
the size is set to 2048.

LIST
issues the LIST command to the FTP server. LIST returns the contents of the
working directory as records that contain all of the file attributes that are listed
for each file.

Tip The file attributes that are returned vary, depending on the FTP server that
is being accessed.

LOWCASE_MEMNAME
enables autocall macro retrieval of lowercase directory or member names from
FTP servers.

Restriction SAS autocall macro retrieval always searches for uppercase
directory member names. Mixed case directory or member names
are not supported.

Interaction If you access files off FTP servers by using the %INCLUDE, FILE,
INFILE, or other DATA step I/O statements, case sensitivity is
preserved.

See FILEEXT option on page 72

LRECL=lrecl
where lrecl is the logical record length of the data.

Default 32767

Interaction Alternatively, you can specify a global logical record length by using
the “LRECL= System Option” in SAS System Options: Reference. In
SAS 9.4, the default value for the LRECL system option is 32767. If
you are using fixed-length records (RECFM=F), the default value for
LRECL is 256.

FILENAME Statement: FTP Access Method 73

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1li19l98i6929n1981oqr3wq46u.htm&locale=en

LS
issues the LS command to the FTP server. LS returns the contents of the
working directory as records with no file attributes.

Tips The file attributes that are returned vary, depending on the FTP server
that is being accessed.

To return a listing of a subset of files, use the LSFILE= option in addition
to LS.

LSFILE='character-string'
in combination with the LS option, specifies a character string that enables you
to request a listing of a subset of files from the working directory. Enclose the
character string in quotation marks.

Restriction LSFILE= can be used only if LS is specified.

Tips You can specify a wildcard as part of 'character-string '.

The file attributes that are returned vary, depending on the FTP
server that is being accessed.

Example This statement lists all of the files that start with sales and end with
sas:
filename myfile ftp '' ls lsfile='sales*.sas'
 other-ftp-options;

MGET
transfers multiple files, similar to the FTP command MGET.

Tips The whole transfer is treated as one file. However, as the transfer of each
new file is started, the EOV= variable is set to 1.

Specify MPROMPT to prompt the user before each file is sent.

MPROMPT
specifies whether to prompt for confirmation that a file is to be read, if
necessary, when the user executes the MGET option.

Restriction The MPROMPT option is not available on z/OS for batch processing.

NEW
specifies that you want FTP to create the directory when you use the DIR
option.

Restriction The NEW option is not available under z/OS.

Tip The NEW option is ignored if the directory exists.

PASS='password'
where password is the password to use with the user name specified in the
USER= option.

Tips You can specify the PROMPT option instead of the PASS option,
which tells the system to prompt you for the password.

74 Chapter 2 / Dictionary of SAS Global Statements

If the user name is anonymous, then the remote host might require
that you specify your email address as the password.

To use an encoded password, use the PWENCODE procedure in order
to disguise the text string, and then enter the encoded password for
the PASS= option. For more information, see “PWENCODE Procedure”
in Base SAS Procedures Guide.

Example “Example 6: Using an Encoded Password” on page 83

PASSIVE
specifies that an attempt is made for passive mode FTP.

In passive mode FTP, the client initiates the control and data connections to the
server. This action solves the problem of firewalls filtering the incoming data
port connection to the client from the server.

Note Not all FTP servers support the passive mode. If an attempt is made by
the FILENAME statement FTP access method to issue the PASV
command and the command fails or the server does not accept the
command, then active mode FTP is used for the connection.

PBSZ=protection-buffer-size
specifies the FTP data channel Protection Buffer Size.

Default 0

Range 0–2147483647 bytes

Interactions If you specify either the AUTHTLS, PROT=, or PBSZ= option, the
AUTH TLS command is issued. An attempt to negotiate the TLS
security with the FTP server occurs to protect the FTP Control
Channel. If you specify the PROT= or PBSZ= option either
independently or in conjunction with the AUTHTLS option, then an
attempt to negotiate TLS security with the FTP server occurs to
protect the FTP Control and Data Channels.

Instead of using the FILENAME FTP statement to turn TLS
authentication on, you can define the SAS_FTP_AUTHTLS
environment variable. For more information, see
“SAS_FTP_AUTHTLS Environment Variable” on page 225.

Note IBM Mainframe FTP servers typically change whatever value you
specify with the PBSZ= option to 0.

Tip If you specify a buffer size that is not within the range, the default
value of 0 is used.

See “AUTHTLS” on page 69

“PROT=protection-level” on page 76

PORT=portno
where portno is the port that the FTP daemon monitors on the respective host.

FILENAME Statement: FTP Access Method 75

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1vzmasf0tdebfn1xec0k1tevq7q.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1vzmasf0tdebfn1xec0k1tevq7q.htm&locale=en

The portno can be any number between 0 and 65535 that uniquely identifies a
service.

Tip In the internet community, there is a list of predefined port numbers for
specific services. For example, the default port for FTP is 21. A partial list
of port numbers is usually available in the /etc/services file on any UNIX
computer.

PROMPT
specifies to prompt for the user login password, if necessary.

Restriction The PROMPT option is not available for batch processing under
z/OS.

Interaction If PROMPT is specified without USER=, then the user is prompted
for an ID, as well as a password.

Tip You can use the SAVEUSER option on page 78 to save the user ID
and password after the user ID and password prompt is successfully
executed.

PROT=protection-level
issues the FTP Data Channel protection level command. protection-level can be
one of these values:

C
provides only FTP Control Channel security. The Data Channel is not
protected.

E
provides Confidentiality Protection.

S
provides Integrity checking.

P
provides both Integrity checking and Confidentiality Protection.

Default P

Interactions If you specify either the AUTHTLS, PROT=, or PBSZ= option, the
AUTH TLS command is issued. An attempt to negotiate the TLS
security with the FTP server occurs to protect the FTP Control
Channel. If you specify the PROT= or PBSZ= option either
independently or in conjunction with the AUTHTLS option, then an
attempt to negotiate TLS security with the FTP server occurs to
protect the FTP Control and Data Channels.

Instead of using the FILENAME FTP statement to turn TLS
authentication on, you can define the SAS_FTP_AUTHTLS
environment variable. For more information, see
“SAS_FTP_AUTHTLS Environment Variable” on page 225.

See “AUTHTLS” on page 69

“PBSZ=protection-buffer-size” on page 75

76 Chapter 2 / Dictionary of SAS Global Statements

RCMD= 'command '
where command is the FTP 'SITE' or 'service' command to send to the FTP
server.

FTP servers use SITE commands to provide services that are specific to a
system and are essential to file transfer but not common enough to be included
in the protocol.

For example, rcmd='site rdw' preserves the record descriptor word (RDW) of
a z/OS variable blocked data set as a part of the data. For more information, see
“S370V” on page 78 and “S370VS” on page 79.

Interaction Some FTP service commands might not run at a particular client site
depending on the security permissions and the availability of the
commands.

Tips If you transfer a file with the FTP access method and then cannot
read the file, you might need to change the FTP server's UMASK
setting.

If the FTP server supports a SITE UMASK setting, you can change
the permissions of the file as shown in this example:
filename in ftp '/mydir/accounting/file2.dat'
 host="xxx.fyi.xxx.com"
 user="john"
 rcmd='site umask 022'
 prompt;
data _null;
file in;
put a $80;
run;

You can specify multiple FTP service commands if you separate
them by semicolons. Here are examples:
rcmd='ascii;site umask 002'
rcmd='stat;site chmod 0400 ~mydir/abc.txt'

RECFM=recfm
where recfm is one of three record formats:

F
is a fixed-record format. Thus, all records are of size LRECL with no line
delimiters. Data is transferred in image (binary) mode.

Aliases BINARY

The BINARY option overrides the value of RECFM= in the
FILENAME FTP statement, if specified, and forces a binary
transfer.

Interaction The default value for the LRECL system option is 32767. If you
are using fixed-length records (RECFM=F), the default value for
LRECL is 256.

S
is a stream-record format. Data is transferred in image (binary) mode.

FILENAME Statement: FTP Access Method 77

Interaction The amount of data that is read is controlled by the current
LRECL value or by the value of the NBYTE= variable in the
INFILE statement. The NBYTE= option specifies a variable that is
equal to the amount of data to be read. This amount must be less
than or equal to LRECL.

See The NBYTE= option in the INFILE statement.

V
is a variable-record format (the default). In this format, records have varying
lengths, and the records are transferred in text mode.

Interaction Any record larger than LRECL is truncated.

Tip If you are using files with the IBM 370 Variable format or the IBM
370 Spanned Variable format, then you might want to use the
S370V or S370VS options instead of the RECFM= option. For
more information, see “S370V” on page 78 and “S370VS” on
page 79.

Default V

Interaction If you specify the RECFM= option and the S370V or S370VS option,
then SAS ignores the RECFM= option.

RHELP
issues the HELP command to the FTP server. The results of this command are
returned as records.

RSTAT
issues the RSTAT command to the FTP server. The results of this command are
returned as records.

SAVEUSER
saves the user ID and password after the user ID and password prompt are
successfully executed.

Interaction The user ID and password are saved only for the duration of the SAS
session or until you change the association between the fileref and
the external file, or discontinue it with another FILENAME
statement.

S370V
indicates that the file being read is in IBM 370 variable format.

Interaction If you specify this option and the RECFM= option, then SAS ignores
the RECFM= option.

Tips The data is transferred in image or binary format and is in local data
format. Thus, you must use appropriate SAS informats to read the
data correctly on non-EBCDIC hosts.

Use the rcmd='site rdw' option when you transfer a z/OS data set
with a variable-record format to another z/OS data set with a
variable-record format to preserve the record descriptor word (rdw)

78 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1snbljmbl2o4kn1myleql0za4hj&locale=en

of each record. By default, most FTP servers remove the rdw that
exists in each record before it is transferred.

Typically, the 'SITE RDW' command is not necessary when you
transfer a data set with a z/OS variable-record format to ASCII, or
when you transfer an ASCII file to a z/OS variable-record format.

S370VS
indicates that the file that is being read is in IBM 370 variable-spanned format.

Interaction If you specify this option and the RECFM= option, then SAS ignores
the RECFM= option.

Tips The data is transferred in image or binary format and is in local data
format. Thus, you must use appropriate SAS informats to read the
data correctly on non-EBCDIC hosts.

Use the rcmd='site rdw' option when you transfer a z/OS data set
with a variable-record format to another z/OS data set with a
variable-record format to preserve the record descriptor word (rdw)
of each record. By default, most FTP servers remove the rdw that
exists in each record before it is transferred.

Typically, the 'SITE RDW' command is not necessary when you
transfer a data set with a z/OS variable-record format to ASCII, or
when you transfer an ASCII file to a z/OS variable-record format.

TERMSTR='eol-char'
where eol-char is the line delimiter to use when RECFM=V. There are three valid
values:

CRLF carriage return (CR) followed by line feed (LF).

LF line feed only (the default).

NULL NULL character (0x00).

Default LF

Restriction Use this option only when RECFM=V.

USER='username'
where username is used to log on to the FTP server.

Restriction The FTP access method does not support FTP proxy servers that
require user ID authentication.

Interaction If PROMPT is specified, but USER= is not, then the user is prompted
for an ID.

Tip You can specify a proxy server and credentials for an FTP server
when using the FTP access method. The user ID and password that
you need to log on to the FTP server is sent via the proxy server by
using the user="userid@ftpservername" pass="password"

FILENAME Statement: FTP Access Method 79

host="proxy.server.xxx.com" syntax. Both anonymous and user
ID validation are supported.

Example “Example 1: Retrieving a Directory Listing” on page 81

WAIT_MILLISECONDS=milliseconds
specifies the FTP response time in milliseconds.

Default 1,000 milliseconds

Tips If you receive a “connection closed; transfer aborted” or “network name
is no longer available” message in the log, use the
WAIT_MILLISECONDS option to increase the response time.

If you use the FEXIST function and the function reports a data set not
found but the data set is cataloged, use the WAIT_MILLISECONDS
option to increase the response time.

Details

The FTP access method lets you download and upload files. This method directly
reads files into your SAS session without first storing them on your system.

In SAS 9.4M3, the FTP access method also supports explicit FTPES (FTP/TLS).
Explicit FTPES includes full support for the Transport Layer Security (TLS) and
Secure Socket Layer (SSL) cryptographic protocols, including the use of server-side
public key authentication certificates and client-side authorization certificates.

The Transport Layer Security (TLS) protocol is used when the URL begins with
“ftps” instead of “ftp”. TLS and its predecessor, Secure Sockets Layer (SSL), are
cryptographic protocols that are designed to provide communication security over
the internet. TLS and SSL are protocols that provide network data privacy, data
integrity, and authentication. In addition to providing encryption services, TLS
performs client and server authentication, and it uses message authentication
codes to ensure data integrity. The TLS protocol allows client/server applications
to communicate across a network in a way that is designed to prevent
eavesdropping and tampering. TLS is supported by all major browser software.

The name of the FTP server being accessed must match the TLS or SSL certificate
name created for that server. For UNIX and z/OS operating environments, the TLS
or SSL certificate must be stored in an ASCII file and referred to by the
SSLCALISTLOC= system option. The SSLCALISTLOC= system option specifies the
location of a single file that contains the public certificate or certificates for all of
the trusted certification authorities (CA) in the trust chain. On Windows operating
environments, the TLS or SSL certificate needs to be imported to the certificate
store for the computer.

Note: All discussion of TLS is also applicable to the predecessor protocol, SSL.

80 Chapter 2 / Dictionary of SAS Global Statements

Note: If you do not specify the AUTHTLS, PROT=, or PBSZ= option in the
FILENAME statement, FTP Access Method, TLS authentication is attempted. If the
FTP server does not accept TLS authentication, then basic FTP authentication is
used.

Comparisons

As with the FTP get and put commands, the FTP access method enables you to
download and upload files. However, this method directly reads files into your SAS
session without first storing them on your system.

Examples

Example 1: Retrieving a Directory Listing
This example retrieves a directory listing from a host named mvshost1 for user
smythe, and prompts smythe for a password:

filename dir ftp '' ls user='smythe'
 host='mvshost1.mvs.sas.com' prompt;
data _null_;
 infile dir;
 input;
 put _INFILE_;
run;

Note: The quotation marks are empty because no file is being transferred.
However, because quotation marks are required by the syntax, you must include
them.

Example 2: Reading a File from a Remote Host
This example reads a file called sales in the directory /u/kudzu/mydata from the
remote UNIX host hp720.

filename myfile ftp 'sales' cd='/u/kudzu/mydata'
 user='guest' host='hp720.hp.sas.com'
 recfm=v prompt;
data mydata / view=mydata; /* Create a view */
 infile myfile;
 input x $10. y 4.;
run;
proc print data=mydata; /* Print the data */
run;

FILENAME Statement: FTP Access Method 81

Example 3: Creating a File on a Remote Host
This example creates a file called test.dat in a directory called c:\remote for the
user bbailey on the host winnt.pc.

filename create ftp 'c:\remote\test.dat'
 host='winnt.pc'
 user='bbailey' prompt recfm=v;
data _null_;
 file create;
 do i=1 to 10;
 put i=;
 end;
run;

Example 4: Reading an S370V-Format File on z/OS
This example reads an S370V-format file from a z/OS system. For more information
about RCMD='site rdw', see RCMD= option on page 77 .

filename viewdata ftp 'sluggo.stat.data'
 user='sluggo' host='zoshost1'
 s370v prompt rcmd='site rdw';
data mydata / view=mydata; /* Create a view */
 infile viewdata;
 input x $ebcdic8.;
run;
proc print data=mydata; /* Print the data */
run;

Example 5: Anonymously Logging In to FTP
This example shows how to log on to FTP anonymously, if the host accepts
anonymous logins.

Note: Some anonymous FTP servers require a password. If required, your email
address is usually used. See PASS= option on page 74 under “FTP Options.”

filename anon ftp '' ls host='130.96.6.1'
 user='anonymous';
data _null_;
 infile anon;
 input;
 list;
run;

Note: The quotation marks following the argument FTP are empty. A filename is
needed only when transferring a file, not when routing a command. However, the
quotation marks are required.

82 Chapter 2 / Dictionary of SAS Global Statements

Example 6: Using an Encoded Password
This example shows you how to use an encoded password in the FILENAME
statement.

In a separate SAS session, use the PWENCODE procedure to encode your
password and make note of the output.

proc pwencode in= "MyPass1";
run;

This output appears in the SAS log:

(sas001)TX1QYXNzMQ==

You can now use the entire encoded password string in your batch program.

filename myfile ftp 'sales' cd='/u/kudzu/mydata'
 user='tjbarry' host='hp720.hp.mycompany.com'
 pass="(sas001)TX1QYXMZ==";

Example 7: Importing a Transport Data Set
This example uses the CIMPORT procedure to import a transport data set from a
host named myshost1 for user calvin. The new data set resides locally in the
Sasuser library. Note that user and password can be SAS macro variables. If you
specify a fully qualified data set name, then use double quotation marks and single
quotation marks. Otherwise, the system appends the profile prefix to the name that
you specify.

%let user=calvin;
%let pw=xxxxx;
filename inp ftp "'calvin.mat1.cpo'" user="&user"
 pass="&pw" rcmd='binary'
 host='mvshost1';
proc cimport library=sasuser infile=inp;
run;

Example 8: Transporting a SAS Library
This example uses the CPORT procedure to transport a SAS library to a host
named mvshost1 for user calvin. It creates a new sequential file on the host called
userid.mat64.cpo with the record format of fb, lrecl of 80, and blocksize of 8000.

filename inp ftp 'mat64.cpo' user='calvin'
 pass="xxxx" host='mvshost1'
 lrecl=80 recfm=f blocksize=8000
 rcmd='site blocksize=800 recfm=fb lrecl=80';
proc cport library=mylib file=inp;
run;

Example 9: Creating a Transport Library with Transport Engine
This example creates a new SAS library on host mvshost1. The FILENAME
statement assigns a fileref to the new data set. Note the use of the RCMD= option
to specify important file attributes. The LIBNAME statement uses a libref that is
the same as the fileref and assigns it to the XPORT engine. The PROC COPY step
copies all data sets from the SAS library that are referenced by MYLIB to the

FILENAME Statement: FTP Access Method 83

XPORT engine. Output from the PROC CONTENTS step confirms that the copy
was successful:

filename inp ftp 'mat65.cpo' user='calvin'
 pass="xxxx" host='mvshost1'
 lrecl=80 recfm=f blocksize=8000
 rcmd='site blocksize=8000 recfm=fb lrecl=80';
libname mylib 'SAS-library';
libname inp xport;
proc copy in=mylib out=inp mt=data;
run;
proc contents data=inp._all_;
run;

Note: For more information about the XPORT engine, see “Transport Engine” in
SAS Programmer’s Guide: Essentials and “XPORT Engine Limitations” in Moving and
Accessing SAS Files.

Example 10: Reading and Writing from Directories
This example reads the file ftpmem1 from a directory on a UNIX host, and writes the
file ftpout1 to a different directory on another UNIX host.

filename indir ftp '/usr/proj2/dir1' DIR
 host="host1.mycompany.com"
 user="xxxx" prompt;
filename outdir ftp '/usr/proj2/dir2' DIR FILEEXT
 host="host2.mycompany.com"
 user="xxxx" prompt;
data _null_;
 infile indir(ftpmem1) truncover;
 input;
 file outdir(ftpout1);
 put _infile_;
run;

The file ftpout1 is written to /usr/proj2/dir2/ftpout1.DATA. Note that a
member type of DATA is appended to the ftpout1 file because the FILEEXT option
was specified in the output file's FILENAME statement. For more information, see
FILEEXT option on page 72 .

Note: The DIR option is not needed for some ODS destinations.

This example writes an output file and transfers it to an ODS-specified destination.
The DIR option is not needed.

filename output ftp "~user/ftpdir/" host="host.fyi.company.com" user="userid"
pass="userpass" recfm=s debug;
ods html body='body.html' path=output;
proc print data=sashelp.class;run;

To export multiple graph files to a remote directory location, the DIR option must
be specified in the FILENAME statement. Accordingly, when creating external
graph files with the ODS HTML destination, two FILENAME statements are

84 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0qxjkao2a08rpn0ztduhz1reezb.htm&docsetTargetAnchor=n10qs7gemd0sdin1oocs8z952sfq&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0qxjkao2a08rpn0ztduhz1reezb.htm&docsetTargetAnchor=n10qs7gemd0sdin1oocs8z952sfq&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=n13279g3qg84xyn1rpffq9x8ird0.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=n13279g3qg84xyn1rpffq9x8ird0.htm&locale=en

needed: one for the HTML files, and one for the graph files. This example illustrates
the need for two FILENAME statements.

filename output1 ftp "~user/dir" fileext host="host.unx.company.com"
 user="userid" pass="userpass" recfm=s debug;
filename output2 ftp "~user/dir" dir fileext host="host.unx.company.com"
 user="userid" pass="userpass" recfm=s debug;
ods html body='body.html' path=output1 gpath=output2
 frame='frames.html' contents='contents.html';
proc gtestit;
run;
quit;
;

Example 11: Using a Proxy Server
This example uses a proxy server with the FTP access method. The user ID and
password are sent via the proxy server.

filename test ftp ' ' ls
 host='proxy.server.xxx.com'
 user='userid@ftpservername'
 pass='xxxxxx'
 cd='pubsdir/';
data _null_;
 infile test truncover;
 input a $256.;
 put a=;
run;

See Also

Environment Variables:

n “SAS_FTP_AUTHTLS Environment Variable” on page 225

Statements:

n “FILENAME Statement” on page 19

n “LIBNAME Statement” on page 139

n “LOCKDOWN Statement” in SAS Intelligence Platform: Application Server
Administration Guide

System Options:

n “SSLCALISTLOC= System Option” in Encryption in SAS

FILENAME Statement: FTP Access Method 85

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p0pul4j64w0mg0n1h1k6z8zhfvaf.htm&locale=en

FILENAME Statement: Hadoop Access Method
Enables you to access files on a Hadoop Distributed File System (HDFS) whose location is specified
in a configuration file.

Valid in: Anywhere

Category: Data Access

Restrictions: Access is restricted to Hadoop configurations on systems based on UNIX
When SAS is in a locked-down state, the FILENAME statement, Hadoop access
method is not available. Your server administrator can re-enable this access
method so that it is accessible in the locked-down state. If the FILENAME
statement, Hadoop access method is re-enabled using the LOCKDOWN
ENABLE_AMS= statement, the HADOOP procedure is automatically re-enabled.
For more information, see “SAS Processing Restrictions for Servers in a Locked-
Down State” in SAS Programmer’s Guide: Essentials.

Requirements: In SAS 9.4M3, to connect to the Hadoop cluster, the Hadoop configuration files
must be copied from the specific Hadoop cluster to a physical location that is
accessible to the SAS client machine. The SAS environment variable
SAS_HADOOP_CONFIG_PATH must be set to the location of the Hadoop
configuration files.
To use the FILENAME statement, Hadoop access method by using a Java native
API, the Hadoop distribution JAR files must be copied to a physical location that is
accessible to the SAS client machine. The SAS environment variable
SAS_HADOOP_JAR_PATH must be defined and point to the location of the Hadoop
JAR files.
To use the FILENAME statement, Hadoop access method through WebHDFS by
using the REST API, the SAS environment variable SAS_HADOOP_RESTFUL 1 must
be defined. In addition, the Hadoop configuration file hdfs-site.xml must include the
properties for the WebHDFS location.

Syntax

FILENAME fileref HADOOP 'external-file' <hadoop-options>;

Required Arguments
fileref

is a valid fileref.

Range 1 to 8 bytes

Tip The association between a fileref and an external file lasts only for the
duration of the SAS session or until you change it or discontinue it with
another FILENAME statement.

86 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en

HADOOP
specifies the access method that enables you to use Hadoop to read from or
write to a file from any host machine that you can connect to on a Hadoop
configuration.

'external-file'
specifies the physical name of the file that you want to read from or write in an
HDFS system. The physical name is the name that is recognized by the
operating environment.

Operating
environment

For more information about specifying the physical names of
external files, see the SAS documentation for your operating
environment.

Tip Specify external-file when you assign a fileref to an external file.
You can associate a fileref with a single file or with an aggregate
file storage location.

Hadoop Options
hadoop-options can be any of these values:

BUFFERLEN=bufferlen
specifies the maximum buffer length of the data that is passed to Hadoop for its
I/O operations.

Default 503808

Restriction The maximum buffer length is 1000000.

Tip Specifying a buffer length that is larger than the default could result
in performance improvements.

CFG="physical-pathname-of-hadoop-configuration-file" | fileref-that-references-
a-hadoop-configuration-file

specifies the configuration file that contains the connections settings for a
specific Hadoop cluster.

Note: If a file is specified, it is the only file that is used to obtain configuration
information.

Note: If a directory is specified, the directory is used to obtain the required
configuration files.

Note: The CFG= option is required for a configuration file that is specific to
Apache Oozie. You must also set the SAS environment variable
SAS_HADOOP_CONFIG_PATH. For other uses, specify the location of
configuration files by setting the SAS_HADOOP_CONFIG_PATH environment
variable only. The environment variable is used by several SAS components.

FILENAME Statement: Hadoop Access Method 87

See HADOOP Configuration Guide

CONCAT
specifies that the HDFS directory name that is specified on the FILENAME
HADOOP statement is considered a wildcard specification. The concatenation
of all the files in the directory is treated as a single logical file and read as one
file.

Restriction This works for input only.

Interaction The CONCAT and DIR options are mutually exclusive. If both
options are specified, Hadoop ignores the DIR option and SAS writes
an informational note to the log.

Tip For best results, do not concatenate text and binary files.

DEBUG
enables additional messages that are displayed on the SAS log.

DIR
enables you to access files in an HDFS directory.

Requirement You must use valid directory syntax for the specified host.

Interactions The CONCAT and DIR options are mutually exclusive. If both
options are specified, Hadoop ignores the DIR option and SAS
writes an informational note to the log.

Specify the HDFS directory name in the external-file argument.

If you want to create the directory, use the NEW option in
conjunction with the DIR option. The NEW option is ignored if the
directory exists. If the NEW option is omitted and you specify an
invalid directory, then a new directory is not created and you
receive an error message.

See “FILEEXT” on page 89

“NEW” on page 89

ENCODING='encoding-value'
specifies the encoding to use when SAS is reading from or writing to an external
file. The value for ENCODING= indicates that the external file has a different
encoding from the current session encoding.

Default SAS assumes that an external file is in the same encoding as the
session encoding.

Note When you read data from an external file, SAS transcodes the data
from the specified encoding to the session encoding. When you write
data to an external file, SAS transcodes the data from the session
encoding to the specified encoding.

See “Encoding Values in SAS Language Elements” in SAS National Language
Support (NLS): Reference Guide

88 Chapter 2 / Dictionary of SAS Global Statements

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hadoopbacg&docsetTarget=titlepage.htm
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

FILEEXT
specifies that a file extension is automatically appended to the filename when
you use the DIR option

Interaction The autocall macro facility always passes the extension .SAS to the
file access method as the extension to use when opening files in the
autocall library. The DATA step always passes the extension .DATA.
If you define a fileref for an autocall macro library and the files in
that library have a file extension of .SAS, use the FILEEXT option. If
the files in that library do not have an extension, do not use the
FILEEXT option. For example, if you define a fileref for an input file
in the DATA step and the file X has an extension of .DATA, you
would use the FILEEXT option to read the file X.DATA. If you use the
INFILE or FILE statement, enclose the member name and extension
in quotation marks to preserve case.

Tip The FILEEXT option is ignored if you specify a file extension on the
FILE or INFILE statement.

See “LOWCASE_MEMNAME” on page 89

LOWCASE_MEMNAME
enables autocall macro retrieval of lowercase directory or member names from
HDFS systems.

Restriction SAS autocall macro retrieval always searches for uppercase
directory member names. Mixed-case directory or member names
are not supported.

See “FILEEXT” on page 89

LRECL=logical-record-length
specifies the logical record length of the data.

Default 65536

MOD
places the file in Update mode and appends updates to the bottom of the file.

MAXWAIT=wait-interval
specifies the HTTP status response time when using WebHDFS.

Default 40000 milliseconds

Requirement The environment variable SAS_HADOOP_RESTFUL 1 must be set.

Tip If you receive a time-out message in the log, use the MAXWAIT to
increase the wait period.

NEW
specifies that you want to create the directory when you use the DIR option.

Interaction If you want to create the directory, use the NEW option in
conjunction with the DIR option. The NEW option is ignored if the
directory exists. If the NEW option is omitted and you specify an

FILENAME Statement: Hadoop Access Method 89

invalid directory, then a new directory is not created and you receive
an error message.

See “DIR” on page 88

PASS='password'
specifies the password to use with the user name that is specified in the USER
option.

Requirement The password is case sensitive and it must be enclosed in single or
double quotation marks.

Tip To use an encoded password, use the PWENCODE procedure in
order to disguise the text string, and then enter the encoded
password for the PASS= option. For more information, see
“PWENCODE Procedure” in Base SAS Procedures Guide.

PROMPT
specifies to prompt for the user login, the password, or both, if necessary.

Interaction The USER= and PASS= options override the PROMPT option if all
three options are specified. If you specify the PROMPT option and
do not specify the USER= or PASS= option, you are prompted for a
user ID and password.

RECFM=record-format
where record-format is one of three record formats:

F
is a fixed-record format. In this format, records have fixed lengths, and they
are read in binary mode.

S
is a binary-record format. The file consists of a series of bytes with no record
boundaries.

Tip The amount of data that is read is controlled by the current LRECL
value or the value of the NBYTE= variable in the INFILE statement. The
NBYTE= option specifies a variable that is equal to the amount of data
to be read. This amount must be less than or equal to LRECL. To avoid
problems when you read large binary files like PDF or GIF, set NBYTE=1
to read one byte at a time.

See “NBYTE=variable” in SAS DATA Step Statements: Reference

V
is a variable-record format (the default). In this format, records in the file
have varying lengths.

Tip Any record larger than LRECL is truncated.

Default V

90 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1vzmasf0tdebfn1xec0k1tevq7q.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1snbljmbl2o4kn1myleql0za4hj&locale=en

Interaction In SAS 9.4, the default value for the global LRECL system option is
32767. If you are using fixed-length records (RECFM=F), the default
value for LRECL is 256.

USER='username'
where username is used to log on to the Hadoop system.

Requirements If you connect to Hadoop without specifying the USER= option,
you must start SAS with this option:

-jreoptions "(-Djavax.security.auth.useSubjectCredsOnly=false)"

The user name is case sensitive, and it must be enclosed in single
or double quotation marks.

Details

An HDFS system has levels of permissions at both the directory and file level. The
Hadoop access method honors those permissions. For example, if a file is available
as read-only, you cannot modify it.

Operating Environment Information: Using the FILENAME statement requires
information that is specific to your operating environment. The Hadoop access
method is fully documented here. For more information about how to specify
filenames, see the SAS documentation for your operating environment.

Examples

Example 1: Writing to a New Member of a Directory
This example writes the file shoes to the directory testing.

set=SAS_HADOOP_CONFIG_PATH="/u/hadoopcfg/cdh52p1";

filename out hadoop '/user/testing/' user='xxxx'
 pass='xxxx' recfm=v lrecl=32167 dir ;

data _null_;
 file out(shoes) ;
 put 'write data to shoes file';
run;

Example 2: Buffering 1MB of Data during a File Read
This example uses the BUFFERLEN option to buffer 1MB of data at a time during
the file read. The records of length 1024 are read from this buffer.

set=SAS_HADOOP_CONFIG_PATH="/u/hadoopcfg/cdh52p1";

filename foo hadoop 'file1.dat'
 user='user' pass='apass' recfm=s

FILENAME Statement: Hadoop Access Method 91

 lrecl=1024 bufferlen=1000000;

data _null_;
 infile foo truncover;
input a $1024.;
put a;
run;

Example 3: Using the CONCAT Option
This example uses the CONCAT option to read all members of DIRECTORY1 as if
they are one file.

set=SAS_HADOOP_CONFIG_PATH="/u/hadoopcfg/cdh52p1";

filename foo hadoop '/directory1/' user='user' pass='apass'
 recfm=s lrecl=1024 concat;

data _null_;
 infile foo truncover;
input a $1024.;
put a;
run;

See Also

Statements:

n “FILENAME Statement” on page 19

n “LOCKDOWN Statement” in SAS Intelligence Platform: Application Server
Administration Guide

FILENAME Statement: S3 Access Method
Enables you to access Amazon S3 files.

Valid in: Anywhere

Category: Data Access

Restrictions: Support for the S3 access method in SAS 9 begins in SAS 9.4M8.
The S3 access method is not supported on z/OS platforms.

Supports: PROC S3 statement options

See: “S3 Procedure” in Base SAS Procedures Guide

92 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1volodm4xnj3xn1s99poiemcha2.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1h9c1jnr8v8nwn1l6g83kyne5ds.htm&locale=en

Syntax

FILENAME fileref S3 “object path”<s3-options>;

Required Arguments
fileref

is a valid fileref.

S3
specifies the S3 access method.

object-path
specifies the S3 object that you want to access.

Details

Using the S3 Access Method
The S3 access method enables you to access objects in the Simple Storage Service
(S3) of Amazon Web Services (AWS).

Before you can use the S3 access method, you need an AWS access key ID and a
secret access key. When using temporary credentials, you also need a security
token. For more information, see the Amazon S3 documentation.

Support for the ENCKEY Statement
The S3 access method supports the ENCKEY statement of PROC S3. The ENCKEY
statement supports server-side encryption in an Amazon Web Services (AWS) S3
environment. For an example that shows how to encrypt data in an AWS S3
environment, see “Example 4: Using the S3 Access Method with the ENCKEY
Statement” on page 94. For information about the ENCKEY statement, see
“ENCKEY Statement” in Base SAS Procedures Guide.

Examples

Example 1: Reading a File by Using the S3 Access Method
This example uses the S3 access method to read a file in an AWS S3 environment.
The FILENAME statement creates an alias (fileref) called myfile, which points to
the location of the file, filename.txt, on the AWS S3 server. The DATA step reads
the file and writes its contents to the SAS log.

filename myfile s3 '/directory1/filename.txt';

data _null_;
 infile myfile;
 input;

FILENAME Statement: S3 Access Method 93

http://aws.amazon.com/documentation/s3/
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1jazfgokrxoy5n1w0occsip58kp.htm&locale=en

 put _infile_;
run;

Example 2: Sending a Log Output to a New Destination by Using
the S3 Access Method
This example uses the S3 access method with PROC PRINTTO to route a log
output to a file, log.txt, on the AWS S3 server. The NEW option removes any
information that is in the file and prepares the file to receive the output. For more
information, see “PROC PRINTTO Statement” in Base SAS Procedures Guide.

The S3 access method in the FILENAME statement provides an alias and pointer to
the location of the log.txt file on AWS. The LOG= option in PROC PRINTTO
specifies that all log output is sent to the external file on AWS. You can also
specify the PRINT= option in the PRINTTO statement so that all procedure output
is sent to an external file.

filename mylog s3 "/directory1/userid/log.txt" ;

proc printto log=mylog new;
run;

proc print data=sashelp.cars;
run;

proc printto;
run;

Example 3: Importing a File by Using the S3 Access Method
This example uses PROC IMPORT with the S3 access method to import a file to a
SAS data set from an AWS S3 environment.

filename i s3 '/directory1/i.cvs' ;

proc import datafile=i out=work.i replace dbms=csv debug;
 getnames=yes;
 datarow=2;
 guessingrows=all;
run;

Example 4: Using the S3 Access Method with the ENCKEY
Statement
This example uses the SAS DATA step with PROC S3 and the ENCKEY statement
to encrypt a server-side file in an AWS S3 environment.

proc s3;
 enckey add name="mykey" /* 1 */
 hexkey="7468697349734d6f726546726565666f726d49735550506f7365736f79656168";
run;

filename myfile s3 "/directory1/filename.txt" enckey=mykey; /* 2 */

data _null_;

94 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1hwvc03z4tqlkn1owzhzo8e7ulu.htm&locale=en

 file myfile; /* 3 */
 put 'Write with enckey';
run;

1 The ENCKEY statement in PROC S3 creates the encryption key and stores it in
the name mykey.

2 The FILENAME statement creates an alias named myfile and uses the S3 access
method to associate the alias with the S3 server file, filename.txt. The S3
access method uses the ENCKEY= option to send the encryption information to
the S3 server where the data in filename.txt is encrypted.

3 The FILE statement in the DATA step uses the alias for the S3 server file to
specify that the PUT statement output is written to the server file.

FILENAME Statement: SFTP Access Method
Enables you to access remote files by using the SFTP protocol.

Valid in: Anywhere

Category: Data Access

Syntax

FILENAME fileref SFTP 'external-file' <sftp-options>;

Arguments
fileref

is a valid fileref.

Range 1 to 8 bytes

Tip The association between a fileref and an external file lasts only for the
duration of the SAS session or until you change it or discontinue it with
another FILENAME statement. You can change the fileref for a file as
often as you want.

SFTP
specifies the access method that enables you to use Secure File Transfer
Protocol (SFTP) to read from or write to a file from any host computer that you
can connect to on a network with an OpenSSH SSHD server running.

'external-file'
specifies the physical name of an external file that you want to read from or
write to. The physical name is the name that is recognized by the operating
environment.

FILENAME Statement: SFTP Access Method 95

Operating
environment

For more information about specifying the physical names of
external files, see the SAS documentation for your operating
environment.

Tips If you are not transferring a file but performing a task such as
retrieving a directory listing, then you do not need to specify an
external filename. Instead, put empty quotation marks in the
statement.

You can associate a fileref with a single file or with an aggregate
file storage location.

sftp-options
specifies details that are specific to your operating environment such as file
attributes and processing attributes.

Operating
environment

For more information about some of these SFTP options, see
the SAS documentation for your operating environment.

See “SFTP Options” on page 96

SFTP Options
sftp-options can be any of these values:

BATCHFILE='path'
specifies the fully qualified pathname and the filename of the batch file that
contains the SFTP commands. These commands are submitted when the SFTP
access method is executed. After the batch file processing ends, the SFTP
connection is closed.

Requirement The path must be enclosed in quotation marks.

Tip After the batch file processing ends, the SFTP connection is closed
and the filename assignment is no longer available. If subsequent
DATA step processing requires the FILENAME SFTP statement,
then another FILENAME SFTP statement is required.

Example “Example 5: Using a Batch File” on page 102

CD='directory'
issues a command that changes the working directory for the file transfer to the
directory that you specify.

DEBUG
writes informational messages to the SAS log.

DIR
enables you to access directory files. Specify the directory name in the external-
file argument. You must use valid directory syntax for the specified host.

Interaction The CD and DIR options are mutually exclusive. If both are specified,
SFTP ignores the CD option and SAS writes an informational note to
the log.

96 Chapter 2 / Dictionary of SAS Global Statements

Tips If you want SFTP to create the directory, then use the NEW option in
conjunction with the DIR option. The NEW option is ignored if the
directory exists.

If the NEW option is omitted and you specify an invalid directory,
then a new directory is not created and you receive an error
message.

HOST='host'
where host is the network name of the remote host with the OpenSSH SSHD
server running.

You can specify either the name of the host (for example,
server.pc.mydomain.com) or the IP address of the computer (for example,
2001:db8::).

LRECL=lrecl
where lrecl is the logical record length of the data.

Default 256

Interaction Alternatively, you can specify a global logical record length by using
the “LRECL= System Option” in SAS System Options: Reference. In
SAS 9.4, the default value for the global LRECL system option is
32767. If you are using fixed-length records (RECFM=F), the default
value for LRECL is 256.

LS
issues the LS command to the SFTP server. LS returns the contents of the
working directory as records with no file attributes.

Restriction The LS option does display files with leading periods. An example
is .xAuthority.

Interaction The LS and LSA options are mutually exclusive. If you specify both
options, the LSA option takes precedence.

Tip To return a listing of a subset of files, use the LSFILE= option in
addition to LS.

LSA
issues the LS command to the SFTP server. LSA returns all the contents of the
working directory as records with no file attributes.

Interactions The LS and LSA options are mutually exclusive. If you specify both
options, the LSA option takes precedence.

To display files without leading periods. For example, use the LS=
option with .xAuthority.

Tip To return a listing of a subset of files, use the LSFILE= option in
addition to LSA.

FILENAME Statement: SFTP Access Method 97

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1li19l98i6929n1981oqr3wq46u.htm&locale=en

LSFILE='character-string'
in combination with the LS option, specifies a character string that enables you
to request a listing of a subset of files from the working directory. Enclose the
character string in quotation marks.

Restriction LSFILE= can be used only if LS or LSA is specified.

Tip You can specify a wildcard as part of 'character-string '.

Example This statement lists all of the files that start with sales and end with
sas:
filename myfile sftp '' ls lsfile='sales*.sas'
 other-sftp-options;

MGET
transfers multiple files, similar to the SFTP command MGET.

Tip The whole transfer is treated as one file. However, as the transfer of each
new file is started, the EOV= variable is set to 1.

NEW
specifies that you want SFTP to create the directory when you use the DIR
option.

Restriction The NEW option is not available under z/OS.

Tip The NEW option is ignored if the directory exists.

OPTIONS='option-string'
specifies SFTP configuration options such as port numbers and verbose.

Requirement When you submit code that contains a FILENAME SFTP statement
from SAS Enterprise Guide that runs on a Windows workspace
server, you must specify authentication by using the OPTIONS or
OPTIONSX option.

Note If you need to blot any information in the OPTIONS string, use the
OPTIONSX option.

See “Example 6: Connecting a Windows PUTTY Client to an SSHD
Server By Using Authentication Specified on the OPTIONSX
Parameter in SAS Enterprise Guide” on page 102

OPTIONSX='option-string'
specifies SFTP configuration options such as private keys and passphrases. All
information in the option-string is blotted when written to the SAS log.

Requirements When you submit code that contains a FILENAME SFTP
statement from SAS Enterprise Guide that runs on a Windows
workspace server, you must specify authentication by using the
OPTIONS or OPTIONSX option.

If the passphrase in the OPTIONSX string contains one or more
spaces, then the passphrase must be enclosed in double

98 Chapter 2 / Dictionary of SAS Global Statements

quotation marks and the OPTIONSX string must be enclosed in
single quotation marks.

Tip The passphrase is passed using the -pw parameter.

See “Example 6: Connecting a Windows PUTTY Client to an SSHD
Server By Using Authentication Specified on the OPTIONSX
Parameter in SAS Enterprise Guide” on page 102

PATH
specifies the location of the SFTP executable if it is not installed in the PATH or
$PATH search path.

Tip It is recommended that the OpenSSH “SFTP” executable or PUTTY
“PSFTP” executable be installed in a directory that is accessible via the
PATH or $PATH search path.

RECFM=recfm
where recfm is one of three record formats:

F
is a fixed-record format. Thus, all records are of size LRECL with no line
delimiters.

Interaction In SAS 9.4, the default value for the global LRECL system option
is 32767. If you are using fixed length records (RECFM=F), the
default value for LRECL is 256.

S
is a stream-record format. Data is transferred in image (binary) mode.

Interaction The amount of data that is read is controlled by the current
LRECL value or by the value of the NBYTE= variable in the
INFILE statement. The NBYTE= option specifies a variable that is
equal to the amount of data to be read. This amount must be less
than or equal to LRECL.

See The NBYTE= option in the INFILE statement.

V
is variable-record format (the default). In this format, records have varying
lengths, and they are separated by newlines.

Default V

USER='username'
specifies the user name.

Requirement The username is required by the PUTTY client on the Windows
host.

Tips The username is not typically required on LINUX or UNIX hosts
when using public key authentication.

FILENAME Statement: SFTP Access Method 99

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1snbljmbl2o4kn1myleql0za4hj&locale=en

Public key authentication using an SSH agent is the recommended
way to connect to a remote SSHD server.

WAIT_MILLISECONDS=milliseconds
specifies the SFTP response time in milliseconds.

Default 1,500 milliseconds

Tip If you receive a time-out message in the log, use the
WAIT_MILLISECONDS option to increase the response time.

Details

The Basics
The Secure File Transfer Protocol (SFTP) provides a secure connection and file
transfers between two hosts (client and server) over a network. Both commands
and data are encrypted. The client machine initiates a connection with the remote
host (OpenSSH SSHD server).

With the SFTP access method, you can read from or write to any host computer
that you can connect to on a network with an OpenSSH SSHD server running. The
client and server applications can reside on the same computer or on different
computers that are connected by a network.

Specific implementation details are dependent on the OpenSSH SSHD server
version and how that site is configured.

The SFTP access method relies on default send and reply messages to OpenSSH
commands. Custom installs of OpenSSH that modify these messages disable the
SFTP access method.

To use the SFTP access method, the applicable client software must be installed.
The SFTP access method supports only these SSH clients.

n OpenSSH – UNIX

n PUTTY – Windows

Note: Password validation is not supported for the SFTP access method.

Note: Public key authentication using an SSH agent is the recommended way to
connect to a remote SSHD server.

Note: If you have trouble running the SFTP access method, try to manually
validate SFTP client access to an OpenSSH SSHD server without involving the SAS
system. Manually validating SFTP client access without involving the SAS system
ensures that your SSH or SSHD configuration and key authentication is setup
correctly.

100 Chapter 2 / Dictionary of SAS Global Statements

SFTP Access Methods and SFTP Prompts
The SFTP access method supports only these prompts. Changing the prompt
disables the SFTP access method.

n For OpenSSH:

o sftp>

n For PUTTY:

o psftp>

Comparisons

As with the SFTP get and put commands, the SFTP access method lets you
download and upload files. However, this method directly reads files into your SAS
session without first storing them on your system.

Examples

Example 1: Connecting to an SSHD Server at a Standard Port
This example reads a file called test.dat using the SFTP access method after
connecting to the SSHD server a standard port:

filename myfile sftp '/users/xxxx/test.dat' host="unixhost1";
data _null_;
 infile myfile truncover;
 input a $25.;
run;

Example 2: Connecting to an SSHD Server at a Nonstandard
Port
This example reads a file called test.dat using the SFTP access method after
connecting to the SSHD server at port 4117:

filename myfile sftp '/users/xxxx/test.dat' host="unixhost1" options="-
oPort=4117";
data _null_;
 infile myfile truncover;
 input a $25.;;
run;

Example 3: Connecting a Windows PUTTY Client to an SSHD
Server
This example writes a file called test.dat using the SFTP access method after
connecting a Windows PUTTY client to the SSHD server with a user ID of userid:

FILENAME Statement: SFTP Access Method 101

filename outfile sftp '/users/xxxx/test.dat' host="unixhost1"
user="userid";
data _null_;
 file outfile;
 do i=1 to 10;
 put i=;
 end;
run;

Example 4: Reading Files from a Directory on the Remote Host
This example reads the files test.dat and test2.dat from a directory on the
remote host.

filename infile sftp '/users/xxxx/' host="unixhost1" dir;
data _null_;
 infile infile(test.dat) truncover;
 input a $25.;
 infile infile(test2.dat) truncover;
 input b $25.;
run;

Example 5: Using a Batch File
In this example, when the INFILE statement is processed, the batch file associated
with the FILENAME SFTP statement, sftpcmds, is executed.

filename process sftp ' ' host="unixhost1" user="userid"
 batchfile="c:/stfpdir/sftpcmds.bat";
data _null_;
 infile process;
run;

Example 6: Connecting a Windows PUTTY Client to an SSHD
Server By Using Authentication Specified on the OPTIONSX
Parameter in SAS Enterprise Guide
This example writes a file, test.dat, by using the SFTP access method after
connecting a Windows PUTTY client to the SSHD server. Public key authentication
occurs with the private key and passphrase specified on the OPTIONSX parameter.
The OPTIONSX string values are blotted with X characters in the SAS log. The
passphrase is passed using the -pw parameter. If the passphrase contains spaces,
then the passphrase must be enclosed in double quotation marks and the
OPTIONSX string must be enclosed in single quotation marks.

filename outfile sftp '/users/xxxx/test.dat' host="unixhost1"
 optionsx='-i C:\privatekey.ppk -pw "pass phrase"' user="userid" ;
data _null_;
 file outfile;
 do i=1 to 10;
 put i=;
 end;
run;

102 Chapter 2 / Dictionary of SAS Global Statements

See Also

n Barrett, Daniel J., Richard E. Silverman, and Robert G. Byrnes. 2005. “SSH, The
Secure Shell: The Definitive Guide.” Sebastopol, CA: O'Reilly

Statements:

n “FILENAME Statement” on page 19

n “LIBNAME Statement” on page 139

FILENAME Statement: SOCKET Access Method
Enables you to read from or write to a TCP/IP socket.

Valid in: Anywhere

Category: Data Access

Restriction: When SAS is in a locked-down state, the FILENAME statement, SOCKET access
method is not available. Your server administrator can re-enable this access
method so that it is accessible in the locked-down state. For more information, see
“SAS Processing Restrictions for Servers in a Locked-Down State” in SAS Language
Reference: Concepts.

Syntax

Form 1: FILENAME fileref SOCKET 'hostname:portno'
<tcpip-options>;

Form 2: FILENAME fileref SOCKET ':portno' SERVER
<tcpip-options>;

Arguments
fileref

is a valid fileref.

Range 1 to 8 bytes

Tip The association between a fileref and an external file lasts only for the
duration of the SAS session or until you change it or discontinue it with
another FILENAME statement. You can change the fileref for a file as
often as you want.

SOCKET
specifies the access method that enables you to read from or write to a
Transmission Control Protocol/Internet Protocol (TCP/IP) socket.

FILENAME Statement: SOCKET Access Method 103

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en

'hostname:portno'
is the name or IP address of the host and the TCP/IP port number to connect to.

Tip Use this specification for client access to the socket.

':portno'
is the port number to create for listening.

Tips Use this specification for server mode.

If you specify :0, the system chooses a number.

SERVER
sets the TCP/IP socket to be a listening socket, thereby enabling the system to
act as a server that is waiting for a connection.

Tip The system accepts all connections serially; only one connection is active
at any one time.

See The RECONN= option on page 105 under TCPIP Options.

tcpip-options
specifies details that are specific to your operating system such as the number
of connections that the server accepts.

Operating Environment Information: For more information about some of
these TCP/IP options, see the SAS documentation for your operating
environment

See “TCP/IP Options” on page 104

TCP/IP Options
tcpip-options can be any of these values:

BLOCKSIZE=blocksize
where blocksize is the size of the socket data buffer in bytes.

Default 8192

ENCODING=encoding-value
specifies the encoding to use when reading from or writing to the socket. The
value for ENCODING= indicates that the socket has a different encoding from
the current session encoding.

When you read data from a socket, SAS transcodes the data from the specified
encoding to the session encoding. When you write data to a socket, SAS
transcodes the data from the session encoding to the specified encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): Reference Guide.

LRECL=lrecl
where lrecl is the logical record length.

Default 256

104 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

Interaction Alternatively, you can specify a global logical record length by using
the “LRECL= System Option” in SAS System Options: Reference. In
SAS 9.4, the default value for the global LRECL system option is
32767. If you are using fixed-length records (RECFM=F), the default
value for LRECL is 256.

RECFM=recfm
where recfm is one of three record formats:

F
is a fixed-record format. Thus, all records are of size LRECL with no line
delimiters. Data is transferred in image (binary) mode.

Interaction In SAS 9.4, the default value for the global LRECL system option
is 32767. If you are using fixed-length records (RECFM=F), the
default value for LRECL is 256.

S
is a stream-record format.

Interaction The amount of data that is read is controlled by the current
LRECL value or the value of the NBYTE= variable in the INFILE
statement. The NBYTE= option specifies a variable equal to the
amount of data to be read. This amount must be less than or
equal to LRECL.

Tip Data is transferred in image (binary) mode.

See The NBYTE= option in the INFILE statement.

V
is a variable-record format (the default).

Tips In this format, records have varying lengths, and they are transferred in
text mode.

Any record larger than LRECL is truncated.

Default V

RECONN=conn-limit
where conn-limit is the maximum number of connections that the server
accepts.

Note Because only one connection can be active at a time, a connection must
be disconnected before the server can accept another connection. When
a new connection is accepted, the EOV= variable is set to 1. The server
continues to accept connections, one at a time, until conn-limit has been
reached.

TERMSTR='eol-char'
where eol-char is the line delimiter to use when RECFM=V. There are three valid
values:

FILENAME Statement: SOCKET Access Method 105

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1li19l98i6929n1981oqr3wq46u.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1snbljmbl2o4kn1myleql0za4hj&locale=en

CRLF
carriage return (CR) followed by line feed (LF).

LF
line feed only (the default).

NULL
NULL character (0x00).

Default LF

Restriction Use this option only when RECFM=V.

Details

The Basics
A TCP/IP socket is a communication link between two applications. The server
application creates the socket and waits for a connection. The client application
connects to the socket. With the SOCKET access method, you can use SAS to
communicate with another application over a socket in either client or server mode.
The client and server applications can reside on the same computer or on different
computers that are connected by a network.

For example, you can develop an application using Microsoft Visual Basic that
communicates with a SAS session that uses the TCP/IP sockets. Note that Visual
Basic does not provide inherent TCP/IP support. You can obtain a custom control
(VBX) from SAS Technical Support (free of charge) that allows a Visual Basic
application to communicate through the sockets.

Using the SOCKET Access Method in Client Mode (Form 1)
In client mode, a local SAS application can use the SOCKET access method to
communicate with a remote application that acts as a server (and waits for a
connection). Before you can connect to a server, you must know this information:

n the network name or IP address of the host computer running the server

n the port number that the remote application is listening to for new connections

The remote application can be another SAS application, but it does not need to be.
When the local SAS application connects to the remote application through the
TCP/IP socket, the two applications can communicate by reading from and writing
to the socket as if it were an external file. If at any time the remote side of the
socket is disconnected, the local side also automatically terminates.

Using the SOCKET Access Method in Server Mode (Form 2)
When the local SAS application is in server mode, it remains in a wait state until a
remote application connects to it. To use the SOCKET access method in server
mode, you need to know only the port number that you want the server to listen to
for a connection. Typically, servers use well-known ports to listen for connections.
These port numbers are reserved by the system for specific server applications. For

106 Chapter 2 / Dictionary of SAS Global Statements

more information about how well-known ports are defined on your system, see the
documentation for your TCP/IP software or ask your system administrator.

If the server application does not use a well-known port, then the system assigns a
port number when it establishes the socket from the local application. However,
because any client application that waits to connect to the server must know the
port number, you should try to use a well-known port.

While a local SAS server application is waiting for a connection, SAS is in a wait
state. Each time a new connection is established, the EOV= variable in the DATA
step is set to 1. Because the server accepts only one connection at a time, no new
connections can be established until the current connection is closed. The
connection closes automatically when the remote client application disconnects.
The SOCKET access method continues to accept new connections until it reaches
the limit set in the RECONN option.

Example: Communicating between Two SAS
Applications over a TCP/IP Socket

This example shows how two SAS applications can talk over a TCP/IP socket. The
local application is in server mode; the remote application is the client that
connects to the server. This example assumes that the server host name is
hp720.unx.sas.com, that the well-known port number is 5000, and that the server
allows a maximum of three connections before closing the socket.

Here is the program for the server application:

filename local socket ':5000' server reconn=3;
 /*The server is using a reserved */
 /*port number of 5000. */
data tcpip;
 infile local eov=v;
 input x $10;
 if v=1 then
 do; /* new connection when v=1 */
 put 'new connection received';
 end;
 output;
run;

Here is the program for the remote client application:

filename remote socket 'hp720.unx.sas.com:5000';
data _null_;
 file remote;
 do i=1 to 10;
 put i;
 end;
run;

FILENAME Statement: SOCKET Access Method 107

See Also

Statements:

n “FILENAME Statement” on page 19

n “LOCKDOWN Statement” in SAS Intelligence Platform: Application Server
Administration Guide

FILENAME Statement: URL Access Method
Enables you to access remote files by using the URL access method.

Valid in: Anywhere

Category: Data Access

Restriction: When SAS is in a locked-down state, the FILENAME statement, URL access
method is not available. Your server administrator can re-enable this access
method so that it is accessible in the locked-down state. If the FILENAME
statement, URL access method is re-enabled, the SOAP procedure is automatically
re-enabled. For more information, see “SAS Processing Restrictions for Servers in a
Locked-Down State” in SAS Language Reference: Concepts.

Syntax

FILENAME fileref URL 'external-file' <url-options>;

Arguments
fileref

is a valid fileref.

Range 1 to 8 bytes

Tip The association between a fileref and an external file lasts only for the
duration of the SAS session or until you change it or discontinue it with
another FILENAME statement. You can change the fileref for a file as
often as you want.

URL
specifies the access method that enables you to read a file from any host
computer that you can connect to on a network with a URL server running.

Alias HTTP

108 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en

'external-file'
specifies the name of the file that you want to read from on a URL server. The
Transport Layer Security (TLS) protocol, https, can also be used to access the
files. The file must be specified in one of these formats:

n http://hostname/file

n https://hostname/file

n http://hostname:portno/file

n https://hostname:portno/file

Operating
environment

For more information about specifying the physical names of
external files, see the SAS documentation for your operating
environment.

URL Options
url-options can be any of these values:

ACCEPT='header-type'
specifies the Accept: header. The Accept: header can be used to specify certain
media types, which are acceptable for the response.

Default */*

Requirement header-type must be enclosed in either single or double quotation
marks.

AUTHDOMAIN="auth-domain"
specifies the name of an authentication domain in order to connect to the proxy
or web server. The authentication domain references credentials (user ID and
password) without your having to explicitly specify the credentials. The auth-
domain name is case sensitive, and it must be enclosed in double quotation
marks.

An administrator creates authentication domain definitions while creating a
user definition with the User Manager in SAS Management Console. The
authentication domain is associated with one or more login metadata objects
that provide access to the proxy or web server and is resolved by the BASE
engine calling the SAS Metadata Server and returning the authentication
credentials.

Requirement The authentication domain and the associated login definition
must be stored in a metadata repository, and the metadata server
must be running in order to resolve the metadata object
specification.

Interaction If you specify AUTHDOMAIN=, you do not need to specify USER=
and PASS=.

See For more information about creating and using authentication
domains, see the discussion on credential management in SAS
Intelligence Platform: Security Administration Guide.

FILENAME Statement: URL Access Method 109

BLOCKSIZE=blocksize
specifies the size of the URL data buffer in bytes.

Default 8K

CONNECT
creates a connection between the client and the proxy and between the proxy
and the server when accessing a URL through a proxy.

Requirement You must use the PROXY= option with the CONNECT option. No
connection is made if the CONNECT option is used without the
PROXY= option.

Interaction If you use "http" in the external-file argument, a connection is
made, but the TLS protocol is not used.

See “PROXY=url ” on page 111

DEBUG
writes debugging information to the SAS log.

Tip The result of the HELP command is returned as records.

HEADERS=fileref
specifies the fileref to which the header information is written when a file is
opened by using the URL access method. The header information is the same
information that is written to the SAS log.

Requirement The fileref must be defined in a previous FILENAME statement.

Interactions If you specify the HEADERS= option without specifying the
DEBUG option, the DEBUG option is automatically turned on.

By default, log information is overwritten. To append the log
information, you must specify the MOD option in the FILENAME
statement that creates the fileref.

LRECL=lrecl
specifies the logical record length of the data.

Default 256

Interaction Alternatively, you can specify a global logical record length by using
the “LRECL= System Option” in SAS System Options: Reference. In
SAS 9.4, the default value for the global LRECL system option is
32767. If you are using fixed-length records (RECFM=F), the default
value is 256.

PASS='password'
where password is the password to use with the user name that is specified in
the USER option.

Tips You can specify the PROMPT option instead of the PASS option, which
tells the system to prompt you for the password.

110 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1li19l98i6929n1981oqr3wq46u.htm&locale=en

To use an encoded password, use the PWENCODE procedure in order to
disguise the text string, and then enter the encoded password for the
PASS= option. For more information, see “PWENCODE Procedure” in Base
SAS Procedures Guide.

PPASS='password'
where password is the password to use with the user name that is specified in
the PUSER option. The PPASS option is used to access the proxy server.

Tips You can specify the PROMPT option instead of the PPASS option, which
tells the system to prompt you for the password.

To use an encoded password, use the PWENCODE procedure to disguise
the text string, and then enter the encoded password for the PASS=
option. For more information, see “PWENCODE Procedure” in Base SAS
Procedures Guide.

PROMPT
specifies to prompt for the user login password if necessary.

Tip If you specify PROMPT, you do not need to specify PASS= or PPASS=.

PROXY=url
specifies the Uniform Resource Locator (URL) for the proxy server in one of
these forms:

http://hostname/
http://hostname:portno/

See “CONNECT” on page 110

PUSER='username'
where username is used to log on to the URL proxy server.

Interactions If you specify the PUSER option, the USER option goes to the web
server regardless of whether you specify a proxy server.

If PROMPT is specified, but PUSER is not, the user is prompted for
an ID as well as a password.

Tip If you specify puser='*', then the user is prompted for an ID.

RECFM=recfm
specifies one of three record formats:

F
is a fixed-record format. Thus, all records are of size LRECL with no line
delimiters. Data is transferred in image (binary) mode.

Interaction In SAS 9.4, the default value for the global LRECL system option
is 32767. If you are using fixed-length records (RECFM=F), the
default value for LRECL is 256.

FILENAME Statement: URL Access Method 111

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1vzmasf0tdebfn1xec0k1tevq7q.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1vzmasf0tdebfn1xec0k1tevq7q.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1vzmasf0tdebfn1xec0k1tevq7q.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1vzmasf0tdebfn1xec0k1tevq7q.htm&locale=en

S
is a stream-record format. Data is transferred in image (binary) mode.

Alias N

Tip The amount of data that is read is controlled by the current LRECL
value or the value of the NBYTE= variable in the INFILE statement.
The NBYTE= option specifies a variable that is equal to the amount of
data to be read. This amount must be less than or equal to LRECL.

See The NBYTE= option in the INFILE statement.

V
is a variable-record format (the default). In this format, records have varying
lengths, and the records are transferred in text mode.

Tip Any record larger than LRECL is truncated.

Default V

TERMSTR='eol-char'
specifies the line delimiter to use when RECFM=V. There are four valid values:

CR carriage return (CR).

CRLF carriage return (CR) followed by line feed (LF).

LF line feed only (the default).

NULL NULL character (0x00).

Default LF

Restriction Use this option only when RECFM=V.

USER='username'
specifies the username that is used to log on to the URL server.

Interactions If you specify the USER option but do not specify the PUSER
option, where the USER option goes depends on whether you
specify a proxy server. If you do not specify a proxy server, USER
goes to the web server. If you do specify a proxy server, USER goes
to the proxy server.

If you specify the PUSER option, the USER option goes to the web
server regardless of whether you specify a proxy server.

If PROMPT is specified, but USER or PUSER is not, the user is
prompted for an ID as well as a password.

Tip If you specify user='*', then the user is prompted for an ID.

112 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1snbljmbl2o4kn1myleql0za4hj&locale=en

Details

The Transport Layer Security (TLS) protocol is used when the URL begins with
“https” instead of “http”. TLS and its predecessor, Secure Sockets Layer (SSL), are
cryptographic protocols that are designed to provide communication security over
the internet. TLS and SSL are protocols that provide network data privacy, data
integrity, and authentication. In addition to providing encryption services, TLS
performs client and server authentication, and it uses message authentication
codes to ensure data integrity. The TLS protocol allows client/server applications
to communicate across a network in a way designed to prevent eavesdropping and
tampering. TLS is supported by all major browser software.

Note: All discussion of TLS is also applicable to the predecessor protocol, SSL.

Operating Environment Information: Using the FILENAME statement requires
information that is specific to your operating environment. The URL access method
is fully documented here, but for more information about how to specify filenames,
see the SAS documentation for your operating environment.

Examples

Example 1: Accessing a File at a Website
This example accesses document test.dat at site www.a.com:

filename foo url 'http://www.a.com/test.dat'
 proxy='http://www.gt.sas.com';

Example 2: Specifying a User ID and a Password
This example accesses document file1.html at site www.b.com using the TLS
protocol and requires a user ID and password:

filename foo url 'https://www.b.com/file1.html'
 user='jones' prompt;

Example 3: Reading Records from a URL File
This example reads records from lines 228 through 248 from a URL file and writes
the records to the SAS log with a PUT statement:

filename foo url "http://support.sas.com/publishing/cert/sampdata.txt";

data _null_;
 infile foo length=len;
 input record $varying200. len;
 if _n_>=228 and _n_<=248 then do;
 put record $varying200. len;
 end;
run;

FILENAME Statement: URL Access Method 113

See Also

n “Transport Layer Security (TLS) ” in Encryption in SAS

Statements:

n “FILENAME Statement” on page 19

n “LOCKDOWN Statement” in SAS Intelligence Platform: Application Server
Administration Guide

FILENAME Statement: WebDAV Access Method
Enables you to access remote files by using the WebDAV protocol.

Valid in: Anywhere

Category: Data Access

Syntax

FILENAME filref WEBDAV 'external-file' <webdav-options>;

Arguments
fileref

is a valid fileref.

Range 1 to 8 bytes

Tip The association between a fileref and an external file lasts only for the
duration of the SAS session or until you change it or discontinue it with
another FILENAME statement. You can change the fileref for a file as
often as you want.

WEBDAV
specifies the access method that enables you to use WebDAV (Web Distributed
Authoring and Versioning) to read from or write to a file from any host machine
that you can connect to on a network with a WebDAV server running.

'external-file'
specifies the name of the file that you want to read from or write to a WebDAV
server. The external file must be in one of these forms:

http://hostname/path-to-the-file
https://hostname/path-to-the-file
http://hostname:port/path-to-the-file
https://hostname:port/path-to-the-file

114 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=p0mpm7e98kokdqn1e1jn850kongr&locale=en

Requirement When using the HTTPS communication protocol, you must use
the TLS or SSL protocol that provides secure network
communications. For more information, see Encryption in SAS.

Operating
environment

For more information about specifying the physical names of
external files, see the SAS documentation for your operating
environment.

WebDAV Options
webdav-options can be any of these values:

AUTHDOMAIN="auth-domain"
specifies the name of an authentication domain metadata object in order to
connect to the WebDAV server. The authentication domain references
credentials (user ID and password) without your explicitly specifying the
credentials.

An administrator creates authentication domain definitions while creating a
user definition with the User Manager in SAS Management Console. The
authentication domain is associated with one or more login metadata objects
that provide access to the proxy or web server. The authentication domain is
resolved by the BASE engine calling the SAS Metadata Server and returning the
authentication credentials.

Requirements The authentication domain and the associated login definition
must be stored in a metadata repository, and the metadata server
must be running in order to resolve the metadata object
specification.

The auth-domain name is case sensitive, and it must be enclosed
in double quotation marks.

Interaction If you specify AUTHDOMAIN=, you do not need to specify USER=
and PASS=.

See For more information about creating and using authentication
domains, see the section on credential management in SAS
Intelligence Platform: Security Administration Guide.

DEBUG
writes debugging information to the SAS log.

DEL_ALL
enables you to delete a directory and all its members.

Requirement The DIR option is required when you use the DEL_ALL option.

Note The default behavior of the WebDAV access method is that only
empty directories can be deleted. Use the DEL_ALL option to
delete directories that are not empty.

See “DIR” on page 116

FILENAME Statement: WebDAV Access Method 115

DIR
enables you to access directory files. Specify the directory name in the external-
file argument. You must use valid directory syntax for the specified host.

Tip See FILEEXT option on page 116 for information about specifying file
extensions.

ENCODING='encoding-value'
specifies the encoding to use when SAS is reading from or writing to an external
file. The value for ENCODING= indicates that the external file has a different
encoding from the current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding. When you write data to an external
file, SAS transcodes the data from the session encoding to the specified
encoding.

Default SAS assumes that an external file is in the same encoding as the
session encoding.

See “Encoding Values in SAS Language Elements” in SAS National Language
Support (NLS): Reference Guide

FILEEXT
specifies that a file extension is automatically appended to the filename when
you use the DIR option.

Interaction The autocall macro facility always passes the extension .SAS to the
file access method as the extension to use when opening files in the
autocall library. The DATA step always passes the extension .DATA.
If you define a fileref for an autocall macro library and the files in
that library have a file extension of .SAS, use the FILEEXT option. If
the files in that library do not have an extension, do not use the
FILEEXT option. For example, if you define a fileref for an input file
in the DATA step and the file X has an extension of .DATA, you
would use the FILEEXT option to read the file X.DATA. If you use the
INFILE or FILE statement, enclose the member name and extension
in quotation marks to preserve case.

Tip The FILEEXT option is ignored if you specify a file extension in the
FILE or INFILE statement.

See LOWCASE_MEMNAME option on page 117

LOCALCACHE=”directory name”
specifies a directory where a temporary subdirectory is created to hold local
copies of the server files. Each fileref has its own unique subdirectory. If a
directory is not specified, then the subdirectories are created in the SAS Work
directory. SAS deletes the temporary files when the SAS program completes.

Default SAS Work directory

116 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

LOCKDURATION=n
specifies the number of minutes that the files that are written through the
WebDAV fileref are locked. SAS unlocks the files when the SAS program
successfully finishes executing. If the SAS program fails, then the locks expire
after the time allotted.

Default 30 minutes

LOWCASE_MEMNAME
enables autocall macro retrieval of lowercase directory or member names from
WebDAV servers.

Restriction SAS autocall macro retrieval always searches for uppercase
directory member names. Mixed-case directory or member names
are not supported.

See FILEEXT option on page 116

LRECL=lrecl
specifies the logical record length of the data.

Default 256

Interaction Alternatively, you can specify a global logical record length by using
the “LRECL= System Option” in SAS System Options: Reference. In
SAS 9.4, the default value for the global LRECL system option is
32767. If you are using fixed-length records (RECFM=F), the default
value for LRECL is 256.

MKDIR="new-directory-name"
specifies a new directory that is created from the parent directory that was
specified in the external-file option.

Requirements You must use valid directory syntax for the specified host.

You must use the DIR option with the MKDIR option.

Example filename bankname webdav "http://webserver.com/parentdir/"
 dir mkdir="testdir1" user="myid" pass="xxxx";

MOD
Places the file in Update mode and appends updates to the bottom of the file.

PASS='password'
where password is the password to use with the user name that is specified in
the USER option. The password is case sensitive and it must be enclosed in
single or double quotation marks.

Alias PASSWORD=, PW=, PWD=

Tip To use an encoded password, use the PWENCODE procedure in order to
disguise the text string, and then enter the encoded password for the
PASS= option. For more information, see “PWENCODE Procedure” in
Base SAS Procedures Guide .

FILENAME Statement: WebDAV Access Method 117

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1li19l98i6929n1981oqr3wq46u.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1vzmasf0tdebfn1xec0k1tevq7q.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1vzmasf0tdebfn1xec0k1tevq7q.htm&locale=en

PROMPT
specifies to prompt for the user logon password, if necessary.

Interaction The USER= and PASS= options override the PROMPT option if all
three options are specified. If you specify the PROMPT option and
do not specify the USER= or PASS= option, you are prompted for a
user ID and password.

PROXY=url
specifies the Uniform Resource Locator (URL) for the proxy server in one of
these forms:

http://hostname/
http://hostname:port/

RECFM=recfm
where recfm is one of two record formats:

S
is a stream-record format. Data is transferred in image (binary) mode.

Note It is recommended that you specify RECFM=S for PDF or any other
binary files, especially if ENCODING=UTF8 or any other Unicode
encoding. Otherwise, a byte-order mark (BOM) is written at the
beginning of the file and an incorrect content type is generated.

Tip The amount of data that is read is controlled by the current LRECL
value or the value of the NBYTE= variable in the INFILE statement.
The NBYTE= option specifies a variable that is equal to the amount of
data to be read. This amount must be less than or equal to the LRECL.
To avoid problems when you transfer large binary files such as PDF or
GIF, set NBYTE=1 to transfer one byte at a time.

See The NBYTE= option in the INFILE statement.

V
is a variable-record format (the default). In this format, records have varying
lengths, and they are transferred in text mode.

Tip Any record larger than LRECL is truncated.

Default V

USER='username'
where username is used to log on to the URL server. The user ID is case sensitive
and it must be enclosed in single or double quotation marks.

Alias UID=

118 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1snbljmbl2o4kn1myleql0za4hj&locale=en

Details

The Basics
Web Distributed Authoring and Versioning (WebDAV) is an extension of the HTTP
protocol that enables users to manage files on a remote server, access documents
over the web, and collaboratively work on them.

When you access a WebDAV server to update a file, the file is pulled from the
WebDAV server to your local disk storage for processing. When this processing is
complete, the file is pushed back to the WebDAV server for storage. The file is
removed from the local disk storage when it is pushed back.

The Transport Layer Security (TLS) protocol is used when the URL begins with
“https” instead of “http”. TLS and its predecessor, Secure Sockets Layer (SSL), are
cryptographic protocols that are designed to provide communication security over
the internet. TLS and SSL are protocols that provide network data privacy, data
integrity, and authentication. In addition to providing encryption services, TLS
performs client and server authentication, and it uses message authentication
codes to ensure data integrity. The TLS protocol allows client/server applications
to communicate across a network in a way designed to prevent eavesdropping and
tampering. TLS is supported by all major browser software.

The name of the WebDAV server being accessed must match the TLS or SSL
certificate name created for that server. For UNIX and z/OS operating
environments, the TLS or SSL certificate must be stored in an ASCII file and
referred to by the SSLCALISTLOC= system option. The SSLCALISTLOC= system
option specifies the location of a single file that contains the public certificate or
certificates for all of the trusted certification authorities (CA) in the trust chain. On
Windows operating environments, the TLS or SSL certificate needs to be imported
to the certificate store for the computer.

Note: All discussion of TLS is also applicable to the predecessor protocol, SSL.

Note: WebDAV servers have levels of permissions at both the directory and file
level. The WebDAV access method honors those permissions. For example, if a file
is available as read-only, the user cannot modify it.

Operating Environment Information: Using the FILENAME statement requires
information that is specific to your operating environment. The WebDAV access
method is fully documented here, but for more information about how to specify
file names, see the SAS documentation for your operating environment.

Examples

Example 1: Accessing a File at a Website
This example accesses the file rawFile.txt at site www.mycompany.com.

FILENAME Statement: WebDAV Access Method 119

filename foo webdav 'https://www.mycompany.com/production/files/
rawFile.txt'
 user='wong' pass='jd75ld';
data _null_;
 infile foo;
 input a $80.;
run;

Alternatively, you can use the FILENAME function in a SAS DATA step to perform
the same task shown in the preceding example. In this example, the FILENAME
function uses the WebDAV protocol to access the file rawFile.txt.

data _null_;
rc = filename(
 'foo', /* 1 */
 'https://www.mycompany.com/production/files/rawFile.txt', /* 2 */
 'webdav', /* 3 */
 'user="wong" pass="jd75ld"'); /* 4 */
run;

data _null_;
 infile foo;
 input a $80.;
run;

1 In the FILENAME function, specify a fileref (foo).

2 Specify the name of the external file that you want to read (rawFile.txt). Use
the fully qualified domain name.

3 Specify the device-type (webdav).

4 Specify the username and password. These are host-options in the FILENAME
function.

Example 2: Using a Proxy Server
This example accesses the file acctgfile.dat by using the proxy server
otherwebsvr:80.

filename foo webdav 'https://webserver.com/webdav/acctgfile.dat'
 user='sanchez' pass='239sk349exz'
 proxy='http://otherwebsvr.com:80';
data _null_;
 infile foo;
 input a $80.;
run;

Example 3: Writing to a New Member of a Directory
This example writes the file SHOES to the directory TESTING.

filename writeit webdav
 "https://webserver.com:8443/webdav/testing/"
 dir user="webuser" pass=XXXXXXXXX;
 data _null_;
 file writeit(shoes);

120 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n15scht124hr4nn1g296cqg2kqfa.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n15scht124hr4nn1g296cqg2kqfa.htm&docsetTargetAnchor=n0unujb1mk0bo7n19k60ymzr2jtv&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n1cwdt7h01vaken0zl8veh8x3ybc.htm&docsetTargetAnchor=n0jh5iucbmdhemn1wxrtbq0p5obs&locale=en

 set sashelp.shoes;
 put region $25. product $14.;
 run;

Example 4: Reading from a Member of a Directory
This example reads the file SHOES from the directory TESTING1.

filename readit webdav
 "https://webserver.com:8443/webdav/testing1/"
 dir user="webuser" pass=XXXXXXXXX;
 data shoes;
 length region $25 product $14;
 infile readit(shoes);
 input region $25. product $14.;
 run;

Example 5: Using a WebDAV Location as an Autocall Macro
Library
By default, the autocall macro facility expects uppercase file names. This example
accesses the file MYTEST in the autocall macro library WRITEIT.

filename writeit webdav
 "https://webserver.com/webdav/macrolib"
 dir fileext user="webuser" pass=XXXXXXXXX;
options SASAUTOS=(writeit);
/* expects a file called MYTEST.SAS */
%MYTEST;

Example 6: Accessing a Lowercased Autocall Macro Member
This example accesses the file testmem.sas in the autocall macro library LIST. The
LOWCASE_MEMNAME option is used to access the file, which is in lowercase.

filename list webdav "https://webserver.com:8443/accounting/"
 dir fileext user="xxxxx" pass="xxxxx" LOWCASE_MEMNAME;
options sasautos=(list);
%testmem;

Example 7: Using a %INCLUDE Statement and Macro Invocation
to Access a Lowercased Autocall Macro Member
This example accesses the file testmem.sas in the autocall macro library MYTEST.
Because the file is accessed by using the %INCLUDE statement, case sensitivity is
preserved.

filename mytest webdav "https://webserver.com:8443/payroll/"
 dir user="xxxxxx" pass="xxxxx";
%include mytest(testmem.sas) /source2;
%testmem;

If the file name was in uppercase, the reference to the file name in the %INCLUDE
statement and macro call needs to be uppercase.

%include mytest(TESTMEM.SAS) /source2;

FILENAME Statement: WebDAV Access Method 121

%TESTMEM;

Example 8: Accessing a File with a Mixed-Case Name
This example accesses the file fileNOext from the production directory. Because
the file is quoted in the INFILE statement, case sensitivity is preserved and the file
extension is ignored.

filename test webdav "https://webserver.com:8443/production"
 dir user="xxxxxx" pass="xxxxx";
data _null_;
 infile test('fileNOext');
 input;
 list;
run;

Example 9: Using the FILEEXT Option to Automatically Attach a
File Extension
This example accesses the file testmem.sas from the sales directory. The FILEEXT
option automatically adds .DATA as the file extension. The member name that is
read is testmem.DATA.

filename listing webdav "https://webserver.com:8443/sales"
 dir fileext user="xxxxxx" pass="xxxxx";
data _null_;
 infile listing(testmem);
 input;
 list;
run;

Example 10: Deleting a Directory That Contains Members
In this example, the newusers directory contains members, and the deletion of the
directory fails.

filename newusers webdav "https://webserver.com:8443/production"
 dir user="xxxxxx" pass="xxxxx";

/**** cannot delete newusers because it has members ****/
data _null_;
 rc=fdelete("newusers");
 put rc=;
run;

/ **** can delete newusers because del_all in filename statement ****/

In this example, the FILENAME statement contains the DEL_ALL option, which
enables the newusers directory to be deleted.

filename newusers webdav "https://webserver.com:8443/production"
 dir user="xxxxxx" pass="xxxxx" del_all;

/ **** can delete newusers because del_all option ****/
data _null_;
 rc=fdelete("newusers");
 put rc=;

122 Chapter 2 / Dictionary of SAS Global Statements

run;

See Also

n “Transport Layer Security (TLS) ” in Encryption in SAS

Statements:

n “FILENAME Statement” on page 19

n “LIBNAME Statement: WebDAV Server Access” on page 184

System Options:

n “SSLCALISTLOC= System Option” in Encryption in SAS

FILENAME Statement: ZIP Access Method
Enables you to access ZIP files.

Valid in: Anywhere

Category: Data Access

Note: The ZIP access method reads and writes only files created with the WinZip or GZIP
file compression.

Syntax

FILENAME fileref ZIP 'external-file' <zip-options>;

Arguments
fileref

is a valid fileref.

Range 1 to 8 bytes

Tip The association between a fileref and an external file lasts only for the
duration of the SAS session or until you change the fileref or discontinue
it with another FILENAME statement. You can change the fileref for a
file as often as you want.

ZIP
specifies the access method that enables you to use ZIP files.

'external-file'
specifies the name of the ZIP file that you want to read from or write to.

FILENAME Statement: ZIP Access Method 123

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=p0mpm7e98kokdqn1e1jn850kongr&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p0pul4j64w0mg0n1h1k6z8zhfvaf.htm&locale=en

Operating
environment

For information about specifying the physical names of external
files, see the SAS documentation for your operating
environment.

Notes If you write multiple entries of the same ZIP file in a DATA step,
an error occurs. Multiple entries overlay each other with
unpredictable results.

All ZIP filenames and ZIP file entries are case sensitive.

Tip Specify external-file when you assign a fileref to an external file.
You can associate a fileref with a single file by using the
MEMBER= syntax or with an aggregate file storage location that
uses the fileref(member) syntax.

ZIP Options
zip-options can be any of these values:

COMMENT="comment-string"
writes an informative comment in a ZIP file.

COMPRESSION='compression-level'
specifies the compression level that is used to write to the ZIP file member.
Valid values for the compression level are 0 through 9. A value of 0 stores the
file with no compression. A value of 9 indicates maximum compression.

Default 6

Restriction COMPRESSION= is used only when opening a file for writing.

DEBUG
writes debugging information to the SAS log.

ENCODING=encoding-value
specifies the encoding to use when SAS is reading from or writing to an external
file. The value for ENCODING= indicates that the external file has a different
encoding from the current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding. When you write data to an external
file, SAS transcodes the data from the session encoding to the specified
encoding.

Default SAS assumes that an external file is in the same encoding as the
session encoding.

See “Encoding Values in SAS Language Elements” in SAS National Language
Support (NLS): Reference Guide

FILEEXT
specifies that a file extension is automatically appended to the filename
member if the extension does not exist.

124 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

Interaction The autocall macro facility always passes the extension .SAS to the
file access method as the extension to use when opening files in the
autocall library. The DATA step always passes the extension .DATA.
If you define a fileref for an autocall macro library and the files in
that library have a file extension of .SAS, use the FILEEXT option. If
the files in that library do not have an extension, do not use the
FILEEXT option. For example, if you define a fileref for an input file
in the DATA step and the file X has an extension of .DATA, you
would use the FILEEXT option to read the file X.DATA. If you use the
INFILE or FILE statement, enclose the member name and extension
in quotation marks to preserve the casing.

Tip The FILEEXT option is ignored if you specify a file extension on the
FILE or INFILE statement.

See “LOWCASE_MEMNAME” on page 125

GZIP
specifies that the external file is a GZIP file.

Interaction The GZIP and MEMBER= options are mutually exclusive. If both
options appear, GZIP takes precedence and the MEMBER= option is
ignored.

Note Support for this option was added in SAS 9.4M5.

LOWCASE_MEMNAME
enables autocall macro retrieval of lowercase directory or member names from
ZIP files.

Restriction SAS autocall macro retrieval always searches for uppercase
directory member names. Mixed-case directory or member names
are not supported.

See “FILEEXT” on page 124

LRECL=lrecl
specifies the logical record length of the data.

Default 32767

Interaction Alternatively, you can specify a global logical record length by using
the “LRECL= System Option” in SAS System Options: Reference. In
SAS 9.4, the default value for the global LRECL system option is
32767.

MEMBER="member-file"
associates the fileref with a single file found inside the ZIP file.

Interaction The MEMBER= and GZIP options are mutually exclusive. If both
options appear, GZIP takes precedence and the MEMBER= option is
ignored.

FILENAME Statement: ZIP Access Method 125

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1li19l98i6929n1981oqr3wq46u.htm&locale=en

Tip You can use a wildcard in the MEMBER= syntax. An asterisk (*)
matches zero or more characters. A question mark (?) matches one
character. Wildcards are supported when reading entries and for
exist actions. Wildcards are not supported for write or delete
actions. For example, writing entry “A*” creates an entry “A*”.
Deleting an entry named “A*” deletes “A*” but not any entry that
starts with “A”. Calling an exist function with “A*” returns True as
long as one or more entries that start with “A” exist.

NAMEENCODING=encoding-value
specifies the encoding to use for ZIP file entry names and comments. The value
for NAMEENCODING= indicates that the entry name and comment have a
different encoding from the current session encoding.

Default Code Page 437

Example filename zs zip "yxz.zip" nameencoding=sjis member="s" termstr=lf;

RECFM=recfm
where recfm is one of four record formats:

F
is a fixed-record format. Each record has the same length.

N
is a binary format. The file consists of stream bytes with no record
boundaries.

S
is a stream-record format.

Interaction The amount of data that is read is controlled by the current
LRECL value or by the value of the NBYTE= variable in the
INFILE statement. The NBYTE= option specifies a variable that is
equal to the amount of data to be read. This amount must be less
than or equal to LRECL.

See The NBYTE= option in the INFILE statement.

V
is a variable-record format (the default). In this format, records have varying
lengths, the records are transferred in text mode.

Interaction Any record larger than LRECL is truncated.

Default V

TERMSTR='eol-termination-character'
specifies the terminating character, which is the line character for Read
operations and the terminating character for Write operations. There are four
valid values:

CR carriage return (CR).

CRLF carriage return (CR) followed by line feed (LF).

126 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1snbljmbl2o4kn1myleql0za4hj&locale=en

LF line feed only (the default).

NULL NULL character (0x00).

Default CRLF for Windows. LF for all other operating environments.

Operating
environment

Using the FILENAME statement requires information that is
specific to your operating environment. For more information
about how to specify filenames, see the SAS documentation
for your operating environment.

Examples

Example 1: Reading a ZIP File Member from a Directory
This example reads the test1.txt ZIP file member from the testzip ZIP file.

filename foo ZIP 'U:\directory1\testzip.zip' member="test1.txt" ;

data _null_;
infile foo;
input a $80.;
run;

Example 2: Writing a ZIP File to a New Member of a Directory
This example writes the shoes file to the testzip ZIP file.

filename foo ZIP 'U:\directory1\testzip.zip';

data _null_;
 file foo(shoes);
 set sashelp.shoes;
 put region $25. product $14.;
run;

Example 3: Reading from a Member of a Directory
This example reads the file shoes from the testzip ZIP file.

filename foo ZIP 'U:\directory1\testzip.zip';

data shoes;
 length region $25 product $14;
 infile foo(shoes);
 input region $25. product $14.;
run;

See Also

Statements:

FILENAME Statement: ZIP Access Method 127

n “FILE Statement” in SAS DATA Step Statements: Reference

n “FILENAME Statement” on page 19

n “INFILE Statement” in SAS DATA Step Statements: Reference

FOOTNOTE Statement
Writes up to 10 lines of text at the bottom of the procedure or DATA step output.

Valid in: Anywhere

Category: Output Control

Restriction: The FOOTNOTE statement does not support Unicode.

Requirement: You must specify the FOOTNOTE option if you use a FILE statement.

See: FOOTNOTE Statement under Windows, UNIX, and z/OS

Syntax

FOOTNOTE<n > <ods-format-options> <'text' | “text”>;

Without Arguments
Using FOOTNOTE without arguments cancels all existing footnotes.

Arguments
n

specifies the relative line to be occupied by the footnote.

Default If you omit n, SAS assumes a value of 1.

Range n can range from 1 to 10.

Tip For footnotes, lines are pushed up from the bottom. The FOOTNOTE
statement with the highest number appears on the bottom line.

ods-format-options
specifies formatting options for the ODS HTML, RTF, and PRINTER(PDF)
destinations.

BOLD
specifies that the footnote text is bold font weight.

ODS destination HTML, RTF, PRINTER

COLOR=color
specifies the footnote text color.

128 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n15o12lpyoe4gfn1y1vcp6xs6966.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n0fdn4xlcqv301n1nvmddigfh2w7.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n0qioom3ywz8yjn1l5m10q722k0c.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n1xj3v220dmdd2n1mzkxwxox2a7f.htm&locale=en

Alias C

ODS destination HTML, RTF, PRINTER

Example “Example 3: Customizing Titles and Footnotes By Using the
Output Delivery System” on page 218

BCOLOR=color
specifies the background color of the footnote block.

ODS destination HTML, RTF, PRINTER

FONT=font-face
specifies the font to use. If you supply multiple fonts, then the destination
device uses the first one that is installed on your system.

Alias F

ODS destination HTML, RTF, PRINTER

HEIGHT=size
specifies the point size.

Alias H

ODS destination HTML, RTF, PRINTER

Example “Example 3: Customizing Titles and Footnotes By Using the
Output Delivery System” on page 218

ITALIC
specifies that the footnote text is in italic style.

ODS destination HTML, RTF, PRINTER

JUSTIFY= CENTER | LEFT | RIGHT
specifies justification.

CENTER
specifies center justification.

Alias C

LEFT
specifies left justification.

Alias L

RIGHT
specifies right justification.

Alias R

Alias J

FOOTNOTE Statement 129

ODS destination HTML, RTF, PRINTER

Example “Example 3: Customizing Titles and Footnotes By Using the
Output Delivery System” on page 218

LINK='url'
specifies a hyperlink.

ODS destination HTML, RTF, PRINTER

Tip The visual properties for LINK= always come from the
current style.

UNDERLIN= 0 | 1 | 2 | 3
specifies whether the subsequent text is underlined. 0 indicates no
underlining. 1, 2, and 3 indicates underlining.

Alias U

ODS destination HTML, RTF, PRINTER

Tip ODS generates the same type of underline for values 1, 2,
and 3. However, SAS/GRAPH uses values 1, 2, and 3 to
generate increasingly thicker underlines.

Note The defaults for how ODS renders the FOOTNOTE statement come from
style elements that relate to system footnotes in the current style. The
FOOTNOTE statement syntax with ods-format-options is a way to
override the settings that are provided by the current style. The current
style varies according to the ODS destination. For more information
about how to determine the current style, see “Understanding Styles,
Style Elements, and Style Attributes” in SAS Output Delivery System:
Procedures Guide and “Concepts: TEMPLATE Procedure” in SAS Output
Delivery System: Procedures Guide.

Tip You can specify these options by letter, word, or words by preceding each
letter or word of the text by the option. For example, this code makes the
footnote “Red, White, and Blue” appear in different colors.
footnote color=red "Red," color=white "White, and" color=blue "Blue";

'text' | “text”
specifies the text of the footnote in single or double quotation marks

Tips For compatibility with previous releases, SAS accepts some text without
quotation marks. When you write new programs or update existing
programs, always enclose text in quotation marks.

You can use macro variables and macros to change the information in
FOOTNOTE statements. If the footnote is enclosed in double quotation
marks (""), the text indicated is substituted into the footnote. If the
footnote is enclosed in single quotation marks (''), the text is not
substituted.

130 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n1vh5koxzr0dwjn19odnm7q3whun.htm&docsetTargetAnchor=n14tddso4u13dan1fxl0ui2izmcg&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n1vh5koxzr0dwjn19odnm7q3whun.htm&docsetTargetAnchor=n14tddso4u13dan1fxl0ui2izmcg&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n1vh5koxzr0dwjn19odnm7q3whun.htm&docsetTargetAnchor=n14tddso4u13dan1fxl0ui2izmcg&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n1vh5koxzr0dwjn19odnm7q3whun.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n1vh5koxzr0dwjn19odnm7q3whun.htm&locale=en

If you use single quotation marks (") or double quotation marks ("")
together (with no space in between them) as the string of text, SAS writes
a single quotation mark (') or double quotation mark ("), respectively.

Details

A FOOTNOTE statement takes effect when the step or RUN group with which it is
associated executes. After you specify a footnote for a line, SAS repeats the same
footnote on all pages until you cancel or redefine the footnote for that line. When a
FOOTNOTE statement is specified for a given line, it cancels the previous
FOOTNOTE statement for that line and for all footnote lines with higher numbers.

Operating Environment Information: The maximum footnote length that is
allowed depends on the operating environment and the value of the LINESIZE=
system option. For more information, see the SAS documentation for your
operating environment.

Comparisons

You can also create footnotes with the FOOTNOTES window. For more information,
refer to the online Help for the window.

You can modify footnotes with the Output Delivery System. See “Example 3:
Customizing Titles and Footnotes By Using the Output Delivery System” on page
218.

Example: Using the FOOTNOTE Statement

These examples of a FOOTNOTE statement result in the same footnote:

n footnote8 "Managers' Meeting";

n footnote8 'Managers'' Meeting';

These are examples of FOOTNOTE statements that use some of the formatting
options for the ODS HTML, RTF, and PRINTER(PDF) destinations. For the complete
example, see “Example 3: Customizing Titles and Footnotes By Using the Output
Delivery System” on page 218.

footnote j=left height=20pt
 color=red "Prepared "
 c='#FF9900' "on";
footnote2 j=center color=blue
 height=24pt "&SYSDATE9";
footnote3 link='http://support.sas.com/documentation/' "SAS";

FOOTNOTE Statement 131

See Also

Statements:

n “TITLE Statement” on page 212

%INCLUDE Statement
Brings a SAS programming statement, data lines, or both, into a current SAS program.

Valid in: Anywhere

Category: Program Control

Alias: %INC

See: %INCLUDE Statement under Windows , UNIX , and z/OS

Syntax

%INCLUDE source(s)
</<SOURCE2> <S2=length> <operating-environment-options> >;

Arguments
source(s)

describes the location of the information that you want to access with the
%INCLUDE statement. There are three possible sources:

Source Definition

file-specification specifies an external file

internal-lines specifies lines that are entered earlier in the same
SAS job or session

keyboard-entry specifies statements or data lines that you enter
directly from the keyboard

file-specification
identifies an entire external file that you want to bring into your program.

File-specification can have these forms:

132 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=chincludefstart.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p0cnuwy17gjy1fn1r6oq3ockv0or.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n1i7lu79o2hy2tn1pkeiynpymv69.htm&locale=en

'external-file'
specifies the physical name of an external file that is enclosed in
quotation marks. The physical name is the name by which the operating
environment recognizes the file.

fileref
specifies a fileref that has previously been associated with an external
file.

Range 1 to 8 bytes

Tip You can use a FILENAME statement or function or an operating
environment command to make the association.

fileref (filename-1 <, ”filename–2.xxx”, ... filename-n>)
specifies a fileref that has previously been associated with an aggregate
storage location. Follow the fileref with one or more filenames that reside
in that location. Enclose the filenames in one set of parentheses, and
separate each filename with a comma followed by a space.

This example instructs SAS to include the files testcode1.sas,
testcode2.sas, and testcode3.txt. These files are located in the aggregate
storage location mylib. You do not need to specify the file extension for
testcode1 and testcode2 because they are the default .SAS extension.
You must enclose testcode3.txt in quotation marks with the whole
filename specified because it has an extension other than .SAS:

%include mylib(testcode1, testcode2,
 "testcode3.txt");

Operating
environment

Different operating environments call an aggregate
grouping of files by different names, such as a directory, a
MACLIB, a text library, or a partitioned data set. For
information about accessing files from a storage location
that contains several files, see the SAS documentation for
your operating environment.

Note A file that is located in an aggregate storage location and
has a name that is not a valid SAS name must have its
name enclosed in quotation marks.

Tip You can use a FILENAME statement or function or an
operating environment command to make the association.

Restriction You cannot selectively include lines from an external file.

Operating
environment

The character length allowed for filenames is operating
environment specific. For complete details about specifying
the physical names of external files, see the SAS
documentation for your operating environment.

Tips You can verify the existence of file-specification by using the
SYSERR macro variable if the ERRORCHECK option is set to
STRICT.

%INCLUDE Statement 133

Including external sources is useful in all types of SAS
processing: batch, windowing, interactive line, and
noninteractive.

internal-lines
includes lines that were entered earlier in the same SAS job or session.

To include internal lines, use any of these values:

n includes line n.

n-m or n:m includes lines n through m.

Note The SPOOL system option controls internal access to previously
submitted lines when you run SAS in interactive line mode,
noninteractive mode, and batch mode. By default, the SPOOL system
option is set to NOSPOOL. The SPOOL system option must be in
effect in order to use %INCLUDE statements with internal line
references. Use the OPTIONS procedure to determine the current
setting of the SPOOL system option on your system.

Tips Including internal lines is most useful in interactive line mode
processing.

Use a %LIST statement to determine the line numbers that you want
to include.

Although you can use the %INCLUDE statement to access previously
submitted lines when you run SAS in a windowing environment, it
might be more practical to recall lines in the Program Editor with the
RECALL command and then submit the lines with the SUBMIT
command.

keyboard-entry
is a method for preparing a program so that you can interrupt the current
program's execution, enter statements or data lines from the keyboard, and
then resume program processing.

*
prompts you to enter data from the keyboard. Place an asterisk (*) after
the %INCLUDE statement in your code: To resume processing the original
source program, enter a %RUN statement from the keyboard.

proc print;
 %include *;
run;

Restriction The asterisk (*) cannot be used to specify keyboard entry if you
use the Enhanced Editor in the Microsoft Windows operating
environment.

Note The fileref SASTERM must have been previously associated with
an external file in a FILENAME statement or function or an
operating environment command.

134 Chapter 2 / Dictionary of SAS Global Statements

Tips Use this method when you run SAS in noninteractive or
interactive line mode. SAS pauses during processing and prompts
you to enter statements from the keyboard.

Use this argument to include source from the keyboard:

You can use a %INCLUDE * statement in a batch job by creating a
file with the fileref SASTERM that contains the statements that
you would otherwise enter from the keyboard. The %INCLUDE *
statement causes SAS to read from the file that is referenced by
SASTERM. Insert a %RUN statement into the file that is
referenced by SASTERM where you want SAS to resume reading
from the original source.

SOURCE2
causes the SAS log to show the source statements that are being included in
your SAS program.

Tips The SAS log also displays the fileref and the filename of the source and
the level of nesting (1, 2, 3, and so on).

The SOURCE2 system option produces the same results. When you
specify SOURCE2 in a %INCLUDE statement, it overrides the setting of
the SOURCE2 system option for the duration of the include operation.

S2=length
specifies the length of the record to be used for input. Length can have these
values:

S sets S2 equal to the current setting of the S= SAS system option.

0 tells SAS to use the setting of the SEQ= system option to determine
whether the line contains a sequence field. If the line does contain a
sequence field, SAS determines line length by excluding the sequence
field from the total length.

n specifies a number greater than zero that corresponds to the length of
the line to be read, when the file contains fixed-length records. When
the file contains variable-length records, n specifies the column in
which to begin reading data.

Interaction The S2= system option also specifies the length of secondary source
statements that are accessed by the %INCLUDE statement, and it is
effective for the duration of your SAS session. The S2= option in the
%INCLUDE statement affects only the current include operation. If
you use the S2= option in the %INCLUDE statement, it overrides the
S2= system option setting for the duration of the include operation.

Tips Text input from the %INCLUDE statement can be either fixed or
variable length.

Fixed-length records are either unsequenced or sequenced at the
end of each record. For fixed-length records, the value given in S2=
is the ending column of the data.

%INCLUDE Statement 135

Variable-length records are either unsequenced or sequenced at the
beginning of each record. For variable-length records, the value
given in S2= is the starting column of the data.

See For a detailed discussion of fixed-length and variable-length input
records, see “S= System Option” in SAS System Options: Reference
and “S2= System Option” in SAS System Options: Reference.

operating-environment-options

Operating
environment

Operating environments can support various options for the
%INCLUDE statement. See the documentation for your
operating environment for a list of these options and their
functions.

Details

What %INCLUDE Does
When you execute a program that contains the %INCLUDE statement, SAS
executes your code, including any statements or data lines that you bring into the
program with %INCLUDE.

Operating Environment Information: Use of the %INCLUDE statement is
dependent on your operating environment. Before you run the examples for this
statement and for more information about additional software features and
methods of referring to and accessing your files, see the documentation for your
operating environment.

Three Sources of Data
The %INCLUDE statement accesses SAS statements and data lines from three
possible sources:

n external files

n lines entered earlier in the same job or session

n lines entered from the keyboard

Uses of %INCLUDE
The %INCLUDE statement is most often used when running SAS in interactive line
mode, noninteractive mode, or batch mode.

TIP You can use the INCLUDE and RECALL commands to quickly and
efficiently access and re-submit data lines and program statements.

136 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0ul9fyvusnv79n1q026m6wwc8nr.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0z0a5lomx2cl7n1nefjm5mnspwo.htm&locale=en

Rules for Using %INCLUDE
n You can specify any number of sources in a %INCLUDE statement, and you can

mix the types of included sources. However, although it is possible to include
information from multiple sources in one %INCLUDE statement, it might be
easier to understand a program that uses separately coded %INCLUDE
statements for each source.

n When used in the DATA step, the %INCLUDE statement must be the first
statement or it must immediately follow a semicolon that ends another
statement. This restriction does not apply if the %INCLUDE statement is used
with the macro facility.

n When used in the DATA step, the %INCLUDE statement cannot be used in
conditional logic. However, you can use the %INCLUDE statement with
conditional logic when used with the macro facility. For example, you can
specify the following %IF-%THEN macro statement:

%if &error=1 %then %do;
 %include "myfile";
%end;

n The maximum line length is 32K bytes.

Comparisons

The %INCLUDE statement executes statements immediately. The INCLUDE
command brings the included lines into the Program Editor window but does not
execute them. You must issue the SUBMIT command to execute those lines.

Examples

Example 1: Including an External File
n This example stores a portion of a program in a file named MYFILE. The file can

be included in a program that is written later.

data monthly;
 input x y month $;
 datalines;
1 1 January
2 2 February
3 3 March
4 4 April
;

This program includes an external file named MYFILE and submits the DATA
step that it contains before the PROC PRINT step executes.

%include 'MYFILE';
proc print;
run;

%INCLUDE Statement 137

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=v_001&docsetTarget=n18fij8dqsue9pn1lp8436e5mvb7.htm&locale=en

n To reference a file by using a fileref rather than the actual filename, you can use
the FILENAME statement (or a command recognized by your operating
environment) to assign a fileref.

filename in1 'MYFILE';

Later, you can access MYFILE with the fileref IN1.

%inc in1;

n If you want to use many files that are stored in a directory, you can assign a
fileref to the directory location and then specify the filename in the %INCLUDE
statement. For example, this FILENAME statement assigns the fileref storage
to an aggregate storage location.

filename storage
 'aggregate-storage-location';

Later, you can include a file using this statement.

%inc storage(MYFILE);

n You can also access several files or members from this storage location by
listing them in parentheses after the fileref in a single %INCLUDE statement.
Separate filenames with a comma or a blank space. This %INCLUDE statement
demonstrates this method.

%inc storage(file-1,file-2,file-3);

When the file does not have the default .SAS extension, you can access it using
quotation marks around the complete filename listed inside the parentheses.

n

%inc storage("file-1.txt","file-2.dat",
 "file-3.cat");

Example 2: Including Previously Submitted Lines
This %INCLUDE statement causes SAS to process lines 1, 5, 9 through 12, and 13
through 16 as if you had entered them again from your keyboard.

%include 1 5 9-12 13:16;

Example 3: Including Input from the Keyboard
The method shown in this example is valid only when you run SAS in noninteractive
mode or interactive line mode.

Restriction: The asterisk (*) cannot be used to specify keyboard entry if you use the
Enhanced Editor in the Microsoft Windows operating environment.

This example uses %INCLUDE to add a customized TITLE statement when PROC
PRINT executes.

data report;
 infile file-specification;
 input month $ salesamt $;
run;
proc print;
 %include *;

138 Chapter 2 / Dictionary of SAS Global Statements

run;

When this DATA step executes, %INCLUDE with the asterisk causes SAS to issue a
prompt for statements that are entered at the keyboard. For example:

where month= 'January';
title 'Data for month of January';

After you enter statements, you can use %RUN to resume processing by entering
%run;.

The %RUN statement signals to SAS to leave keyboard-entry mode and resume
reading and executing the remaining SAS statements from the original program.

Example 4: Using %INCLUDE with Several Entries in a Single
Catalog
This example submits the source code from three entries in the catalog
MYLIB.INCLUDE. When no entry type is specified, the default is CATAMS.

filename dir catalog 'mylib.include';
%include dir(mem1);
%include dir(mem2);
%include dir(mem3);

See Also

Statements:

n “%LIST Statement” on page 189

n “%RUN Statement” on page 203

LIBNAME Statement
Associates or disassociates a SAS library with a libref (a shortcut name), clears one or all librefs,
lists the characteristics of a SAS library, concatenates SAS libraries, or concatenates SAS catalogs.

Valid in: Anywhere

Category: Data Access

Restriction: When SAS is in a locked-down state, the LIBNAME statement is not available for
files that are not in the lockdown path list. For more information, see “SAS
Processing Restrictions for Servers in a Locked-Down State” in SAS Programmer’s
Guide: Essentials.

See: LIBNAME Statement under Windows, UNIX, and z/OS

LIBNAME Statement 139

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=chloptfmain.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p0bnp6asvws4don1jxyxe9cc91wb.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p07a4muofiu0nqn125qb6fwcwc8h.htm&locale=en

Syntax

Form 1: LIBNAME libref <engine> 'SAS-library'
< libname-options > <engine-host-options>;

Form 2: LIBNAME libref CLEAR | _ALL_ CLEAR ;

Form 3: LIBNAME libref LIST | _ALL_ LIST;

Form 4: LIBNAME libref <engine> (library-specification-1 <…library-specification-n>)
<libname-options>;

Required Arguments
libref

is a shortcut name or a “nickname” for the aggregate storage location where
your SAS files are stored. It is any SAS name when you are assigning a new
libref. When you are disassociating a libref from a SAS library or when you are
listing attributes, specify a libref that was previously assigned.

Range 1 to 8 bytes

Tip The association between a libref and a SAS library lasts only for the
duration of the SAS session or until you change it or discontinue it with
another LIBNAME statement.

See A libref follows the same rules of syntax as any SAS name. For more
information about SAS naming conventions, see “Words and Names” in
SAS Programmer’s Guide: Essentials.

'SAS-library'
must be the physical name for the SAS library. The physical name is the name
that is recognized by the operating environment. Enclose the physical name in
single or double quotation marks.

Operating
environment

For more information about specifying the physical names of
files, see the SAS documentation for your operating
environment.

library-specification
is two or more SAS libraries that are specified by physical names, previously
assigned librefs, or a combination of the two. Separate each specification with
either a blank or a comma and enclose the entire list in parentheses.

'SAS-library'
is the physical name of a SAS library, enclosed in quotation marks.

libref
is the name of a previously assigned libref.

Restriction When concatenating libraries, you cannot specify options that are
specific to an engine or an operating environment.

See “Rules for Library Concatenation” on page 153

140 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0691yyhwyeg0in19g0nmfd4cgtd.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0691yyhwyeg0in19g0nmfd4cgtd.htm&locale=en

Example “Example 2: Logically Concatenating SAS Libraries” on page 155

CLEAR
disassociates one or more currently assigned librefs.

Tip Specify libref to disassociate a single libref. Specify _ALL_ to disassociate
all currently assigned librefs.

ALL
specifies that the CLEAR or LIST argument applies to all currently assigned
librefs.

LIST
writes the attributes of one or more SAS libraries to the SAS log.

Tip Specify libref to list the attributes of a single SAS library. Specify _ALL_ to
list the attributes of all SAS libraries that have librefs in your current
session.

Optional Arguments
libname-options can be any of these values:

ACCESS=READONLY | TEMP

READONLY
assigns a read-only attribute to an entire SAS library. SAS does not allow
you to open a data set in the library in order to update information or write
new information.

TEMP
specifies that the SAS library be treated as a scratch library. That is, the
system does not consume CPU cycles to ensure that the files in a Temp
library do not become corrupted.

Tip Use ACCESS=TEMP to save resources only when the data is
recoverable.

Operating
environment

Some operating environments support LIBNAME statement
options that have similar functions to the ACCESS= option.
See the SAS documentation for your operating environment.

AUTHADMIN= YES | NO
specifies whether an administrator can access a metadata-bound library for
which corresponding metadata is corrupted, misconfigured, or missing.

Default NO

Restriction This LIBNAME option can be used only by administrators of
metadata-bound libraries.

Interactions If the administrator specifies AUTHADMIN=YES in a LIBNAME
statement and knows the password (or passwords) for the target

LIBNAME Statement 141

data, the administrator can access that data by explicitly supplying
the password (or passwords).

An administrator can choose to specify the AUTHPW= option in
the LIBNAME statement as an additional method for making the
metadata-bound library password available to later requests.

Note The use of AUTHADMIN=YES is intended for the administrator to
correct misaligned location and metadata information. To ensure
that the user who is issuing the LIBNAME statement has
administrator rights to correct the misalignments, the user must
have the same permissions that are needed to run the AUTHLIB
procedure statements and must supply the metadata-bound data
passwords when accessing the data sets.

Tip The AUTHLIB REPAIR statement is preproduction. It is
recommended that you use AUTHADMIN=YES when performing
any AUTHLIB REPAIR action.. As a best practice, do not use
AUTHADMIN=YES in any other circumstance.

See “AUTHPW=password”

“Metadata-Bound Libraries” on page 154

SAS Guide to Metadata-Bound Libraries

PROC AUTHLIB in Base SAS Procedures Guide

AUTHALTER=alter-password
Specifies an ALTER password to use only in data access requests where both of
these conditions exist:

n AUTHADMIN=YES is specified in the LIBNAME statement that is referenced
in the request.

n The correct password for the target metadata-bound data set or library is
not otherwise available or is invalid.

Requirement The AUTHADMIN option must be set to YES for this option to
have an effect.

Interaction You can use the AUTHALTER= option in the same way as the
AUTHPW= option if all three of the passwords (ALTER, READ, and
WRITE) are the same.

See SAS Guide to Metadata-Bound Libraries

AUTHPW=password
Specifies a password to use only in data access requests where both of these
conditions exist:

n AUTHADMIN=YES is specified in the LIBNAME statement that is referenced
in the request or is invalid.

n The correct password for the target metadata-bound library is not otherwise
available.

142 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Requirement The AUTHADMIN option must be set to YES for this option to
have an effect. However, the use of AUTHAMDIN=YES does not
require that you use AUTHPW. You are not required to specify
metadata-bound library passwords in a LIBNAME statement.

Interactions If the metadata-bound library has two or three distinct passwords,
you must specify each individual password with the AUTHALTER=,
AUTHREAD=, and AUTHWRITE= options as appropriate instead of
using the AUTHPW= option on its own.

You can use the AUTHALTER= option in the same way as the
AUTHPW= option if all three of the passwords (ALTER, READ, and
WRITE) are the same and you are in a SAS language context where
ALTER= can be used.

Tip An error occurs if the AUTHPW password does not match the
password that is within the referenced secured library object.

See SAS Guide to Metadata-Bound Libraries

AUTHREAD=read-password
Specifies a READ password to use only in data access requests where both of
these conditions exist:

n AUTHADMIN=YES is specified in the LIBNAME statement that is referenced
in the request.

n The correct password for the target metadata-bound library is not otherwise
available or is invalid.

Requirement The AUTHADMIN option must be set to YES for this option to
have an effect.

See SAS Guide to Metadata-Bound Libraries

AUTHWRITE=write-password
Assigns a WRITE password to a metadata-bound library that prevents users
from writing to a library, unless they enter the password.

Requirement The AUTHADMIN option must be set to YES for this option to
have an effect.

See SAS Guide to Metadata-Bound Libraries

COMPRESS=NO | CHAR | BINARY
controls the compression of observations in output SAS data sets for a SAS
library.

NO
specifies that the observations in a newly created SAS data set be
uncompressed (fixed-length records).

CHAR
specifies that the observations in a newly created SAS data set be
compressed (variable-length records) by SAS using RLE (Run Length

LIBNAME Statement 143

Encoding). RLE compresses observations by reducing repeated consecutive
characters (including blanks) to two-byte or three-byte representations.

Alias YES

Tip Use this compression algorithm for character data.

BINARY
specifies that the observations in a newly created SAS data set be
compressed (variable-length records) by SAS using RDC (Ross Data
Compression). RDC combines run-length encoding and sliding-window
compression to compress the file.

Tip This method is highly effective for compressing medium to large
(several hundred bytes or larger) blocks of binary data (numeric
variables). Because the compression function operates on a single
record at a time, the record length needs to be several hundred bytes or
larger for effective compression.

Interaction For the COPY procedure, the default value CLONE uses the
compression attribute from the input data set for the output data
set instead of the value specified in the COMPRESS= option. For
more information about CLONE and NOCLONE, see COPY
Statement in the DATASETS procedure. This interaction does not
apply when using SAS/SHARE or SAS/CONNECT.

See Compression in SAS® V9 LIBNAME Engine: Reference.

CVPBYTES=bytes
specifies the number of bytes by which to expand character variable lengths
when processing a SAS data file that requires transcoding. The CVP engine
expands the lengths so that character data truncation does not occur. The
lengths for character variables are increased by adding the specified value to
the current length. You can specify a value from 0 to 32,766.

For example, the following LIBNAME statement implicitly assigns the CVP
engine by specifying the CVPBYTES= option:

libname expand 'SAS data-library' cvpbytes=5;

Character variable lengths are increased by adding 5 bytes. A character variable
with a length of 10 is increased to 15, and a character variable with a length of
100 is increased to 105.

Default If you specify CVPBYTES=, SAS automatically uses the CVP
engine to expand the character variable lengths according to your
specification. If you explicitly assign the CVP engine but do not
specify either CVPBYTES= or CVPMULTIPLIER=, then SAS uses
CVPMULTIPLIER=1.5 to increase the lengths of the character
variables.

Restrictions The CVP engine supports SAS data files, no SAS views, catalogs,
item stores, and so on.

The CVP engine is available for input (read) processing only.

144 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1juxu16zautpxn1dikxecc3kn7w.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1juxu16zautpxn1dikxecc3kn7w.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=v_028&docsetId=engsas7bdat&docsetTarget=p1mguippriqin6n1xuycx0gl3kae.htm

For library concatenation with mixed engines that include the CVP
engine, only SAS data files are processed. For example, if you
execute the COPY procedure, only SAS data files are copied.

Requirement The number of bytes that you specify must be large enough to
accommodate any expansion. Otherwise, truncation occurs, which
results in an error message in the SAS log.

Interaction You cannot specify both the CVPBYTES= option and the
CVPMULTIPLIER= option. Specify only one of these options.

See “Avoiding Character Data Truncation By Using the CVP Engine” in
SAS National Language Support (NLS): Reference Guide

CVPENGINE=engine
specifies the engine to use to process a SAS data file that requires transcoding.
The CVP engine expands the character variable lengths to transcoding so that
character data truncation does not occur. Then the specified engine processes
the actual file.

Alias CVPENG

Default SAS uses the default SAS engine.

See “Avoiding Character Data Truncation By Using the CVP Engine” in SAS
National Language Support (NLS): Reference Guide

CVPFORMATWIDTH=YES | NO
specifics whether to expand the character format width.

If CVPVARCHAR= is not specified, the new format width is determined by the
CVPMULTIPILER= and CVPBYTES= options.

If CVPVARCHAR= is specified, the CVP engine automatically adjusts the format
width to meet the maximum-byte length of a converted character variable. For
example, in a UTF-8 session, the format width is multiplied by 4.

Alias CVPFMTW

Default YES

CVPMULTIPLIER=multiplier
specifies a multiplier value that expands character variable lengths when you
are processing a SAS data file that requires transcoding. The CVP engine
expands the lengths so that character data truncation does not occur. The
lengths for character variables are increased by multiplying the current length
by the specified value. You can specify a multiplier value from 1 to 5 or you can
specify 0 and then the CVP engine determines the multiplier automatically.

For example, the following LIBNAME statement implicitly assigns the CVP
engine by specifying the CVPMULTIPLIER= option:

libname expand 'SAS data-library' cvpmultiplier=2.5;

LIBNAME Statement 145

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p00fhxufzmc274n19xax2hllvin4.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p00fhxufzmc274n19xax2hllvin4.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p00fhxufzmc274n19xax2hllvin4.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p00fhxufzmc274n19xax2hllvin4.htm&locale=en

Character variable lengths are increased by multiplying the lengths by 2.5. A
character variable with a length of 10 is increased to 25, and a character variable
with a length of 100 is increased to 250.

Alias CVPMULT

Default If you specify the CVPMULTIPLIER= option, SAS automatically
uses the CVP engine to expand the character variable lengths
according to your specification. If you explicitly specify the CVP
engine but do not specify either the CVPMULTIPLIER= option or
the CVPBYTES= option, then SAS uses
CVPMULTIPLIER=AUTO(0) to increase the lengths. AUTO(0) sets
the value of the CVP engine based on the encoding of the SAS
session and input data set.

Restrictions The CVP engine supports SAS data files, no SAS views, catalogs,
item stores, and so on.

The CVP engine is available for input (read) processing only.

For library concatenation with mixed engines that include the CVP
engine, only SAS data files are processed. For example, if you
execute the COPY procedure, only SAS data files are copied.

Requirement The number of bytes that you specify must be large enough to
accommodate any expansion. Otherwise, truncation occurs, which
results in an error in the SAS log.

Interaction You cannot specify both the CVPMULTIPLIER= option and the
CVPBYTES= option. Specify only one of these options.

See “Avoiding Character Data Truncation By Using the CVP Engine” in
SAS National Language Support (NLS): Reference Guide

CVPVARCHAR=YES | NO
specifies whether to convert fixed-width character variables to variable-width
characters during input file processing. The byte length of the new-width
character variable is the maximum number of bytes per character from the SAS
session encoding multiplied by the specified fixed-width character length.

Default No

Interaction If you specify CVPVARCHAR=YES, the CVPMULTIPLIER= and
CVPBYTES= options are ignored.

Notes Trailing blanks are removed from string data that is under CHAR
columns.

Fixed-width character variables with a format of TRANSCODE=NO
are excluded during conversion.

EXTENDOBSCOUNTER=YES | NO
specifies whether to extend the maximum observation count in output SAS data
files for a SAS library.

146 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p00fhxufzmc274n19xax2hllvin4.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p00fhxufzmc274n19xax2hllvin4.htm&locale=en

YES
specifies to use the default maximum observation count of 263–1 or
approximately 9.2 quintillion observations in a newly created SAS data file.

Restriction A SAS data file that has the extended observation count
attribute cannot be used by releases prior to SAS 9.3. To remove
the extended observation count attribute, the file must be re-
created. If you plan to use the file in SAS 9.2 or earlier releases,
then set EXTENDOBSCOUNTER=NO when you create the file.

Interaction EXTENDOBSCOUNTER=YES is ignored if the data
representation is a 64-bit UNIX operating environment.

NO
is a compatibility setting for a newly created SAS data file, to enable its use
in releases prior to SAS 9.3.

n Under UNIX, if you specify OUTREP= and plan to use the file in SAS 9.2
or earlier releases, specify EXTENDOBSCOUNTER=NO. If you do not
specify OUTREP=, then you do not need to specify
EXTENDOBSCOUNTER=NO.

n Under Windows or z/OS, if you plan to use the file in SAS 9.2 or earlier
releases, specify EXTENDOBSCOUNTER=NO.

Alias EOC=

Defaults Under UNIX environments, by default the EXTENDOBSCOUNTER=
option is not set. The extended observation count feature is not
necessary under 64-bit UNIX. However, if you specify the
OUTREP= option, and the data representation is not a 64-bit UNIX
operating environment, then SAS automatically sets
EXTENDOBSCOUNTER=YES. SAS adds the extended observation
count feature for compatibility with environments other than UNIX
where it might be necessary.

Under Windows and z/OS, by default EXTENDOBSCOUNTER=YES.
Files are created with the enhanced file format and the extended
observation count attribute.

Restrictions Use with output data files only.

Use with the BASE engine only.

If you copy a file, the extended observation count attribute is not
inherited.

See Understanding the Observation Count in SAS® V9 LIBNAME Engine:
Reference.

INENCODING=ANY | ASCIIANY | EBCDICANY | encoding-value
overrides the encoding when you are reading (input processing) SAS data sets in
the SAS library.

LIBNAME Statement 147

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=v_028&docsetId=engsas7bdat&docsetTarget=n0wr5xu5i88xdcn1drik43vxdvx0.htm

See “INENCODING=, OUTENCODING= Options Statements” in SAS National
Language Support (NLS): Reference Guide

LIBRARYDEFINITION=source-definition-URI
retrieves pre-defined engine LIBNAME information from the Data Sources
microservice and performs a LIBNAME assignment using that information.

Here is an example:

libname x
 LIBDEF="/dataSources/providers/Compute/
 sourceDefinitions/a22d983d-c324-442c-a605-06758af9aa6d"
 access=readonly;

Note: The SERVICESBASEURL= system option must be set during the
invocation of your SAS session. This option specifies the host and port for file
service requests. The access method fails at assignment time if the
SERVICESBASEURL= option is not specified. For more information, see
“SERVICESBASEURL= System Option” in SAS System Options: Reference.

Note: The SAS_VIYA_TOKEN environment variable must be defined. For more
information about defining this variable, see “SAS_VIYA_TOKEN Environment
Variable” in Encryption in SAS.

Alias LIBDEF=

Restriction This is option is available only in SAS Viya 3.4.

Requirement LIBDEF= must be the first option specified after the libref.

OUTENCODING=
OUTENCODING=ANY | ASCIIANY | EBCDICANY | encoding-value

overrides the encoding when you are creating (output processing) SAS data sets
in the SAS library.

See “INENCODING=, OUTENCODING= Options Statements” in SAS National
Language Support (NLS): Reference Guide

OUTREP=format
specifies the data representation, which is the form in which data is stored in a
particular operating environment. Different operating environments use
different standards or conventions for storing data.

n Floating-point numbers can be represented in IEEE floating-point format or
IBM floating-point format.

n Data alignment can be on a 1-byte, 4-byte, or 8-byte boundary, depending on
data type requirements for the operating environment.

n Data type lengths can be 8 bits or more for a character data type, 16 bit, 32
bit, or 64 bit for an integer data type, 32 bit for a single-precision floating-
point data type, and 64 bit for a double-precision floating-point data type.

148 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n02q3gv9mfdwnmn1ca9kqa3gbayl.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n02q3gv9mfdwnmn1ca9kqa3gbayl.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p191674k3chjf3n1vze4cfzfn18e.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n1t26fdyhpc8bjn1rpx1eme1c7il.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n1t26fdyhpc8bjn1rpx1eme1c7il.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n02q3gv9mfdwnmn1ca9kqa3gbayl.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n02q3gv9mfdwnmn1ca9kqa3gbayl.htm&locale=en

n The ordering of bytes can be big Endian or little Endian.

By default, SAS creates a new SAS data set by using the data representation of
the CPU that is running SAS. Specifying the OUTREP= option enables you to
create a SAS data set with a different data representation. For example, in a
UNIX environment, you can create a SAS data set that uses a Windows data
representation. For more information about compatibility and data
representation, see “Cross-Environment Data Access” in SAS Programmer’s
Guide: Essentials.

Values for OUTREP= are listed in this table.

Table 2.2 Data Representation Values for OUTREP= Option

OUTREP= Value Alias1 Environment

ALPHA_VMS_64 OpenVMS Alpha

HP_IA64 HP_ITANIUM HP-UX for the Itanium Processor
Family Architecture

HP_UX_32 HP_UX HP-UX for PA-RISC

HP_UX_64 HP-UX for PA-RISC, 64-bit

LINUX_32 LINUX Linux for Intel architecture

LINUX_X86_64 Linux for x64

LINUX_POWER_64 Linux on the Power Architecture2

MIPS_ABI MIPS ABI

MVS_32 MVS 31-bit SAS on z/OS

MVS_64_BFP 64-bit SAS on z/OS

RS_6000_AIX_32 RS_6000_AIX AIX

RS_6000_AIX_64 AIX

SOLARIS_32 SOLARIS Solaris for SPARC

SOLARIS_64 Solaris for SPARC

SOLARIS_X86_64 Solaris for x64

VMS_IA64 OpenVMS on HP Integrity

WINDOWS_32 WINDOWS 32-bit SAS on Microsoft
Windows

LIBNAME Statement 149

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en

OUTREP= Value Alias1 Environment

WINDOWS_64 64-bit SAS on Microsoft
Windows (for both Itanium-based
systems and x64)

1 It is recommended that you use the current values. The aliases are available for compatibility
only.

2 LINUX_POWER_64 is added in SAS Viya 3.5. It is not supported in SAS 9.

Interactions By default, PROC COPY uses the data representation of the file
from the source library. If, instead, you want to use the data
representation of the current SAS session, specify the NOCLONE
option. If you want to use a different data representation, specify
the NOCLONE option and the OUTREP= option. When you use
PROC COPY with SAS/SHARE or SAS/CONNECT, the default
behavior is to use the data representation of the current SAS
session. For more information about CLONE and NOCLONE, see
COPY Statement in the Base SAS Procedures Guide.

The COPY procedure (with NOCLONE) and the MIGRATE
procedure can use the LIBNAME option OUTREP= for DATA, VIEW,
ACCESS, MDDB, and DMDB member types. Otherwise, only DATA
member types are affected by the OUTREP= LIBNAME option.

When you use the OUTREP= LIBNAME statement option, the
default encoding is based on the operating environment that is
represented by the OUTREP= value and the locale of the current
SAS session. To assign a nondefault encoding such as UTF-8, you
must also specify the OUTENCODING= LIBNAME statement
option. For more information about locale and encoding, see SAS
National Language Support (NLS): Reference Guide.

Transcoding could result in character data loss when encodings are
incompatible. For more information, see SAS National Language
Support (NLS): Reference Guide.

If you specify the OUTREP= option, and you plan to use the file in
an earlier release of SAS, you might also want to specify the
EXTENDOBSCOUNTER= option. See
“EXTENDOBSCOUNTER=YES | NO” on page 146.

POINTOBS=YES | NO
specifies whether SAS creates compressed data sets whose observations can
be randomly accessed or sequentially accessed.

YES
causes SAS software to produce a compressed data set that might be
randomly accessed by observation number.

Note For an individual data set, the POINTOBS= data set option overrides
the setting of the POINTOBS= option in the LIBNAME statement.

150 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1juxu16zautpxn1dikxecc3kn7w.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Tip Specifying POINTOBS=YES does not affect the efficiency of retrieving
information from a data set. It does increase CPU usage by
approximately 10% when creating a compressed data set and when
updating or adding information to it.

NO
suppresses the ability to randomly access observations in a compressed
data set by observation number.

Tip Specifying POINTOBS=NO is desirable for applications where the
ability to point directly to an observation by number within a
compressed data set is not important. If you do not need to access data
by observation number, then you can improve performance by
approximately 10% by specifying POINTOBS=NO when creating a
compressed data set or when updating or adding observations to it.

Default YES

REPEMPTY=YES | NO
controls replacement of SAS data sets when the new one is empty.

YES
specifies that a new empty data set replaces an existing data set. This is the
default.

Interaction If REPEMPTY=YES and REPLACE=NO, then the data set is not
replaced.

NO
specifies that a new empty data set does not replace an existing data set.

Here is an example where setting REPEMPTY=NO prevents the empty data
set B from replacing the data set MYLIB.A:

libname mylib 'c:\mydata' repempty=no;
data mylib.a;
 i=1;
run;

data b; /* create an empty data set B */
run;

data mylib.a;
 set b;
run;

Here is the log:

WARNING: Data set MYLIB.A was not replaced because REPEMPTY=NO and the replacement file is empty.

Tip For both the convenience of replacing existing data sets with new ones
that contain data and the protection of not overwriting existing data
sets with new empty ones that are created by mistake, set
REPLACE=YES and REPEMPTY=NO.

LIBNAME Statement 151

Note For an individual data set, the REPEMPTY= data set option overrides the
setting of the REPEMPTY= option in the LIBNAME statement.

See “REPEMPTY= Data Set Option” in SAS Data Set Options: Reference

Engines
engine

is an engine name.

Tip Usually, SAS automatically determines the appropriate engine to use for
accessing the files in the library. If you want to create a new library with an
engine other than the default engine, then you can override the automatic
selection.

See LIBNAME Statement under Windows, UNIX, and z/OS

For more information, see “SAS Engines” in SAS Programmer’s Guide:
Essentials.

Engine Host Options
engine-host-options

are one or more options that are listed in the general form keyword=value. For a
list of engines, see the SAS documentation for your operating system.

Restriction When concatenating libraries, you cannot specify options that are
specific to an engine or an operating environment.

See LIBNAME Statement under Windows, UNIX, and z/OS

Details

Associating a Libref with a SAS Library (Form 1)
The association between a libref and a SAS library lasts only for the duration of the
SAS session or until you change the libref or discontinue it with another LIBNAME
statement. The simplest form of the LIBNAME statement specifies only a libref and
the physical name of a SAS library:

LIBNAME libref 'SAS-library';

See “Example 1: Assigning and Using a Libref” on page 155.

An engine specification is usually not necessary. If the situation is ambiguous, SAS
uses the setting of the ENGINE= system option to determine the default engine. If
all data sets in the library are associated with a single engine, then SAS uses that
engine as the default. In either situation, you can override the default by specifying
another engine with the ENGINE= system option:

LIBNAME libref engine 'SAS-library'

152 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0nmr4kvvacy4hn1ouoflb8ro435.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=chloptfmain.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p0bnp6asvws4don1jxyxe9cc91wb.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p07a4muofiu0nqn125qb6fwcwc8h.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1ktkmsxzmn1ogn1k649d67np3t1.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1ktkmsxzmn1ogn1k649d67np3t1.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=chloptfmain.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p0bnp6asvws4don1jxyxe9cc91wb.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p07a4muofiu0nqn125qb6fwcwc8h.htm&locale=en

<options> <engine/host-options>;

Operating Environment Information: Using the LIBNAME statement requires
host-specific information. See the SAS documentation for your operating
environment before using this statement.

Disassociating a Libref from a SAS Library (Form 2)
To disassociate a libref from a SAS library, use a LIBNAME statement by specifying
the libref and the CLEAR option. You can clear a single, specified libref or all
current librefs.

LIBNAME libref CLEAR | _ALL_ CLEAR;

Writing SAS Library Attributes to the SAS Log (Form 3)
Use a LIBNAME statement to write the attributes of one or more SAS libraries to
the SAS log. Specify libref to list the attributes of one SAS library; use _ALL_ to list
the attributes of all SAS libraries that have been assigned librefs in your current
SAS session.

LIBNAME libref LIST | _ALL_ LIST;

Concatenating SAS Libraries (Form 4)
When you logically concatenate two or more SAS libraries, you can reference them
all with one libref. You can specify a library with its physical filename or its
previously assigned libref.

LIBNAME libref <engine> (library–specification-1 <…library-specification-n>)
< options>;

In the same LIBNAME statement, you can use any combination of specifications:
librefs, physical filenames, or a combination of librefs and physical filenames. See
“Example 2: Logically Concatenating SAS Libraries” on page 155.

Concatenating SAS Catalogs (Form 4)
When you logically concatenate two or more SAS libraries, you also concatenate
the SAS catalogs that have the same name. For example, if three SAS libraries each
contain a catalog named CATALOG1, then when you concatenate them, you create
a catalog concatenation for the catalogs that have the same name. See “Example 3:
Concatenating SAS Catalogs” on page 156.

LIBNAME libref <engine> (library–specification-1 <...library-specification-n>)
< options >;

Rules for Library Concatenation
After you create a library concatenation, you can specify the libref in any context
that accepts a simple (non-concatenated) libref. These rules determine how SAS
files (that is, members of SAS libraries) are located among the concatenated
libraries:

LIBNAME Statement 153

n When a SAS file is opened for input or update, the concatenated libraries are
searched and the first occurrence of the specified file is used.

n When a SAS file is opened for output, it is created in the first library that is
listed in the concatenation.

Note: A new SAS file is created in the first library even if there is a file with the
same name in another part of the concatenation.

n When you delete or rename a SAS file, only the first occurrence of the file is
affected.

n Anytime a list of SAS files is displayed, only one occurrence of a filename is
shown.

Note: Even if the name occurs multiple times in the concatenation, only the
first occurrence is shown.

n A SAS file that is logically connected to another file (such as an index to a data
set) is listed only if the parent file resides in that same library. For example, if
library One contains A.DATA, and library Two contains A.DATA and A.INDEX,
only A.DATA from library One is listed. (See the previous rule.)

n If any library in the concatenation is sequential, then all of the libraries are
treated as sequential.

n The attributes of the first library that is specified determine the attributes of
the concatenation. For example, if the first SAS library that is listed is “read
only,” then the entire concatenated library is “read only.”

n If you specify any options or engines, they apply only to the libraries that you
specified with the complete physical name, not to any library that you specified
with a libref.

n If you alter a libref after it has been assigned in a concatenation, it does not
affect the concatenation.

Automatically Creating the Library Directory
You can set the DLCREATEDIR system option to create the directory for the SAS
library that is specified in the LIBNAME statement if that directory does not exist.
For more information, see “DLCREATEDIR System Option” in SAS System Options:
Reference.

z/OS Specifics: For more information, see “DLCREATEDIR System Option: z/OS” in
SAS Companion for z/OS.

Metadata-Bound Libraries
The Base SAS LIBNAME engine can enforce permissions on a user and group basis
to SAS data sets that are bound to secured table objects in the metadata server.
Metadata-bound libraries provide enhanced protection for Base SAS data (SAS
data sets and SAS views). A connection to the metadata server is required in order
to access metadata-bound data.

154 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1pihdnfpj4b32n1t62lx0zdsmdn.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1pihdnfpj4b32n1t62lx0zdsmdn.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n1jrsjpog0knqrn116y9hzjg01j5.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n1jrsjpog0knqrn116y9hzjg01j5.htm&locale=en

For more information, see SAS Guide to Metadata-Bound Libraries and the AUTHLIB
procedure in Base SAS Procedures Guide.

If you have questions or need assistance accessing your data, contact your local
SAS Administrator.

Comparisons

n Use the LIBNAME statement to reference a SAS library. Use the FILENAME
statement to reference an external file. Use the LIBNAME, SAS/ACCESS
statement to access DBMS tables.

n Use the CATNAME statement to concatenate SAS catalogs. Use the LIBNAME
statement to concatenate SAS catalogs. The CATNAME statement enables you
to specify the names of the catalogs that you want to concatenate. The
LIBNAME statement concatenates all like-named catalogs in the specified SAS
libraries.

Examples

Example 1: Assigning and Using a Libref
This example assigns the libref SALES to an aggregate storage location that is
specified in quotation marks as a physical filename. The DATA step creates
SALES.QUARTER1 and stores it in that location. The PROC PRINT step references
it by its two-level name, SALES.QUARTER1.

libname sales 'SAS-library';
data sales.quarter1;
infile 'your-input-file';
input salesrep $20. +6 jansales febsales
 marsales;
run;
proc print data=sales.quarter1;
run;

Example 2: Logically Concatenating SAS Libraries
n This example concatenates three SAS libraries by specifying the physical

filename of each:

libname allmine ('file-1' 'file-2' 'file-3');

n This example assigns librefs to two SAS libraries, one that contains SAS 6 files
and one that contains SAS 9 files. This technique is useful for updating your
files and applications from SAS 6 to SAS 9 and enables you to have convenient
access to both sets of files:

libname v6 'v6–SAS-library';
libname v9 'v9–SAS-library';
libname allmine (v9 v6);

LIBNAME Statement 155

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

n This example shows that you can specify both librefs and physical filenames in
the same concatenation specification:

libname allmine (v9 v6 'some-filename');

Example 3: Concatenating SAS Catalogs
This example concatenates three SAS libraries by specifying the physical filename
of each and assigns the libref ALLMINE to the concatenated libraries:

libname allmine ('file-1' 'file-2' 'file-3');

If each library contains a SAS catalog named MYCAT, then using ALLMINE.MYCAT
as a libref.catref provides access to the catalog entries that are stored in all three
catalogs named MYCAT. To logically concatenate SAS catalogs with different
names, see “CATNAME Statement” on page 9.

Example 4: Permanently Storing Data Sets with One-Level
Names
If you want the convenience of specifying only a one-level name for permanent, not
temporary, SAS files, then use the USER= system option. This example stores the
data set QUARTER1 permanently without using a LIBNAME statement first to
assign a libref to a storage location:

options user='SAS-library';
data quarter1;
infile 'your-input-file';
input salesrep $20. +6 jansales febsales
 marsales;
run;
proc print data=quarter1;
run;

See Also

n To determine the maximum number of characters for a SAS name that is
measure in bytes, see “Extending SAS Names” in SAS Programmer’s Guide:
Essentials.

Data Set Options:

n “ENCODING= Data Set Option” in SAS National Language Support (NLS):
Reference Guide

Statements:

n “CATNAME Statement” on page 9 for a discussion of concatenating SAS
catalogs

n “FILENAME Statement” on page 19

156 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&docsetTargetAnchor=n1nypnpq6c22vgn1i35yn1cdkr58&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&docsetTargetAnchor=n1nypnpq6c22vgn1i35yn1cdkr58&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n0kzmrsdx5evkxn1ihs24h8ljg2b.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n0kzmrsdx5evkxn1ihs24h8ljg2b.htm&locale=en

n LIBNAME option character variable attributes used to transcode SAS files

n “LIBNAME Statement: SASEDOC” in SAS Output Delivery System: User’s Guide

n LIBNAME Statement for SAS metadata

n LIBNAME Statement for Scalable Performance Data (SPD)

n LIBNAME statement for XML documents

n LIBNAME Statement for SAS/ACCESS

n LIBNAME Statement for SAS/CONNECT

n “LIBNAME: SASESOCK Engine” in SAS/CONNECT User’s Guide

n LIBNAME Statement for SAS/SHARE

n “LOCKDOWN Statement” in SAS Intelligence Platform: Application Server
Administration Guide

System Options:

n “DLCREATEDIR System Option” in SAS System Options: Reference

n “LOCKDOWN System Option in SAS Intelligence Platform: Application Server
Administration Guide

n “USER= System Option” in SAS System Options: Reference

LIBNAME Statement: CVP Engine
Associates a libref for the character variable padding (CVP) engine to expand character variable
lengths so that character data truncation does not occur when a file requires transcoding.

Valid in: Anywhere

Category: Data Access

Restrictions: The CVP engine is available for input (read) processing only.
The CVP engine supports SAS data files, but the engine does not support SAS
views, catalogs, or item stores.
The number of bytes that you specify must be large enough to accommodate any
expansion. Otherwise, truncation occurs, which results in an error message in the
SAS log.
For library concatenation with mixed engines that include the CVP engine, only SAS
data files are processed. For example, if you execute the COPY procedure, only SAS
data files are copied.

Syntax

LIBNAME libref CVP 'SAS-library' <libname-options>;

LIBNAME Statement: CVP Engine 157

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n11ag7u03jhawrn19cbftm103e4p.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=n0d0r6ehyq1gftn1qdy5p8gplcwh.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=n0or4x4zaycb7an11nt75y2nxhhm.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=p1gofo6gjy1pw9n1pikfspev3syy.htm&locale=en
http://documentation.sas.com/?docsetId=engxml&docsetVersion=9.4&docsetTarget=n1p6kbmn43fz0en1tajxf3y7karg.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=n0v059azebcuepn1o8x4c7wi1pfs.htm&locale=en
http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=p0kbcxy5kx9nwxn1qr9guspg2cz3.htm&locale=en
http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=p0ysgkja4otun1n1sw1jku2ryurd.htm&locale=en
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=n03d753hzvcmg8n1a6suvnadpfo5.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1pihdnfpj4b32n1t62lx0zdsmdn.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1tl8adik7ypwun1utdwxaauf9wq.htm&locale=en

Required Arguments
libref

is a character constant, variable, or expression that specifies the libref that is
assigned to a SAS library.

Range 1 to 8 bytes

SAS-library
is the physical name for the SAS library. The physical name is recognized by the
operating environment. Enclose the physical name in single or double quotation
marks.

Optional Argument
libname-options

libname-options can be any of these values:

CVPBYTES=bytes
specifies the number of bytes by which to expand character variable lengths
when processing a SAS data file that requires transcoding. The CVP engine
expands the lengths so that character data truncation does not occur. The
lengths for character variables are increased by adding the specified value to
the current length. You can specify a value from 0 to 32,766.

For example, the following LIBNAME statement implicitly assigns the CVP
engine by specifying the CVPBYTES= option:

libname expand 'SAS data-library' cvpbytes=5;

Character variable lengths are increased by adding 5 bytes. A character
variable with a length of 10 is increased to 15, and a character variable with a
length of 100 is increased to 105.

Default If you specify CVPBYTES=, SAS automatically uses the CVP
engine to expand the character variable lengths according to
your specification. If you explicitly assign the CVP engine but
do not specify either CVPBYTES= or CVPMULTIPLIER=, then
SAS uses CVPMULTIPLIER=1.5 to increase the lengths of the
character variables.

Restrictions The CVP engine supports SAS data files, no SAS views,
catalogs, item stores, and so on.

The CVP engine is available for input (read) processing only.

For library concatenation with mixed engines that include the
CVP engine, only SAS data files are processed. For example, if
you execute the COPY procedure, only SAS data files are
copied.

Requirement The number of bytes that you specify must be large enough to
accommodate any expansion. Otherwise, truncation occurs,
which results in an error message in the SAS log.

158 Chapter 2 / Dictionary of SAS Global Statements

Interaction You cannot specify both the CVPBYTES= option and the
CVPMULTIPLIER= option. Specify only one of these options.

See “Avoiding Character Data Truncation By Using the CVP Engine”
in SAS National Language Support (NLS): Reference Guide

CVPENGINE=engine
specifies the engine to use to process a SAS data file that requires
transcoding. The CVP engine expands the character variable lengths to
transcoding so that character data truncation does not occur. Then the
specified engine processes the actual file.

Alias CVPENG

Default SAS uses the default SAS engine.

See “Avoiding Character Data Truncation By Using the CVP Engine” in
SAS National Language Support (NLS): Reference Guide

CVPFORMATWIDTH=YES | NO
specifics whether to expand the character format width.

If CVPVARCHAR= is not specified, the new format width is determined by
the CVPMULTIPILER= and CVPBYTES= options.

If CVPVARCHAR= is specified, the CVP engine automatically adjusts the
format width to meet the maximum-byte length of a converted character
variable. For example, in a UTF-8 session, the format width is multiplied by
4.

Alias CVPFMTW

Default YES

CVPMULTIPLIER=multiplier
specifies a multiplier value that expands character variable lengths when
you are processing a SAS data file that requires transcoding. The CVP engine
expands the lengths so that character data truncation does not occur. The
lengths for character variables are increased by multiplying the current
length by the specified value. You can specify a multiplier value from 1 to 5
or you can specify 0 and then the CVP engine determines the multiplier
automatically.

For example, the following LIBNAME statement implicitly assigns the CVP
engine by specifying the CVPMULTIPLIER= option:

libname expand 'SAS data-library' cvpmultiplier=2.5;

Character variable lengths are increased by multiplying the lengths by 2.5. A
character variable with a length of 10 is increased to 25, and a character
variable with a length of 100 is increased to 250.

Alias CVPMULT

Default If you specify the CVPMULTIPLIER= option, SAS automatically
uses the CVP engine to expand the character variable lengths

LIBNAME Statement: CVP Engine 159

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p00fhxufzmc274n19xax2hllvin4.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p00fhxufzmc274n19xax2hllvin4.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p00fhxufzmc274n19xax2hllvin4.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p00fhxufzmc274n19xax2hllvin4.htm&locale=en

according to your specification. If you explicitly specify the
CVP engine but do not specify either the CVPMULTIPLIER=
option or the CVPBYTES= option, then SAS uses
CVPMULTIPLIER=AUTO(0) to increase the lengths. AUTO(0)
sets the value of the CVP engine based on the encoding of the
SAS session and input data set.

Restrictions The CVP engine supports SAS data files, no SAS views,
catalogs, item stores, and so on.

The CVP engine is available for input (read) processing only.

For library concatenation with mixed engines that include the
CVP engine, only SAS data files are processed. For example, if
you execute the COPY procedure, only SAS data files are
copied.

Requirement The number of bytes that you specify must be large enough to
accommodate any expansion. Otherwise, truncation occurs,
which results in an error in the SAS log.

Interaction You cannot specify both the CVPMULTIPLIER= option and the
CVPBYTES= option. Specify only one of these options.

See “Avoiding Character Data Truncation By Using the CVP Engine”
in SAS National Language Support (NLS): Reference Guide

CVPVARCHAR=YES | NO
specifies whether to convert fixed-width character variables to variable-
width characters during input file processing. The byte length of the new-
width character variable is the maximum number of bytes per character from
the SAS session encoding multiplied by the specified fixed-width character
length.

Default No

Interaction If you specify CVPVARCHAR=YES, the CVPMULTIPLIER= and
CVPBYTES= options are ignored.

Notes Trailing blanks are removed from string data that is under CHAR
columns.

Fixed-width character variables with a format of
TRANSCODE=NO are excluded during conversion.

Details

The character variable padding (CVP) engine expands character variable lengths so
that character data truncation does not occur when a file requires transcoding.
Character data truncation can occur when the number of bytes for a character in
one encoding is different from the number of bytes for the same character in
another encoding. An example is a single-byte character set (SBCS) such as Wlatin1

160 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p00fhxufzmc274n19xax2hllvin4.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p00fhxufzmc274n19xax2hllvin4.htm&locale=en

or a double-byte character set (DBCS) such as Shift-jis that is transcoded to a
multi-byte character set (MBCS) such as UTF-8.

By explicitly specifying the CVP engine with the LIBNAME statement, the default
character expansion is 1.5 times the character variable lengths. To specify a
different expansion amount, use the CVPBYTES= or CVPMULTIPLIER= option.

Note: The expansion amount must be large enough to accommodate any
expansion. Otherwise, truncation still occurs.

TIP The CVP engine might affect performance for processing that
conditionally selects a subset of observations using a WHERE expression.
Processing the file without using the CVP engine might be faster than
processing the file using the CVP engine. For example, if you use the CVP
engine with a data set that has indexes, the indexes are not used to optimize
the WHERE expression.

Examples

Example 1

This LIBNAME statement explicitly assigns the CVP engine. Character variable
lengths are increased using the default expansion, which multiples the lengths by
1.5. For example, a character variable with a length of 10 has a new length of 15. A
character variable with a length of 100 has a new length of 150.

 libname expand cvp 'SAS-library';

Example 2

In this example, the CVP engine is used to expand character variable lengths by
adding two bytes to each length.

libname expand cvp 'SAS-library' cvpbytes=2;

See Also

n “Avoiding Character Data Truncation By Using the CVP Engine” in SAS National
Language Support (NLS): Reference Guide

n “Special-Purpose Engines” in SAS Language Reference: Concepts

Statements:

LIBNAME Statement: CVP Engine 161

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p00fhxufzmc274n19xax2hllvin4.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p00fhxufzmc274n19xax2hllvin4.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0l86gjqqzyngrn1rwpr7e0b5wah.htm&locale=en

n “LIBNAME Statement” on page 139

LIBNAME Statement: JMP Engine
Associates a libref with a JMP data table and enables you to read and write JMP data tables.

Valid in: Anywhere

Category: Data Access

See: Base SAS LIBNAME Statement

Syntax

LIBNAME libref JMP 'path' <FMTLIB=libref.format-catalog>;

Arguments
libref

is a character constant, variable, or expression that specifies the libref that is
assigned to a SAS library.

Range 1 to 8 bytes

path
is the physical name for the SAS library. The physical name is the name that is
recognized by the operating environment. Enclose the physical name in single or
double quotation marks.

FMTLIB=libref.format-catalog
specifies where the formats are stored when a JMP data table is read and where
the formats come from when a JMP data table is created.

Requirement The library that is specified in the FMTLIB argument must be a
SAS data set LIBNAME statement.

Example libname inv jmp "." fmtlib=seform.formats;
libname seform '.';
 data work.mine;
 set inv.suri2011;
run;

Details

A JMP file is a file format that the JMP software program creates. JMP is an
interactive statistics package that is available for Microsoft Windows and

162 Chapter 2 / Dictionary of SAS Global Statements

Macintosh. For more information, see the JMP documentation that is packaged with
your system.

A JMP file contains data that is organized in a tabular format of fields and records.
Each field can contain one type of data, and each record can hold one data value for
each field.

SAS supports access to JMP files. You can access JMP files by either of these two
methods:

n the IMPORT and EXPORT procedures and the Import and Export Wizard
without a license for SAS/ACCESS Interface to PC Files. SAS imports data from
JMP files that are saved with version 7 or later formats, and it exports data to
JMP files with version 7 or later formats. SAS no longer supports JMP files with
versions 3 through 6 formats.

For more information, see SAS/ACCESS Interface to PC Files: Reference.

n the LIBNAME statement for the JMP engine

Note: The JMP LIBNAME engine does not support extended attributes. If you want
extended attributes, either use the IMPORT procedure or use the EXPORT
procedure with dbms=jmp.

Examples

Example 1: Using the LIBNAME Statement to Read a JMP Data
Table
This example reads and prints five observations from the bank JMP data table.

libname b jmp 'c:/temp/national';
proc contents data=b.bank(drop=edlevel id age);
run;
proc print data=b.bank(obs=5 drop=edlevel id age);
run;

Example 2: Reading and Sorting a JMP Data Table
This example reads a JMP data table, sorts it, and stores it in a SAS data set. The
formats stored on the JMP data set are put in a.formats.

libname a 'c:/temp/field';
libname b jmp '.' fmtlib=a.formats;

proc sort data=b.cars out=a.sorted;
 by category_ic;
run;

LIBNAME Statement: JMP Engine 163

http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

LIBNAME Statement: JSON Engine
Provides read-only sequential access to JSON data.

Valid in: Anywhere

Category: Data Access

Notes: The JSON file is read only once, when the JSON engine LIBNAME statement is
assigned. To read the JSON file again, you must reassign the JSON libref.
Map files generated by the JSON engine are created with the SAS session encoding
by default. To create the map files with a different session encoding, see “Example
3: Re-Create an Existing JSON Map File in a Different Encoding” on page 184.To
read JSON that is not in your session encoding, see “Example 4: Read JSON
Created in a Different Encoding” on page 184.

Tip: If you want to create a JSON file from a SAS data set, SAS provides the JSON
procedure. For more information, see Base SAS Procedures Guide.

Syntax

LIBNAME libref JSON < 'JSON-document-path' > <options>;

Arguments
libref

specifies a logical name, or libref, to associate with the SAS library.

Range 1 to 8 bytes

JSON-document-path
is the physical location of the JSON document. Enclose the physical location in
single or double quotation marks.

Note: If the physical location is not supplied, the JSON engine tries to access a
fileref with the same name as the libref that is supplied. The fileref can be a disk
file, a URL access method fileref, an FTP access method fileref, or other valid
fileref.

LIBNAME Options
ALLDATA= "name"

renames the ALLDATA data set to the specified name. A data set named
ALLDATA is created by default when the JSON engine runs. The ALLDATA data
set contains all of the information in the JSON file. This option creates the data
set with the specified name instead. The new name must meet the conventions
for SAS names.

164 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Note This option is available beginning with SAS 9.4M5 and SAS Viya 3.4.

AUTOMAP= REUSE | CREATE
specifies the action to take. AUTOMAP can have one of these values:

REUSE
uses the MAP fileref if the file exists. Otherwise, generates a JSON map and
writes it to the MAP fileref.

CREATE
generates a JSON map and writes it to the MAP fileref.

Note: Using REPLACE or CREATE overwrites an existing file.

Alias REPLACE

Requirement If a JSON map file is specified but does not exist, the AUTOMAP
option is required.

Interaction If a JSON map file is not specified, it is automatically created in
memory. The AUTOMAP option is not required.

FILEREF=fileref
specifies a fileref that points to the location for the JSON input. The fileref
cannot exceed eight bytes.

JSONCOMPRESS | JSONNOCOMPRESS
specifies whether to compress internal JSON information.

TIP Compression saves memory and disk space when caching
information, at the expense of CPU time.

Default JSONNOCOMPRESS

MAP=fileref | 'map physical name'
specifies a fileref that points to a physical location for the JSON map, or the
quoted physical name of the JSON map file.

MEMLEAVE=n | nK | nM | nG | ALL
specifies the amount of memory to leave available when processing JSON. Once
the memory limit is met, JSON information is cached to disk using an internally
generated TEMP fileref.

n
amount of memory.

nK
specifies the amount of memory in Kilobytes.

nM
specifies the amount of memory in Megabytes.

LIBNAME Statement: JSON Engine 165

nG
specifies the amount of memory in Gigabytes.

ALL
specifies that no memory is used to store JSON information. All JSON
information is cached to disk.

Default 0.5G

NOALLDATA
Suppresses creation of the ALLDATA data set.

Note This option is available beginning with SAS Viya 3.4.

NO_REOPEN_MSG | NRM
Suppresses the message, JSON data is only read once. To read the JSON
again, reassign the JSON LIBNAME.

Note The JSON file is read once, when the JSON engine LIBNAME is assigned.
To read the JSON file again, you must deassign the LIBNAME libref and
reassign it. For more information, see “Example 2: Use JSON from a URL
Access Method Fileref” on page 183.

ORDINALCOUNT= ALL | NONE | n
specifies the maximum number of ordinal variables to generate for each data
set. The maximum number of possible ordinal variables for a data set depends
on the position of the data in the JSON, and can be less than the number that
you specify. In that case, only the maximum number of possible ordinal
variables is generated. ORDINALCOUNT can have one of these values:

ALL
creates all possible ordinal variables for the data set.

NONE
suppresses creation of ordinal variables for the data set.

n
is an integer that is greater than or equal to 0 (zero).

Default 2

RETAIN
retains values in the observation buffer between observations.

Details

The Basics
A JavaScript Object Notation (JSON) file is a file that contains a human-readable
collection of data.

The JSON LIBNAME statement enables you to read a JSON file using the JSON
engine.

166 Chapter 2 / Dictionary of SAS Global Statements

The JSON engine uses a JSON map file to describe the data sets in the specified
JSON file. The JSON engine can generate a JSON map file for you when you assign
the LIBNAME statement, or you can supply your own JSON map file in the MAP=
option.

The JSON automapper generates a data set for each object in the JSON. It also
generates a data set named ALLDATA, which contains all JSON information in a
single data set. After the JSON engine library is assigned, you can list the data sets
in the library by using PROC DATASETS. You can get information about the data
sets with PROC CONTENTS. You can view the data in each data set by using PROC
PRINT.

If the data sets created by the automapper do not sufficiently describe the data,
you can modify the generated map file. Before using the output data sets in SAS,
you might want to merge the output data sets. You can also manipulate the data in
the ALLDATA data set to create a new SAS data set.

JSON MAP Details
A JSON map is a file that describes the data sets in a JSON engine library. If
specified, the JSON automapper can automatically generate a map of your JSON
data.

A JSON map consists of a DATASETS array.

Each object in the DATASETS array describes a data set in the library.

Each data set object requires a DSNAME string and a TABLEPATH string and
usually contains an optional VARIABLES array.

Each object in the VARIABLES array describes a variable in that data set.

Required items for each VARIABLES object are a NAME string, a TYPE string, and a
PATH string.

For character TYPE variables, a LENGTH item is optional.

DSNAME
The DSNAME provides a name for the data set. The automapper generates a
default name. When modifying your map file, you can provide any name that
conforms to the SAS data set naming standard.

TABLEPATH
A TABLEPATH path tells the engine how to delimit data set observations, given
this JSON:

 {
 "data" : [
 { "a" : 1 , "b" : 2, "c" : "taxes" },
 { "a" : 2 , "b" : 4, "c" : "sport" },
 { "a" : 3 , "b" : 6, "c" : "vacation" }
]
 }

If you want an observation every time you encounter an object in the data array,
set the TABLEPATH to "/root/data". The JSON mapper automatically generates
this JSON map:

 {

LIBNAME Statement: JSON Engine 167

 "DATASETS": [
 {
 "DSNAME": "data",
 "TABLEPATH": "/root/data",
 "VARIABLES": [
 {
 "NAME": "ordinal_root",
 "TYPE": "ORDINAL",
 "PATH": "/root"
 },
 {
 "NAME": "ordinal_data",
 "TYPE": "ORDINAL",
 "PATH": "/root/data"
 },
 {
 "NAME": "a",
 "TYPE": "NUMERIC",
 "PATH": "/root/data/a"
 },
 {
 "NAME": "b",
 "TYPE": "NUMERIC",
 "PATH": "/root/data/b"
 },
 {
 "NAME": "c",
 "TYPE": "CHARACTER",
 "PATH": "/root/data/c",
 "CURRENT_LENGTH": 8
 }
]
 }
]
 }

NAME
The NAME gives a name for the variable that conforms to the SAS naming
standard.

TYPE
TYPE is ORDINAL, NUMERIC, or CHARACTER.

PATH
PATH is the path in the JSON map file for this variable.

LENGTH
The LENGTH setting is the optional length of this character variable. If no
length is specified, the JSON LIBNAME engine sets this length to the maximum
length of all values that it has seen for this variable.

Note When reusing maps with different JSON input, particularly JSON input
with longer strings, the map LENGTH remains in effect and might result in
truncation.

Tip When the JSON LIBNAME engine generates an automap, it generates a
CURRENT_LENGTH: n value, set to the maximum length of the variable

168 Chapter 2 / Dictionary of SAS Global Statements

in the current JSON data. This is for documentation only. When reading
maps, the JSON LIBNAME engine ignores the CURRENT_LENGTH
setting.

FORMAT
You can provide a FORMAT for a variable in a map. FORMAT is an array where
the first element of the array is the format name, the second element is the
width, and the third element is the decimal specification. The FORMAT variable
is optional.

"FORMAT" : ["FormatName, "width", "decimal-specification"]

Note The JSON LIBNAME engine automapper does not currently generate
FORMATs.

Example This map specifies a format BEST that contains a total of 12 digits with
3 decimal places.
 {
 "NAME": "c",
 "TYPE": "NUMERIC",
 "PATH": "/root/nums/c",
 "FORMAT" : ["BEST", 12, 3]
 }

INFORMAT
You can provide an INFORMAT for a variable in a map. INFORMAT is an array
where the first element of the array is the informat name, the second element is
the width, and the third element is the decimal specification. The INFORMAT
variable is optional.

"INFORMAT" : ["InformatName, "width", "decimal-specification"]

Note The JSON LIBNAME engine automapper does not currently generate
INFORMATs. This map specifies the informat IS8601DT that contains 19
digits and no decimal places.

 {
 "NAME": "d",
 "TYPE": "NUMERIC",
 "PATH": "/root/nums/d",
 "INFORMAT" : ["IS8601DT", 19, 0]
 }

Tip You can suppress "invalid data" messages printed in the log by adding a
preceding “?” to the informat name.
 "INFORMAT" : ["?IS8601DT", 19, 0]

LABEL
You can provide a LABEL for a variable in a map. The LABEL variable is optional.

"LABEL" : ["text"]

Note The JSON LIBNAME engine automapper does not currently generate
LABELs.

Example This map specifies a label for the variable d.

LIBNAME Statement: JSON Engine 169

 {
 "NAME": "d",
 "LABEL": "This is the d variable.",
 "TYPE": "NUMERIC",
 "PATH": "/root/nums/d"
 }

OPTIONS
You can turn RETAIN on or off for an individual variable. The OPTIONS variable
is optional. For more information, see “RETAIN” on page 166.

"OPTIONS" : ["RETAIN" | "NORETAIN"]

Note Setting NORETAIN on ORDINAL variables has no effect and produces
a NOTE during map validation. ORDINAL variables are always
retained.

Tip Setting RETAIN on a variable in a map takes precedence over the
RETAIN option in the LIBNAME statement. For example, with RETAIN
set in the LIBNAME statement, and NORETAIN set on JSON variable
Status, all variables are retained except for Status.

Example This example shows turning RETAIN on for the variable Status.
 {
 "NAME": "Status",
 "TYPE": "CHARACTER",
 "PATH": "/root/info/Status",
 "OPTIONS" : ["RETAIN"]
 }

Creating and Editing a JSON MAP
This example shows how to get a list of employee phone numbers, as well as type
of phone, first name of the employee, and his age using a JSON file named
example.json. This is the content of example.json:

 [
 {
 "type": "Full",
 "info" : [
 { "name" : "Eric" , "age" : 21, "phone" : [
 { "type" : "cell", "number" : "540-555-2377" },
 { "type" : "home", "number" : "540-555-0120" }
]
 },
 { "name" : "John", "age" : 22, "phone" : [
 { "type" : "cell", "number" : "919-555-6665" },
 { "type" : "home", "number" : "336-555-0140" }
]
 }
]
 },
 {
 "type": "Part",
 "info" : [

170 Chapter 2 / Dictionary of SAS Global Statements

 { "name" : "Bjorn" , "age" : 27, "phone" : [
 { "type" : "cell", "number" : "720-555-8377" },
 { "type" : "burner", "number" : "720-555-2877" },
 { "type" : "home", "number" : "720-555-0194" }
]
 }
]

 }
]

The first step is to create a JSON map from the JSON file. This LIBNAME statement
produces the JSON map file, user.map:

libname in json 'example.json' map='user.map' automap=create;

You can use PROC DATASETS to view the content of library IN. For these
examples, we have changed the SAS output to list format to conserve space.

1 ods html close;
2 ods listing;
3 options nodate;

4 proc datasets lib=in; run; quit;
 Directory

 Libref IN
 Engine JSON
 Access READONLY
 Physical Name C:\Users\myname\example.json

 Member
 # Name Type

 1 ALLDATA DATA
 2 INFO DATA
 3 INFO_PHONE DATA
 4 ROOT DATA

Three data sets are produced by the JSON: INFO, INFO_PHONE, and ROOT.

You can use PROC PRINT to print the contents of the three data sets.

LIBNAME Statement: JSON Engine 171

5 proc print data=in.root; run;

 ordinal_
 OBS root type

 1 1 Full
 2 2 Part
6 proc print data=in.info; run;

 ordinal_ ordinal_
 OBS root info name age

 1 1 1 Eric 21
 2 1 2 John 22
 3 2 3 Bjorn 27

7 proc print data=in.info_phone; run;

 ordinal_ ordinal_
 OBS info phone type number

 1 1 1 cell 540-555-2377
 2 1 2 home 540-555-0120
 3 2 3 cell 919-555-6665
 4 2 4 home 336-555-0140
 5 3 5 cell 720-555-8377
 6 3 6 burner 720-555-2877
 7 3 7 home 720-555-0194

Use a file editor to view the content of generated map file user.map.

{
 "DATASETS": [
 {
 "DSNAME": "root",
 "TABLEPATH": "/root",
 "VARIABLES": [
 {
 "NAME": "ordinal_root",
 "TYPE": "ORDINAL",
 "PATH": "/root"
 },
 {
 "NAME": "type",
 "TYPE": "CHARACTER",
 "PATH": "/root/type",
 "CURRENT_LENGTH": 4
 }
]
 },
 {
 "DSNAME": "info",
 "TABLEPATH": "/root/info",
 "VARIABLES": [
 {
 "NAME": "ordinal_root",
 "TYPE": "ORDINAL",
 "PATH": "/root"
 },
 {
 "NAME": "ordinal_info",

172 Chapter 2 / Dictionary of SAS Global Statements

 "TYPE": "ORDINAL",
 "PATH": "/root/info"
 },
 {
 "NAME": "name",
 "TYPE": "CHARACTER",
 "PATH": "/root/info/name",
 "CURRENT_LENGTH": 5
 },
 {
 "NAME": "age",
 "TYPE": "NUMERIC",
 "PATH": "/root/info/age"
 }
]
 },
 {
 "DSNAME": "info_phone",
 "TABLEPATH": "/root/info/phone",
 "VARIABLES": [
 {
 "NAME": "ordinal_info",
 "TYPE": "ORDINAL",
 "PATH": "/root/info"
 },
 {
 "NAME": "ordinal_phone",
 "TYPE": "ORDINAL",
 "PATH": "/root/info/phone"
 },
 {
 "NAME": "type",
 "TYPE": "CHARACTER",
 "PATH": "/root/info/phone/type",
 "CURRENT_LENGTH": 6
 },
 {
 "NAME": "number",
 "TYPE": "CHARACTER",
 "PATH": "/root/info/phone/number",
 "CURRENT_LENGTH": 12
 }
]
 }
]
}

Using the file editor, copy the user.map file to create a new file: user.map.all.

Modify user.map.all as follows:

n Change the DSNAME of the first data set to ALL.

n Remove the ORDINAL variables from the ALL data set.

n Copy the variable descriptions of the variables that you want from the other
data sets into the ALL data set. Ensure there is a comma after each variable
object except the last one.

LIBNAME Statement: JSON Engine 173

n Change the name of the type variable from the INFO_PHONE data set to
PHONETYPE.

n Add a LABEL to the PHONETYPE variable.

n Set the TABLEPATH to /root/info/phone to get an observation after a phone
object is encountered.

n Remove CURRENT_LENGTH from each variable.

Here is the modified map:

 {
 "DATASETS": [
 {
 "DSNAME": "all",
 "TABLEPATH": "/root/info/phone",
 "VARIABLES": [
 {
 "NAME": "type",
 "TYPE": "CHARACTER",
 "PATH": "/root/type"
 },
 {
 "NAME": "name",
 "TYPE": "CHARACTER",
 "PATH": "/root/info/name"
 },
 {
 "NAME": "age",
 "TYPE": "NUMERIC",
 "PATH": "/root/info/age"
 },
 {
 "NAME": "phonetype",
 "TYPE": "CHARACTER",
 "LABEL": "This is the type of phone",
 "PATH": "/root/info/phone/type"
 },
 {
 "NAME": "number",
 "TYPE": "CHARACTER",
 "PATH": "/root/info/phone/number"
 }
]
 }
]
 }

These results are displayed using PROC PRINT with the modified map.

174 Chapter 2 / Dictionary of SAS Global Statements

8 filename allmap 'user.map.all';
9 libname in json 'example.json' map=allmap;
10 proc print data=in.all label; run;

 This is
 the type
 OBS type name age of phone number

 1 Full Eric 21 cell 540-555-2377
 2 . home 540-555-0120
 3 John 22 cell 919-555-6665
 4 . home 336-555-0140
 5 Part Bjorn 27 cell 720-555-8377
 6 . burner 720-555-2877
 7 . home 720-555-0194

Notice that the observation buffer is cleared between Eric’s cell phone and Eric’s
home phone. You can use the RETAIN option to keep the observation buffer from
being cleared.

11 libname in json 'example.json' map=allmap RETAIN;
12 proc print data=in.all label; run;

 This is
 the type
 OBS type name age of phone number

 1 Full Eric 21 cell 540-555-2377
 2 Full Eric 21 home 540-555-0120
 3 Full John 22 cell 919-555-6665
 4 Full John 22 home 336-555-0140
 5 Part Bjorn 27 cell 720-555-8377
 6 Part Bjorn 27 burner 720-555-2877
 7 Part Bjorn 27 home 720-555-0194

Merging Data Sets
This example describes how to read JSON code into four SAS data sets and then
use ordered values to merge the data sets into a single data set.

In this JSON code, there are two types (Work and Holding) and three statuses
(complete, in the middle, and not started). There is also name and address
information. The code exists in a file named example2.json.

[
 { "Type" : "Work",
 "info" : [{ "Status" : "complete",
 "name" : { "name" : "Eric", "Date" : "28sep15", "age":
21 },
 "add" : { "Address" : "55 Pelican Avenue", "zip" :
44442 }
 },
 { "Status" : "in the middle",
 "name" : { "name" : "John", "Date" : "02oct15",
"age": 22 },
 "add" : { "Address" : "268 Hydrangea" , "zip" :
40207 }
 }
]
 },

LIBNAME Statement: JSON Engine 175

 { "Type" : "Holding",
 "info" : [{ "Status" : "not started",
 "name" : { "name" : "Bjorn", "Date" : "01dec15",
"age": 27 },
 "add" : { "Address" : "1217 Onslow", "zip" :"22801" }
 }
]
 }
]

Use this SAS code to assign the JSON LIBNAME engine to read the input JSON
document. Use PROC DATASETS to show the name and member type of the four
SAS data sets that were created.

 filename in 'example2.json';
 filename map 'example.map';
 libname in json map=map automap=replace;

 proc datasets library=in; run; quit;

1 options nocenter;
2 filename in 'example2.json';
3 filename map 'example.map';
4 libname in json map=map automap=replace;
NOTE: JSON data is only read once. To read the JSON again, reassign the JSON
LIBNAME.
NOTE: Map file /r/example.com/mydir/work/json/example.map was replaced.
NOTE: Libref IN was successfully assigned as follows:
 Engine: JSON
 Physical Name: /r/example.com/mydir/work/json/example2.json

5 proc datasets library=in;
 Directory

Libref IN
Engine JSON
Access READONLY
Physical Name /r/example.com/mydir/work/json/example.json

 Member
Name Type

1 INFO DATA
2 INFO_ADD DATA
3 INFO_NAME DATA
4 ROOT DATA
6 run;

7 quit;

You can use PROC PRINT to print the contents of the data sets.

176 Chapter 2 / Dictionary of SAS Global Statements

 proc print data=in.root; run;

 ordinal_
 Obs root Type

 1 1 Work
 2 2 Holding

 proc print data=in.info_name; run;

 ordinal_ ordinal_
 Obs info name name Date age

 1 1 1 Eric 28sep15 21
 2 2 2 John 02oct15 22
 3 3 3 Bjorn 01dec15 27

 proc print data=in.info; run;

 ordinal_ ordinal_
 Obs root info Status

 1 1 1 complete
 2 1 2 in the middle
 3 2 3 not started

 proc print data=in.info_add;run;

 ordinal_ ordinal_
 Obs info add Address zip

 1 1 1 55 Pelican Avenue 44442
 2 2 2 268 Hydrangea 40207
 3 3 3 1217 Onslow 22801

The four data sets contain ordinal variables, which are key variables that provide a
relationship between two data sets.

The second data set, INFO_NAME, has an observation with John's name and it has
an ORDINAL_INFO value of 2. In the fourth data set, INFO_ADD, the address
associated with the ORDINAL_INFO value of 2 is 268 Hydrangea. This is the
address associated with John.

To merge the four data sets based on ordinal values, merge the ROOT and INFO
data sets by ORDINAL_ROOT.

 data a;
 merge in.root in.info;
 by ORDINAL_root;
 run;

 NOTE: There were 2 observations read from the data set IN.ROOT.
 NOTE: There were 3 observations read from the data set IN.INFO.
 NOTE: The data set WORK.A has 3 observations and 4 variables.

 proc print data=a; run;

 ordinal_ ordinal_
 Obs root Type info Status

 1 1 Work 1 complete
 2 1 Work 2 in the middle
 3 2 Holding 3 not started

LIBNAME Statement: JSON Engine 177

Next, to complete the creation of a single data set that contains all of the JSON
information, merge Name and Address and drop the ORDINAL variables.

 data b;
 merge a in.info_name in.info_add;
 by ORDINAL_info;
 drop ORDINAL_info ORDINAL_name ORDINAL_add ORDINAL_root;
 run;

 NOTE: There were 3 observations read from the data set WORK.A.
 NOTE: There were 3 observations read from the data set IN.INFO_NAME.
 NOTE: There were 3 observations read from the data set IN.INFO_ADD.
 NOTE: The data set WORK.B has 3 observations and 7 variables.

 proc print data=b; run;

 Obs Type Status name Date age Address zip

 1 Work complete Eric 28sep15 21 55 Pelican Avenue 44442
 2 Work in the middle John 02oct15 22 268 Hydrangea 40207
 3 Holding not started Bjorn 01dec15 27 1217 Onslow 22801

The ALLDATA Data Set
The ALLDATA data set gives you access to all of the JSON data in one data set. For
example:

 proc print data=in.ALLDATA(obs=24); run;

 OBS P P1 P2 P3 P4 V Value

 1 1 stores 0
 2 2 stores Name 1 Bob's Mart
 3 2 stores opened 1 06-01-2001
 4 2 stores sales 0
 5 3 stores sales Hot_Dogs 0
 6 4 stores sales Hot_Dogs count 1 39
 7 4 stores sales Hot_Dogs price 1 1.09
 8 3 stores sales Salami 0
 9 4 stores sales Salami count 1 20
 10 4 stores sales Salami price 1 5.99
 11 3 stores sales Canteloupes 0
 12 4 stores sales Canteloupes count 1 26
 13 4 stores sales Canteloupes price 1 1.39
 14 3 stores sales Mustard 0
 15 4 stores sales Mustard count 1 6
 16 4 stores sales Mustard price 1 2.19
 17 2 stores Code 1 12BMx2
 18 1 stores 0
 19 2 stores Name 1 Grab 'n' Git
 20 2 stores opened 1 06-03-2012
 21 2 stores sales 0
 22 3 stores sales Hot_Dogs 0
 23 4 stores sales Hot_Dogs count 1 18
 24 4 stores sales Hot_Dogs price 1 1.19

178 Chapter 2 / Dictionary of SAS Global Statements

The ALLDATA data set example contains these variables:

n P is a NUMERIC data type that shows how many of the P1-P4 variables contain
information for this observation

n P1–P4 are CHARACTER data types

n V is a NUMERIC data type showing whether a Value is available.

n Value is a CHARACTER data type and is the JSON value.

In observation 1, P=1 indicates that P1 contains information and the P2–P4 variables
are blank. Also, in observation 1, V=0 indicates that Value is blank. In observation 6,
P=4 indicates that the P1–P4 variables contain information and V=1 indicates that
Value contains a value.

Observations where V=0 indicate the beginning of a new JSON object. For example,
in observations 1 and 18, where P=1 and V=1 indicate that a new Stores object
begins. Observation 5 indicates that a new stores/sales/Hot_Dogs object begins.
The V=0 observations are helpful for keeping track of the JSON objects.

The JSON LIBNAME engine also creates macro symbols describing lengths of the
ALLDATA data set.

Here are the macro variables and values for the JSON example. The JSON
LIBNAME is IN.

IN_JADPNUM=4
IN_JADVLEN=20
IN_JADP1LEN=6
IN_JADP2LEN=6
IN_JADP3LEN=11
IN_JADP4LEN=5

Using the ALLDATA Data Set
Create a data set where each observation has these variables:

n item

n item price and the count

n store name and code

Note that when you look at the ALLDATA data set, you see the Store Name, and
then observations that contain the item name, the count and price. You create two
data sets from the ALLDATA data set. One data set named StoreInfo contains the
store Name and Code. The other data set named ItemInfo contains the Item, Count,
and Price. Each time you find a Price, an observation is written to the ItemInfo data
set. Each time you find a Code, an observation is written to the StoreInfo data set.
In order to merge the two data sets, each data set contains a key that indicates
which store the observation data came from. Here is the code for the example:

data
 storeinfo (keep = Key StoreName Code)
 iteminfo (keep = Key Item Price Count)
 ;
 /*---*/
 /* bring in ALLDATA */
 /*---*/

LIBNAME Statement: JSON Engine 179

 set in.ALLDATA;

 /*---*/
 /* Since StoreName and Code are found in the Value variable of ALLDATA */
 /* the length of StoreName and COde should be &IN_JADVLEN Similarly, */
 /* Item comes from P3, so its length is &IN_JADP3LEN. */
 /*---*/
 length StoreName $ &IN_JADVLEN Code $ &IN_JADVLEN Item $ &IN_JADP3LEN ;

 /*---*/
 /* Both StoreName and Count are picked up in observations before the */
 /* observations which tell us to write and output observation. So we */
 /* need to retain StoreName and Count */
 /*---*/
 retain StoreName Count;

 /*---*/
 /* We want a Key which we'll increment each time we see a store object */
 /* (v=0 p=1 and P1="stores" */
 /*---*/
 retain Key 0;

 /*---*/
 /* increment our key each time we see a new store object */
 /* */
 /* OBS P P1 P2 P3 P4 V Value */
 /* 1 1 stores 0 */
 /*---*/
 if v=0 and p=1 and p1="stores" then key+1;

 /*--
*/
 /* get StoreName, as in observation 2
*/
 /*
*/
 /* OBS P P1 P2 P3 P4 V Value
*/
 /* 2 2 stores Name 1 Bob's Mart
*/
 /*--
*/
 if P=2 and p2 = "Name" then StoreName = value;

 /*---*/
 /* get Code and write a storeinfo observation */
 /* OBS P P1 P2 P3 P4 V Value */
 /* 17 2 stores Code 1 12BMx2 */
 /*---*/
 if p=2 and p2 = "Code" then do;
 Code = Value;
 output storeinfo;
 end;

 /
---/

180 Chapter 2 / Dictionary of SAS Global Statements

 /* get Count, example observations
below */
 /
* */
 /* OBS P P1 P2 P3 P4 V
Value */
 /* 6 4 stores sales Hot_Dogs count 1
39 */
 /* 9 4 stores sales Salami count 1
20 */
 /* 12 4 stores sales Canteloupes count 1
26 */
 /
---/
 if P=4 and p4 = "count" then Count = input(value, 5.);

 /
--/
 /* get Price, and from that same observation, p3 is the Item. And each
time */
 /* we see price, we want to output an
observation. */
 /
* */
 /* OBS P P1 P2 P3 P4 V
Value */
 /* 7 4 stores sales Hot_Dogs price 1
1.09 */
 /* 10 4 stores sales Salami price 1
5.99 */
 /* 13 4 stores sales Canteloupes price 1
1.39 */
 /* 16 4 stores sales Mustard price 1
2.19 */
 /
--/
 if P=4 and p4 = "price" then do;
 Item = p3;
 Price = input(value, 5.);
 output iteminfo;
 end;

 run;

Here are the two data sets:

LIBNAME Statement: JSON Engine 181

 proc print data=storeinfo; run;

OBS StoreName Code Key

 1 Bob's Mart 12BMx2 1
 2 Grab 'n' Git 10GNx9 2
 3 Larry's Quick Shoppe 17LQx2 3

 proc print data=iteminfo; run;

OBS Item Count Key Price

 1 Hot_Dogs 39 1 1.09
 2 Salami 20 1 5.99
 3 Canteloupes 26 1 1.39
 4 Mustard 6 1 2.19
 5 Hot_Dogs 18 2 1.19
 6 Salami 3 2 7.99
 7 Mustard 6 2 2.19
 8 Beer 20 2 8.99
 9 Hot_Dogs 39 3 1.09
 10 Salami 20 3 5.99
 11 Mustard 6 3 2.19
 12 Beer 7 3 8.99
 13 Wine 15 3 12.99

This code merges the two data sets:

 data a;
 merge storeinfo iteminfo;
 by key;
 run;

This code is the merged data sets:

 proc print data=a;
 var Storename Code Item Count Price;
 run;

OBS StoreName Code Item Count Price

 1 Bob's Mart 12BMx2 Hot_Dogs 39 1.09
 2 Bob's Mart 12BMx2 Salami 20 5.99
 3 Bob's Mart 12BMx2 Canteloupes 26 1.39
 4 Bob's Mart 12BMx2 Mustard 6 2.19
 5 Grab 'n' Git 10GNx9 Hot_Dogs 18 1.19
 6 Grab 'n' Git 10GNx9 Salami 3 7.99
 7 Grab 'n' Git 10GNx9 Mustard 6 2.19
 8 Grab 'n' Git 10GNx9 Beer 20 8.99
 9 Larry's Quick Shoppe 17LQx2 Hot_Dogs 39 1.09
 10 Larry's Quick Shoppe 17LQx2 Salami 20 5.99
 11 Larry's Quick Shoppe 17LQx2 Mustard 6 2.19
 12 Larry's Quick Shoppe 17LQx2 Beer 7 8.99
 13 Larry's Quick Shoppe 17LQx2 Wine 15 12.99

Using the JSON Pretty Print DATA Step Function
The JSON Pretty Print DATA step function creates a readable copy of input JSON.
Here is the syntax:

182 Chapter 2 / Dictionary of SAS Global Statements

data _null_;
 rc = jsonpp("input file","output file");
run;

input file
The input JSON. This can be a physical name or a fileref.

output file
The output JSON. This can be a physical name or a fileref. If the output file is
‘LOG’, then the output is written to the SAS log.

This example reads the disk file test.json and creates a disk file test.json.pp

 data _null_;
 rc = jsonpp('test.json', 'test.json.pp');
 run;

 /* read json from a url fileref and pretty print to disk fileref */

 filename in url "http://example.com/~username/snip.json";
 filename out 'pp.txt';
 data _null_;
 rc = jsonpp('in','out');
 run;

Examples

Example 1: Use the LIBNAME Statement to Create or Reuse a
JSON Map
This example reads JSON data from a file called my.json and creates a JSON map in
the file my.map. The engine creates a map if it does not exist. Otherwise, it uses the
existing map.

filename in 'my.json';
filename map 'my.map';
libname in json map=map automap=reuse;

This example shows how to access a JSON document using the physical location of
the document:

filename map 'my.map';
libname in json 'my.json' map=map automap=reuse;

Example 2: Use JSON from a URL Access Method Fileref
This example shows how to access JSON from a URL fileref.

filename in url "http://example.com/~username/snip.json" debug;
filename map 'snap.map';
libname in json map=map automap=replace;
proc contents data=in._all_; run;

When you want to call a RESTful API a second time, reassign the LIBNAME libref.

libname in json ... ;

LIBNAME Statement: JSON Engine 183

Example 3: Re-Create an Existing JSON Map File in a Different
Encoding
This example shows the settings necessary to use an existing map file that was
created in the local SAS session encoding and create a map file in a different
encoding. In this example, the new encoding is UTF-8.

This map is created with the session encoding:

filename m1 "mapexample.map";
libname in json map=m1 automap=create;

This map is created with an encoding value of UTF-8:

filename m2 "mapexample.map.utf8" encoding=utf8;
libname in json map=m2 automap=create;

Example 4: Read JSON Created in a Different Encoding
This example shows the settings necessary to read JSON created with a SAS
session encoding that is different from your SAS session encoding. The engine
reads the file myjson as UTF-8, regardless of the session encoding. To read JSON
created with a UTF encoding other than UTF-8, such as UTF-16LE, you must specify
the appropriate UTF encoding.

filename in "myjson.utf8" encoding=utf8;
libname in json;

LIBNAME Statement: WebDAV Server Access
Associates a libref with a SAS library and enables access to a WebDAV (Web-based Distributed
Authoring And Versioning) server.

Valid in: Anywhere

Category: Data Access

Restriction: Access to WebDAV servers is not supported on OpenVMS or z/OS.

Syntax

LIBNAME libref <engine> 'SAS-library' < options > WEBDAV USER="user-ID"
PASSWORD="user-password" WEBDAV options;

LIBNAME libref CLEAR | _ALL_ CLEAR ;

LIBNAME libref LIST | _ALL_ LIST ;

184 Chapter 2 / Dictionary of SAS Global Statements

Arguments
libref

specifies a shortcut name for the aggregate storage location where your SAS
files are stored.

Range 1 to 8 bytes

Tip The association between a libref and a SAS library lasts only for the
duration of the SAS session or until you change it or discontinue it with
another LIBNAME statement.

engine
specifies the name of a valid SAS engine.

Restriction REMOTE engines are not supported with the WebDAV options.

See For a list of valid engines, see the SAS documentation for your
operating environment.

'SAS-library'
specifies the URL location (path) on a WebDAV server. The URL specifies either
HTTP or HTTPS communication protocols.

Restriction Only one data library is supported when using the WebDAV
extension to the LIBNAME statement.

Requirement When using the HTTPS communication protocol, you must use the
Transport Layer Security (TLS) protocol that provides secure
network communications. For more information, see Encryption in
SAS.

CLEAR
disassociates one or more currently assigned librefs. When a libref using a
WebDAV server is cleared, the cached files stored locally are deleted also.

Tip Specify libref to disassociate a single libref. Specify _ALL_ to disassociate
all currently assigned librefs.

LIST
writes the attributes of one or more SAS libraries to the SAS log.

Tip Specify libref to list the attributes of a single SAS library. Specify _ALL_ to
list the attributes of all SAS libraries that have librefs in your current
session.

ALL
specifies that the CLEAR or LIST argument applies to all currently assigned
librefs.

LIBNAME Options
For valid LIBNAME statement options, see “LIBNAME Statement” on page 139.

LIBNAME Statement: WebDAV Server Access 185

WebDAV Specific Options
AUTHDOMAIN="auth-domain"

specifies the name of an authentication domain metadata object in order to
connect to the WebDAV server. The authentication domain references
credentials (user ID and password) without your having to explicitly specify the
credentials. The auth-domain name is case sensitive, and it must be enclosed in
double quotation marks.

An administrator creates authentication domain definitions while creating a
user definition with the User Manager in SAS Management Console. The
authentication domain is associated with one or more login metadata objects
that provide access to the WebDAV server and is resolved by the BASE engine
calling the SAS Metadata Server and returning the authentication credentials.

Requirement The authentication domain and the associated login definition
must be stored in a metadata repository, and the metadata server
must be running in order to resolve the metadata object
specification.

Interaction If you specify AUTHDOMAIN=, you do not need to specify USER=
and PASSWORD=.

See For complete information about creating and using authentication
domains, see the discussion on credential management in SAS
Intelligence Platform: Security Administration Guide.

LOCALCACHE="directory name"
specifies a directory where a temporary subdirectory is created to hold local
copies of the server files. Each libref has its own unique subdirectory. If a
directory is not specified, then the subdirectories are created in the SAS WORK
directory. SAS deletes the temporary files when the SAS program completes.

Default SAS WORK directory

LOCKDURATION=n
specifies the number of minutes that the files written through the WebDAV
libref are locked. SAS unlocks the files when the SAS program successfully
completes. If the SAS program fails, then the locks expire after the time
allotted.

Default 30

PASSWORD="user-password"
specifies a password for the user to access the WebDAV server. The password is
case sensitive and it must be enclosed in single or double quotation marks.

Alias PWD=, PW=, PASS=

Tip You can specify the PROMPT option instead of the PASSWORD= option.

PROMPT
specifies to prompt for the user login password, if necessary.

186 Chapter 2 / Dictionary of SAS Global Statements

Interaction If PROMPT is specified without USER=, then the user is prompted
for an ID, as well as a password.

Tip If you specify the PROMPT option, you do not need to specify the
PASSWORD= option.

PROXY=url
specifies the Uniform Resource Locator (URL) for the proxy server in one of
these forms:

n "http://hostname"

n "http://hostname:port"

USER="user-ID"
specifies the user name for access to the WebDAV server. The user ID is case
sensitive and it must be enclosed in single or double quotation marks.

Alias UID

Tip If PROMPT is specified, but USER= is not, then the user is prompted for
an ID as well as a password.

WEBDAV
specifies that the libref access a WebDAV server.

Details

Data Set Options That Function Differently with a WebDAV
Server
This table lists the data set options that have different functionality when using a
WebDAV server. All other data set options function as described in the SAS Data
Set Options: Reference.

Table 2.3 Data Set Option Functionality with a WebDAV Server

Data Set Option WebDAV Storage Functionality

CNTLLEV= LIB locks all data sets in the library before writing
the data into the local cache. All members are
unlocked after the DATA step has completed and
the data set has been written back to the WebDAV
server.

MEM locks the member before writing the data
into the local cache. Member is unlocked after the
DATA step has completed and the data has been
written back to the WebDAV server.

REC is not supported. WebDAV allows updates to
the entire data set only.

LIBNAME Statement: WebDAV Server Access 187

Data Set Option WebDAV Storage Functionality

FILECLOSE The VxTAPE engine is not supported. Therefore,
this option is ignored.

GENMAX= This functionality is not supported because the
maximum number of revisions to keep cannot be
specified in the WebDAV server.

GENNUM= This functionality is not supported in WebDAV.

IDXNAME= Users can specify an index to use if one exists.

INDEX= Indexes can be created in the local cache and
saved on the WebDAV server.

TOBSNO= Remote engines are not supported. Therefore, this
option is ignored.

WebDAV File Processing
When accessing a WebDAV server, the file is pulled from the WebDAV server to
your local disk storage for processing. When you complete the updating, the file is
pushed back to the WebDAV server for storage. The file is removed from the local
disk storage when it is pushed back.

Multiple Librefs to a WebDAV Library
When you assign a libref to a file on a WebDAV server, the path (URL location),
user ID, and password are associated with that libref. After the first libref has been
assigned, the user ID and password is validated on subsequent attempts to assign
another libref to the same library.

Note: Lock errors that you typically would not see might occur if either a different
user ID or the password, or both, are used in the subsequent attempt to assign a
libref to the same library.

Locked Files on a WebDAV Server
In local libraries, SAS locks a file when you open it to prevent other users from
altering the file while it is being read. WebDAV locks require Write access to a
library, and there is no concept of a read lock. In addition, WebDAV servers can go
down, come back up, or go offline at any time. Consequently, SAS honors a lock
request on a file on a WebDAV server only if the file is already locked by another
user.

188 Chapter 2 / Dictionary of SAS Global Statements

Example: Associating a Libref with a WebDAV
Directory

This example associates the libref davdata with the WebDAV directory /users/
mydir/datadir on the WebDAV server www.webserver.com:

libname davdata v9 "https://www.webserver.com/users/mydir/datadir"
 webdav user="mydir" pw="12345";

See Also

Statements:

n “FILENAME Statement: WebDAV Access Method” on page 114

n “LIBNAME Statement” on page 139

%LIST Statement
Displays lines that are entered in the current session.

Valid in: Anywhere

Category: Program Control

Requirement: The MACRO macro system option is required. This option is enabled by default.
The %LIST statement is not valid when the NOMACRO macro system option is
specified.

Syntax

%LIST<n <:m | − m> >;

Without Arguments
In interactive line mode processing, if you use the %LIST statement without
arguments, it displays all previously entered program lines.

Arguments
n

displays line n.

n–m
displays lines n through m.

%LIST Statement 189

Alias n:m

Details

Where and When to Use
The %LIST statement can be used anywhere in a SAS job except between a
DATALINES or DATALINES4 statement and the matching semicolon (;) or
semicolons (;;;;). This statement is useful mainly in interactive line mode
sessions to display SAS program code on the monitor. It is also useful to determine
lines to include when you use the %INCLUDE statement.

Interactions

CAUTION
In all modes of execution, the SPOOL system option controls whether SAS
statements are saved. When the SPOOL system option is in effect in interactive line
mode, all SAS statements and data lines are saved automatically when they are
submitted. You can display them by using the %LIST statement. When NOSPOOL is in
effect, %LIST cannot display previous lines.

CAUTION
The MACRO macro system option is required. The MACRO system option is
enabled by default and is required for the %LIST statement to work. If you specify the
NOMACRO system option and then specify the %LIST statement, you get an error in the
SAS log.

Example: Displaying Lines That Are Entered in the
Current Session

This %LIST statement displays lines 10 through 20:

 %list 10-20;

See Also

Statements:

n “%INCLUDE Statement” on page 132

System Options:

n “SPOOL System Option” in SAS System Options: Reference

190 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1qzvfxvfsws3an1i303rzyp6emk.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=v_001&docsetTarget=p10aezpfo5vpavn0zh0nq8otrr8l.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1qzvfxvfsws3an1i303rzyp6emk.htm&locale=en

LOCK Statement
Acquires, lists, or releases an exclusive lock on an existing SAS file.

Valid in: Anywhere

Category: Program Control

Restrictions: The SAS file must exist before you can request a lock.
You cannot lock a SAS file that another SAS session is currently accessing (either
from an exclusive lock or because the file is open).
The LOCK statement syntax is the same whether you issue the statement in a
single-user environment or in a client/server environment. However, some LOCK
statement functionality applies only to a client/server environment.

Syntax

LOCK libref<.member-name<.member-type | .entry-name.entry-type>>
<LIST | QUERY | SHOW | CLEAR | NOMSG>;

Arguments
libref

is a name that is associated with a SAS library. The libref (library reference)
must be a valid SAS name. If the libref is Sasuser or Work, you must specify it.

Range 1 to 8 bytes

Tip Typically, in a single-user environment, you would not issue the LOCK
statement to exclusively lock a library. To lock a library that is accessed
via a multiuser SAS/SHARE server, see the LOCK statement in
SAS/SHARE User’s Guide.

member-name
is a valid SAS name that specifies a member of the SAS library that is
associated with the libref.

member-type
is the type of SAS file to be locked. For example, valid values are DATA, VIEW,
CATALOG, MDDB, and so on. The default is DATA.

entry-name
is the name of the catalog entry to be locked.

Tip In a single-user environment, if you issue the LOCK statement to lock an
individual catalog entry, the entire catalog is locked. Typically, you would
not issue the LOCK statement to exclusively lock a catalog entry. To lock a

LOCK Statement 191

http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

catalog entry in a library that is accessed via a multiuser SAS/SHARE
server, see the LOCK statement in SAS/SHARE User’s Guide.

entry-type
is the type of catalog entry to be locked.

Tip In a single-user environment, if you issue the LOCK statement to lock an
individual catalog entry, the entire catalog is locked. Typically, you would
not issue the LOCK statement to exclusively lock a catalog entry. To lock a
catalog entry in a library that is accessed via a multiuser SAS/SHARE
server, see the LOCK statement in SAS/SHARE User’s Guide.

LIST | QUERY | SHOW
writes to the SAS log whether you have an exclusive lock on the specified SAS
file.

Tip This option provides more information in a client/server environment. To
use this option in a client/server environment, see the LOCK statement in
SAS/SHARE User’s Guide.

CLEAR
releases a lock on the specified SAS file that was acquired using the LOCK
statement in your SAS session.

NOMSG
specifies that warnings and error messages are not written to the SAS log.
NOMSG does not suppress notes that tell you that a lock is successful or that a
lock is cleared.

Interactions To suppress warnings and error messages, you must specify
NOMSG for each execution of the LOCK statement.

The SAS macro variable SYSLCKRC return code is not affected if
NOMSG is specified.

Tip NOMSG is useful if you want a LOCK statement resubmitted in a
code loop until a lock is available, but you do want error messages
displayed in the SAS log each time that an exclusive lock is not
available.

Details

General Information
The LOCK statement enables you to acquire, list, or release an exclusive lock on an
existing SAS file. With an exclusive lock, no other operation in the current SAS
session can read, write, or lock the file until the lock is released. In addition, with an
exclusive lock, when the file is open, the lock ensures that another SAS session
cannot access the file.

The primary use of the LOCK statement is to retain exclusive control of a SAS file
across SAS statement boundaries. There are times when it is desirable to perform

192 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

several operations on a file, one right after the other, without losing exclusive
control of the file. However, when a DATA or PROC step finishes executing and
control flows from it to the next operation, the file is closed and becomes available
for processing by another SAS session that has access to the same data storage
location. To ensure that an exclusive lock is guaranteed across multiple SAS
sessions, you must use SAS/SHARE.

To release an exclusive lock, use the CLEAR option. In addition, an exclusive lock
on a data set is released when you use the DATASETS procedure DELETE
statement to delete the data set.

Return Codes for the LOCK Statement
The SAS macro variable SYSLCKRC contains the return code from the LOCK
statement. These actions result in a nonzero value in SYSLCKRC:

n You try to lock a file but cannot obtain the lock (for example, the file was in use
or is locked by another SAS session).

n You use a LOCK statement with the LIST option to list a lock.

n You use a LOCK statement with the CLEAR option to release a lock that you do
not have.

For more information about the SYSLCKRC SAS macro variable, see SAS Macro
Language: Reference.

Comparisons

n With SAS/SHARE software, you can also use the LOCK statement. Some LOCK
statement functionality applies only to a client/server environment.

n The CNTLLEV= data set option specifies the level at which shared Update
access to a SAS data set is denied.

Example: Locking a SAS File

This SAS program illustrates the process of locking a SAS data set. Including the
LOCK statement provides protection for the multistep program by acquiring
exclusive access to the file.

libname mydata 'SAS-library';
lock mydata.census; 1

data mydata.census; 2

 modify mydata.census;
 /* statements to remove obsolete observations */
run; 3

proc sort force data=mydata.census; 4

 by CrimeRate;
run;
proc datasets library=mydata; 5

 modify census;

LOCK Statement 193

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=v_001&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=v_001&docsetTarget=titlepage.htm&locale=en

 index create CrimeRate;
quit;
lock mydata.census clear; 6

1 Acquires exclusive access to the SAS data set MyData.Census.

2 Opens MyData.Census to remove observations. During the update, no other
operation in the current SAS session and no other SAS session can access the
file.

3 At the end of the DATA step, the file is closed. No other operation in the current
SAS session can access the file. However, until the file is reopened, it can be
accessed by another SAS session.

4 Opens MyData.Census to sort the file. During the sort, no other operation in the
current SAS session and no other SAS session can access the file. At the end of
the procedure, the file is closed, which means that no other operation in the
current SAS session can access the file, but the file can be accessed by another
SAS session.

5 Opens MyData.Census to rebuild the file's index. No other operation in the
current SAS session and no other SAS session can access the file. At the end of
the procedure, the file is closed.

6 Releases the exclusive lock on MyData.Census.

See Also

n For information about locking a data object in a library that is accessed via a
multiuser SAS/SHARE server, see “LOCK Statement” in SAS/SHARE User’s
Guide.

Data Set Options:

n “CNTLLEV= Data Set Option” in SAS Data Set Options: Reference

MISSING Statement
Assigns characters in your input data to represent special missing values for numeric data.

Valid in: Anywhere

Category: Information

Syntax

MISSING character(s);

194 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=p0d8fkwzhxu398n1lvtl37xh39mz.htm&locale=en
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=p0d8fkwzhxu398n1lvtl37xh39mz.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0ta56uht2h9lgn1xwvs7uipanik.htm&locale=en

Arguments
character

is the value in your input data that represents a special missing value.

Range Special missing values can be any of the 26 letters of the alphabet
(uppercase or lowercase) or the underscore (_).

Tip You can specify more than one character.

Details

The MISSING statement usually appears within a DATA step, but it is global in
scope.

Comparisons

The MISSING= system option enables you to specify a character to be printed when
numeric variables contain ordinary missing values (.). If your data contains
characters that represent special missing values, such as a or z, do not use the
MISSING= option to define them; simply define these values in a MISSING
statement.

Example: Identifying Certain Types of Missing Data

With survey data, you might want to identify certain types of missing data. For
example, in the data, an A can mean that the respondent is not at home at the time
of the survey; an R can mean that the respondent refused to answer. Use the
MISSING statement to identify to SAS that the values A and R in the input data
lines are to be considered special missing values rather than invalid numeric data
values:

data survey;
 missing a r;
 input id answer;
 datalines;
001 2
002 R
003 1
004 A
005 2
;

The resulting data set SURVEY contains exactly the values that are coded in the
input data.

MISSING Statement 195

See Also

Statements:

n “UPDATE Statement” in SAS DATA Step Statements: Reference

System Options:

n “MISSING= System Option” in SAS System Options: Reference

Null Statement
Signals the end of data lines or acts as a placeholder.

Valid in: Anywhere

Category: Action

Type: Executable

Syntax

;

or

;;;;

Without Arguments
The Null statement signals the end of the data lines that occur in your program.

Details

The primary use of the Null statement is to signal the end of data lines that follow a
DATALINES or CARDS statement. In this case, the Null statement functions as a
step boundary. When your data lines contain semicolons, use the DATALINES4 or
CARDS4 statement and a Null statement of four semicolons.

Although the Null statement performs no action, it is an executable statement.
Therefore, a label can precede the Null statement, or you can use it in conditional
processing.

196 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0qamf3yfjtwzhn1ran6xwblnlea.htm&locale=en

Examples

Example 1: Marking the End of Data Lines
The Null statement in this program marks the end of data lines and functions as a
step boundary.

data test;
 input score1 score2 score3;
 datalines;
55 135 177
44 132 169
;

Example 2: Marking the End of Data Lines That Contain
Semicolons
The input data records in this example contain semicolons. Use the Null statement
following the DATALINES4 statement to signal the end of the data lines.

data test2;
 input code1 $ code2 $ code3 $;
 datalines4;
55;39;1 135;32;4 177;27;3
78;29;1 149;22;4 179;37;3
;;;;

Example 3: Using a Statement Label with Null
The Null statement is useful while you are developing a program. For example, use
it after a statement label to test your program before you code the statements that
follow the label.

data _null_;
 set dsn;
 file print header=header;
 put 'report text';
 ...more statements...
 return;
 header:;
run;

See Also

Statements:

n “DATALINES Statement” in SAS DATA Step Statements: Reference

n “DATALINES4 Statement” in SAS DATA Step Statements: Reference

n “GO TO Statement” in SAS DATA Step Statements: Reference

n “LABEL Statement” in SAS DATA Step Statements: Reference

Null Statement 197

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0114gachtut3nn1and4ap8ke9nf.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1mm9b070wj962n16q0v1d9uku5q.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p04lue2yzjvc8xn1603l5kqlw62d.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1r8ub0jx34xfsn1ppcjfe0u16pc.htm&locale=en

OPTIONS Statement
Specifies or changes the value of one or more SAS system options.

Valid in: Anywhere

Category: Program Control

See: OPTIONS Statement under z/OS

Syntax

OPTIONS options;

Arguments
option

specifies one or more SAS system options to be changed.

See SAS System Options: Reference

System Options Syntax in SAS Help Center

Details

The change that is made by the OPTIONS statement remains in effect for the rest
of the job, session, SAS process, or until you issue another OPTIONS statement to
change the options again. You can specify SAS system options through the
OPTIONS statement, through the OPTIONS window, at SAS invocation, and at the
initiation of a SAS process.

If you attempt to set an option that is restricted by your site administrator, SAS
issues a note that the option is restricted and cannot be changed. For more
information, see “Restricted Options” in SAS System Options: Reference.

Note: If you want a particular group of options to be in effect for all your SAS jobs
or sessions, store an OPTIONS statement in an autoexec file or list the system
options in a configuration file or custom_option_set.

Note: For a system option with a null value, the GETOPTION function returns a
value of ' ' (single quotation marks with a blank space between them), for example,
EMAILID=' '. This GETOPTION value can then be used in the OPTIONS statement.

198 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n0we2ztvcggj4jn1kh8fz5wy93t5.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=allprodsle&docsetTarget=syntaxByType-systemOption.htm
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

An OPTIONS statement can appear at any place in a SAS program, except within
data lines.

Operating Environment Information: The system options that are available
depend on your operating environment. Also, the syntax that is used to specify a
system option in the OPTIONS statement might be different from the syntax that is
used at SAS invocation. For more information, see the SAS documentation for your
operating environment.

Comparisons

The OPTIONS statement requires you to enter the complete statement including
system option name and value, if necessary. The SAS OPTIONS window displays
the options' names and settings in columns. To change a setting, type over the
value that is displayed and press Enter or Return.

Example: Changing the Value of a System Option

This example suppresses the date that is normally written to SAS LISTING output
and sets a line size of 72:

options nodate linesize=72;

See Also

“Definition of System Options” in SAS System Options: Reference

PAGE Statement
Skips to a new page in the SAS log.

Valid in: Anywhere

Category: Log Control

Syntax

PAGE;

Without Arguments
The PAGE statement skips to a new page in the SAS log.

PAGE Statement 199

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1ndp9h2xot0p0n1smoe9u1tlj0o.htm&locale=en

Details

You can use the PAGE statement when you run SAS in a windowing environment,
batch, or noninteractive mode. The PAGE statement itself does not appear in the
log. When you run SAS in interactive line mode, PAGE might print blank lines to the
display monitor (or to the alternate log file).

See Also

Statements:

n “LIST Statement” in SAS DATA Step Statements: Reference

System Options:

n “LINESIZE= System Option” in SAS System Options: Reference

n “PAGESIZE= System Option” in SAS System Options: Reference

RESETLINE Statement
Restarts the program line numbers in the SAS log to 1.

Valid in: Anywhere

Category: Log Control

Type: Executable

Syntax

RESETLINE;

Without Arguments
Use the RESETLINE statement to reset the program line numbers in the SAS log to
1.

Details

Program statements are identified by line numbers in the SAS log. The line numbers
start with 1 and continue with the sequence of line numbering until the end of the
SAS session or batch program.

200 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0drxaqb7f0w0tn18viaj8dtjwud.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1quv1ypgn8bojn1q4s7nfagkfwu.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n02ek00ir5ihs8n1rewzb5obh1p7.htm&locale=en

You use the RESETLINE statement in your program to restart the program line
numbering at 1.

Note: If you use the SPOOL system option, you can use only the %INCLUDE
statement to resubmit lines of code that were submitted after the most recent
RESETLINE statement.

Example: Resetting Line Numbers in the SAS Log

This example resets the program line numbers between DATA steps.

data a;
 a=1;
run;
resetline;
data b;
 b=2;
run;

The program writes these lines to the SAS log:

1 data a;
2 a=1;
3 run;

NOTE: The data set WORK.A has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 4.79 seconds
 cpu time 0.28 seconds

4
5 resetline;
1
2 data b;
3 b=2;
4 run;

NOTE: The data set WORK.B has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

RUN Statement
Executes the previously entered SAS statements.

Valid in: Anywhere

Category: Program Control

RUN Statement 201

Syntax

RUN <CANCEL>;

Without Arguments
Without arguments, the RUN statement executes the previously entered SAS
statements.

Arguments
CANCEL

terminates the current step without executing it. SAS prints a message that
indicates that the step was not executed.

CAUTION
The CANCEL option does not prevent execution of a DATA step that
contains a DATALINES or DATALINES4 statement.

CAUTION
The CANCEL option has no effect when you use the KILL option with
PROC DATASETS.

Details

Although the RUN statement is not required between steps in a SAS program, using
it creates a step boundary and can make the SAS log easier to read.

Examples

Example 1: Executing SAS Statements
This RUN statement marks a step boundary and executes this PROC PRINT step:

proc print data=report;
 title 'Status Report';
run;

Example 2: Using the CANCEL Option
This example shows the usefulness of the CANCEL option in a line prompt mode
session. The fourth statement in the DATA step contains an invalid value for PI
(4.13 instead of 3.14). RUN with CANCEL ends the DATA step and prevents it from
executing.

data circle;

202 Chapter 2 / Dictionary of SAS Global Statements

 infile file-specification;
 input radius;
 c=2*4.13*radius;
run cancel;

This message is written to the SAS log:

WARNING: DATA step not executed at user's request.

%RUN Statement
Ends source statements following a %INCLUDE * statement.

Valid in: Anywhere

Category: Program Control

Syntax

%RUN;

Without Arguments
The %RUN statement causes SAS to stop reading input from the keyboard
(including subsequent SAS statements on the same line as %RUN) and resume
reading from the previous input source.

Details

Using the %INCLUDE statement with an asterisk specifies that you enter source
lines from the keyboard.

Note: The asterisk (*) cannot be used to specify keyboard entry if you use the
Enhanced Editor in the Microsoft Windows operating environment.

Comparisons

The RUN statement executes previously entered DATA or PROC steps. The %RUN
statement ends the prompting for source statements and returns program control
to the original source program, when you use the %INCLUDE statement to allow
data to be entered from the keyboard.

The type of prompt that you use depends on how you run the SAS session. The
include operation is most useful in interactive line and noninteractive modes, but it

%RUN Statement 203

can also be used in windowing and batch mode. When you are running SAS in batch
mode, include the %RUN statement in the external file that is referenced by the
SASTERM fileref.

Example: Entering Source Lines from the Keyboard

To request keyboard-entry source in a %INCLUDE statement, follow the statement
with an asterisk:

%include *;

Note: The asterisk (*) cannot be used to specify keyboard entry if you use the
Enhanced Editor in the Microsoft Windows operating environment.

When it executes this statement, SAS prompts you to enter source lines from the
keyboard. When you finish entering code from the keyboard, enter this statement
to return processing to the program that contains the %INCLUDE statement.

%run;

See Also

Statements:

n “%INCLUDE Statement” on page 132

n “RUN Statement” on page 201

SASFILE Statement
Opens a SAS data set and allocates enough buffers to hold the entire file in memory.

Valid in: Anywhere

Category: Program Control

Restriction: A SAS data set opened by the SASFILE statement can be used for subsequent
input (read) or update processing but not for output or utility processing.

See: “SASFILE Statement: z/OS” in SAS Companion for z/OS in SAS Companion for z/OS

Syntax

SASFILE <libref.> member-name<.member-type> <(password-options)>
OPEN | LOAD | CLOSE;

204 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n0z3spojdlpag9n1oq343fj5zcrg.htm&locale=en

Arguments
libref

a name that is associated with a SAS library. The libref (library reference) must
be a valid SAS name. The default libref is either User (if assigned) or Work (if
User is not assigned).

Range 1 to 8 bytes

Restriction The libref cannot represent a concatenation of SAS libraries that
contain a library in sequential format.

member-name
a valid SAS name that is a SAS data file. The data file is a member of the SAS
library associated with the libref.

Restriction The SAS data set must have been created with the V7, V8, or V9
Base SAS engine.

member-type
the type of SAS file to be opened. A valid value is DATA, which is the default.

password-options
specifies one or more of these password options:

ENCRYPTKEY=key-value
enables the SASFILE statement to open an AES-encrypted SAS data file. If a
SAS data file is encrypted with the AES (Advanced Encryption Standard)
algorithm, a key value is assigned to the file and must be specified in order to
access the file. The key value can be up to 64 bytes long.

Interaction If you do not specify the ENCRYPTKEY= option for an AES-
encrypted SAS data file, a dialog box prompts you to specify the
key value.

See “AES Encryption” in SAS Programmer’s Guide: Essentials

READ=password
enables the SASFILE statement to open a read-protected file. The password
must be a valid SAS name.

WRITE=password
enables the SASFILE statement to use the WRITE password to open a file
that is both read-protected and write-protected. The password must be a
valid SAS name.

ALTER=password
enables the SASFILE statement to use the ALTER password to open a file
that is both read-protected and alter-protected. The password must be a
valid SAS name.

PW=password
enables the SASFILE statement to use the password to open a file that is
assigned for all levels of protection. The password must be a valid SAS
name.

SASFILE Statement 205

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1s7u3pd71rgunn1xuexedikq90f.htm&docsetTargetAnchor=n1o82uabmi8m8xn1krmlzw1q1tv4&locale=en

Tip When SASFILE is executed, SAS checks whether the file is read-protected.
Therefore, if the file is read-protected, you must include the READ=
password in the SASFILE statement. If the file is either write-protected or
alter-protected, you can use a WRITE=, ALTER=, or PW= password.
However, the file is opened only in input (read) mode. For subsequent
processing, you must specify the necessary password or passwords. See
“Example 2: Specifying Passwords with the SASFILE Statement” on page
210.

OPEN
opens the file, allocates the buffers, but defers reading the data into memory
until a procedure, statement, or application is executed.

LOAD
opens the file, allocates the buffers, and reads the data into memory.

Note: If the total number of allowed buffers is less than the number of buffers
required for the file based on the number of data set pages and index file pages,
SAS issues a warning about how many pages are read into memory.

CLOSE
frees the buffers and closes the file.

Details

General Information
The SASFILE statement opens a SAS data set and allocates enough buffers to hold
the entire file in memory. After the file is read, data is held in memory, available to
subsequent DATA and PROC steps or applications, until either a second SASFILE
statement closes the file and frees the buffers or the program ends. Ending the
program automatically closes the file and frees the buffers.

Using the SASFILE statement can improve performance by reducing these tasks:

n multiple open or close operations (including allocation and freeing of memory
for buffers) to process a SAS data set to one open or close operation

n I/O processing by holding the data in memory

If your SAS program consists of steps that read a SAS data set multiple times and
you have an adequate amount of memory so that the entire file can be held in real
memory, the program should benefit from using the SASFILE statement. Also,
SASFILE is especially useful as part of a program that starts a SAS server such as a
SAS/SHARE server. However, it is recommended that you set up a test in your
environment to measure performance with and without the SASFILE statement.

Processing a SAS Data Set Opened with SASFILE
When the SASFILE statement executes, SAS opens the specified file. When
subsequent DATA and PROC steps execute, SAS does not open the file for each

206 Chapter 2 / Dictionary of SAS Global Statements

request; the file remains open until a second SASFILE statement closes it or the
program or session ends.

When a SAS data set is opened by the SASFILE statement, the file is opened for
input processing and can be used for subsequent input or update processing.
However, the file cannot be used for subsequent utility or output processing,
because utility and output processing requires exclusive access to the file
(member-level locking). For example, you cannot replace the file or rename its
variables.

This table provides a list of several SAS procedures and statements and specifies
whether they are allowed if the file is opened by the SASFILE statement.

Table 2.4 Processing Requests for a File Opened by SASFILE

Processing Request Open Mode Allowed

APPEND procedure update Yes

DATA step that creates or
replaces the file

output No

DATASETS procedure to
rename or add a variable,
add or change a label, or
add or remove integrity
constraints or indexes

utility No

DATASETS procedure with
AGE, CHANGE, or DELETE
statements

does not open the file but
requires exclusive access

No

FSEDIT procedure update Yes

PRINT procedure input Yes

SORT procedure that
replaces the original data
set with a sorted one

output No

SQL procedure to modify,
add, or delete
observations

update Yes

SQL procedure with the
CREATE TABLE or
CREATE VIEW statement

output No

SQL procedure to create
or remove integrity
constraints or indexes

utility No

SASFILE Statement 207

Buffer Allocation
A buffer is a reserved area of memory that holds a segment of data while it is
processed. The number of allocated buffers determines how much data can be held
in memory at one time.

The number of buffers is not a permanent attribute of a SAS file. That is, it is valid
only for the current SAS session or job. When a SAS file is opened, a default
number of buffers for processing the file is set. The default depends on the
operating environment but is typically a small number. To specify a different
number of buffers, use the BUFNO= data set option or system option.

When the SASFILE statement is executed, SAS automatically allocates the number
of buffers based on the number of data set pages and index file pages (if an index
file exists). For example:

n If the number of data set pages is five and there is no index file, SAS allocates
five buffers.

n If the number of data set pages is 500 and the number of index file pages is 200,
SAS allocates 700 buffers.

If a file that is held in memory increases in size during processing, the number of
allocated buffers increases to accommodate the file. If SASFILE is executed for a
SAS data set, the BUFNO= option is ignored.

I/O Processing
An I/O (input/output) request reads a segment of data from a storage device (such
as a disk) and transfers the data to memory, or conversely transfers the data from
memory and writes it to the storage device. When a SAS data set is opened by the
SASFILE statement, data is read once and held in memory, which should reduce the
number of I/O requests.

CAUTION
I/O processing can be reduced only if there is sufficient real memory. If the
SAS data set is very large, you might not have sufficient real memory to hold the entire
file. If insufficient memory exists, your operating environment can simulate more memory
than actually exists, which is virtual memory. If virtual memory occurs, data access I/O
requests are replaced with swapping I/O requests, which could result in no performance
improvement. In addition, both SAS and your operating environment have a maximum
amount of memory that can be allocated, which could be exceeded by the needs of your
program. If your program needs exceed the memory that is available, the number of
allocated buffers might be decreased to the default allocation in order to free memory.

TIP To determine how much memory a SAS data set requires, execute the
CONTENTS procedure for the file to list its page size, the number of data set
pages, the index file size, and the number of index file pages.

208 Chapter 2 / Dictionary of SAS Global Statements

Using the SASFILE Statement in a SAS/SHARE Environment
Here are considerations for using the SASFILE statement with SAS/SHARE
software:

n You must execute the SASFILE statement before you execute the PROC
SERVER statement.

n If the client (the computer on which you use a SAS session to access a
SAS/SHARE server) executes the SASFILE statement, it is rejected.

n After the SASFILE statement is executed, all users who subsequently open the
file access the data held in memory instead of data that is stored on the disk.

n After the SASFILE statement is executed, you cannot close the file and free the
buffers until the SAS/SHARE server is terminated.

n You can use the ALLOCATE SASFILE command for the PROC SERVER
statement as an alternative that brings part of the file into memory (controlled
by the BUFNO= option).

n If the SASFILE statement is executed and you execute ALLOCATE SASFILE by
specifying a value for BUFNO= that is a larger number of buffers than allocated
by SASFILE, performance is not improved.

Comparisons

n Use the BUFNO= system option or data set option to specify a specific number
of buffers.

n With SAS/SHARE software, you can use the ALLOCATE SASFILE command for
the PROC SERVER statement to bring part of the file into memory (controlled
by the BUFNO= option).

Examples

Example 1: Using SASFILE in a Program with Multiple Steps
This SAS program illustrates the process of opening a SAS data set, transferring its
data to memory, and reading that data held in memory for multiple tasks. The
program consists of steps that read the file multiple times.

libname mydata 'SAS-library';
sasfile mydata.census.data open; 1
data test1;
 set mydata.census; 2
run;
data test2;
 set mydata.census; 3
run;
proc summary data=mydata.census print; 4
run;
data mydata.census; 5

SASFILE Statement 209

 modify mydata.census;
 .
 . (statements to modify data)
 .
run;
sasfile mydata.census close; 6

1 Opens SAS data set MyData.Census and allocates the number of buffers based
on the number of data set pages and index file pages.

2 Reads all pages of MyData.Census and transfers all data from disk to memory.

3 Reads MyData.Census a second time, but this time from memory without
additional I/O requests.

4 Reads MyData.Census a third time, again from memory without additional I/O
requests.

5 Reads MyData.Census a fourth time, again from memory without additional I/O
requests. If the MODIFY statement successfully changes data in memory, the
changed data is transferred from memory to disk at the end of the DATA step.

6 Closes MyData.Census and frees allocated buffers.

Example 2: Specifying Passwords with the SASFILE Statement
This SAS program illustrates using the SASFILE statement and specifying
passwords for a SAS data set that is both read-protected and alter-protected.

libname mydata 'SAS-library';
sasfile mydata.census (read=gizmo) open; 1
proc print data=mydata.census (read=gizmo); 2
run;
data mydata.census;
 modify mydata.census (alter=luke); 3
 .
 . (statements to modify data)
 .
run;

1 The SASFILE statement specifies the READ password, which is sufficient to
open the file.

2 In the PRINT procedure, the READ password must be specified again.

3 The ALTER password is used in the MODIFY statement, because the data set is
being updated.

Note: It is acceptable to use the higher-level ALTER password instead of the READ
password in the preceding example.

See Also

n For information about using the SASFILE statement in a SAS/SHARE
environment, see “SERVER Procedure” in SAS/SHARE User’s Guide.

210 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=n1or2nolc2epe5n15pd5arndrqzq.htm&locale=en

Data Set Options:

n “BUFNO= Data Set Option” in SAS Data Set Options: Reference

System Options:

n “BUFNO= System Option” in SAS System Options: Reference

SKIP Statement
Creates a blank line in the SAS log.

Valid in: Anywhere

Category: Log Control

Syntax

SKIP <n>;

Without Arguments
Using SKIP without arguments causes SAS to create one blank line in the log.

Arguments
n

specifies the number of blank lines that you want to create in the log.

Tip If the number specified is greater than the number of lines that remain on
the page, SAS goes to the top of the next page.

Details

The SKIP statement itself does not appear in the log. You can use this statement in
all methods of operation.

See Also

Statements:

n “PAGE Statement” on page 199

System Options:

SKIP Statement 211

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n01nz6qxgpcwykn1bi1ihjh5vh8q.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1dvhxsxcilbwon0zl48630qkpeb.htm&locale=en

n “LINESIZE= System Option” in SAS System Options: Reference

n “PAGESIZE= System Option” in SAS System Options: Reference

SYSECHO Statement
Sends a global statement complete event and passes a text string back to the IOM client.

Valid in: Anywhere

Category: Program Control

Restriction: Has an effect only in objectserver mode

Syntax

SYSECHO <"text"> ;

Without Arguments
Using SYSECHO without arguments sends a global statement complete event to
the IOM client.

Arguments
"text"

specifies a text string that is passed back to the IOM client.

Range 1–64 characters

Requirement The text string must be enclosed in double quotation marks.

Details

The SYSECHO statement enables IOM clients to manually track the progress of a
segment of a submitted SAS program.

When the SYSECHO statement is executed, a global statement complete event is
generated and, if specified, the text string is passed back to the IOM client.

TITLE Statement
Specifies title lines for SAS output.

212 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1quv1ypgn8bojn1q4s7nfagkfwu.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n02ek00ir5ihs8n1rewzb5obh1p7.htm&locale=en

Valid in: Anywhere

Category: Output Control

Restriction: The TITLE statement does not support Unicode.

See: TITLE Statement under Windows, UNIX, or z/OS

Syntax

TITLE <n> <ods-format-options> <'text' | "text">;

Without Arguments
Using TITLE without arguments cancels all existing titles.

Arguments
n

specifies the relative line that contains the title line.

Range 1–10

Tips The title line with the highest number appears on the bottom line. If you
omit n, SAS assumes a value of 1. Therefore, you can specify TITLE or
TITLE1 for the first title line.

You can create titles that contain blank lines between the lines of text.
For example, if you specify text with a TITLE statement and a TITLE3
statement, there is a blank line between the two lines of text.

ods-format-options
specifies formatting options for the ODS HTML, RTF, and PRINTER
destinations.

BOLD
specifies that the title text is bold font weight.

ODS destination HTML, RTF, PRINTER

COLOR=color
specifies the title text color.

Alias C

ODS destination HTML, RTF, PRINTER

Example “Example 3: Customizing Titles and Footnotes By Using the
Output Delivery System” on page 218

BCOLOR=color
specifies the background color of the title block.

ODS destination HTML, RTF, PRINTER

TITLE Statement 213

http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p0kt99vlm4udyrn1b09j66ryuys4.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p1voij3mn42pmon1uh1ghnaxwsyg.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p08ehmq5fof3zqn1a26r3kngowo0.htm&locale=en

FONT=font-face
specifies the font to use. If you supply multiple fonts, then the destination
device uses the first one that is installed on your system.

Alias F

ODS destination HTML, RTF, PRINTER

HEIGHT=dimension | size
specifies the size of the font for titles.

dimension
is a nonnegative number.

Units of Measure for Dimension

cm Centimeters

em Standard typesetting measurement unit for width

ex Standard typesetting measurement unit for height

in Inches

mm Millimeters

pt A printer’s point

Restriction If you specify dimension, then specify a unit of measure.
Without a unit of measure, the number becomes a relative
size.

size
The value of size is relative to all other font sizes in the HTML document.

Range 1 to 7

Alias H

ODS destination HTML, RTF, PRINTER

Example “Example 3: Customizing Titles and Footnotes By Using the
Output Delivery System” on page 218

ITALIC
specifies that the title text is in italics.

ODS destination HTML, RTF, PRINTER

JUSTIFY= CENTER | LEFT | RIGHT
specifies justification.

CENTER
specifies center justification.

Alias C

214 Chapter 2 / Dictionary of SAS Global Statements

LEFT
specifies left justification.

Alias L

RIGHT
specifies right justification.

Alias R

Alias J

ODS destination HTML, RTF, PRINTER

Example “Example 3: Customizing Titles and Footnotes By Using the
Output Delivery System” on page 218

LINK='url'
specifies a hyperlink.

ODS destination HTML, RTF, PRINTER

Tip The visual properties for LINK= always come from the
current style.

UNDERLIN= 0 | 1 | 2 | 3
specifies whether the subsequent text is underlined. Value 0 indicates no
underlining. Values 1, 2, and 3 indicate underlining.

Alias U

ODS destination HTML, RTF, PRINTER

Tip ODS generates the same type of underline for values 1, 2,
and 3. However, SAS/GRAPH uses values 1, 2, and 3 to
generate increasingly thicker underlines.

Note The defaults for how ODS renders the TITLE statement come from style
elements relating to system titles in the current style. The TITLE
statement syntax with ods-format-options is a way to override the
settings provided by the current style. The current style varies according
to the ODS destination. For more information about how to determine the
current style, see “Understanding Styles, Style Elements, and Style
Attributes” in SAS Output Delivery System: Procedures Guide. Also see
“TEMPLATE Procedure: Creating a Style Template” in SAS Output
Delivery System: Procedures Guide.

Tips You can specify these options by letter, word, or words by preceding each
letter or word of text by the option.

For example, this code makes the title “Red, White, and Blue” appear in
different colors.
title color=red "Red," color=white "White, and" color=blue "Blue";

TITLE Statement 215

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n1vh5koxzr0dwjn19odnm7q3whun.htm&docsetTargetAnchor=n14tddso4u13dan1fxl0ui2izmcg&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n1vh5koxzr0dwjn19odnm7q3whun.htm&docsetTargetAnchor=n14tddso4u13dan1fxl0ui2izmcg&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p0cgtsocrm3ei3n1uqw9v4mbswkh.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p0cgtsocrm3ei3n1uqw9v4mbswkh.htm&locale=en

'text' | “text”
specifies text that is enclosed in single or double quotation marks.

You can customize titles by inserting BY variable values (#BYVALn), BY variable
names (#BYVARn), or BY lines (#BYLINE) in titles that are specified in PROC
steps. Embed the items in the specified title text string at the position where
you want the substitution text to appear.

#BYVALn
#BYVAL(variable-name)

substitutes the current value of the specified BY variable for #BYVAL in the
text string and displays the value in the title.

Follow these rules when you use #BYVAL in the TITLE statement of a PROC
step:

n Specify the variable that is used by #BYVAL in the BY statement.

n Insert #BYVAL in the specified title text string at the position where you
want the substitution text to appear.

n Follow #BYVAL with a delimiting character, either a space or other non-
alphanumeric character (for example, a quotation mark) that ends the
text string.

n If you want the #BYVAL substitution to be followed immediately by
other text, with no delimiter, use a trailing dot (as with macro variables).

Specify the variable with one of these values:

n
specifies which variable in the BY statement #BYVAL should use. The
value of n indicates the position of the variable in the BY statement.

Example #BYVAL2 specifies the second variable in the BY statement.

variable-name
names the BY variable.

Tip Variable-name is not case sensitive.

Example #BYVAL(YEAR) specifies the BY variable, YEAR.

#BYVARn
#BYVAR(variable-name)

substitutes the name of the BY variable or label that is associated with the
variable (whatever the BY line would normally display) for #BYVAR in the
text string and displays the name or label in the title.

Follow these rules when you use #BYVAR in the TITLE statement of a PROC
step:

n Specify the variable that is used by #BYVAR in the BY statement.

n Insert #BYVAR in the specified title text string at the position where you
want the substitution text to appear.

216 Chapter 2 / Dictionary of SAS Global Statements

n Follow #BYVAR with a delimiting character, either a space or other non-
alphanumeric character (for example, a quotation mark) that ends the
text string.

n If you want the #BYVAR substitution to be followed immediately by
other text, with no delimiter, use a trailing dot (as with macro variables).

Specify the variable with one of these values:

n
specifies which variable in the BY statement #BYVAR should use. The
value of n indicates the position of the variable in the BY statement.

Example #BYVAR2 specifies the second variable in the BY statement.

variable-name
names the BY variable.

Tip variable-name is not case-sensitive.

Example #BYVAR(SITES) specifies the BY variable SITES.

#BYLINE
substitutes the entire BY line without leading or trailing blanks for #BYLINE
in the text string and displays the BY line in the title.

Tip #BYLINE produces output that contains a BY line at the top of the page
unless you suppress the BY line by using NOBYLINE in an OPTIONS
statement.

See For more information about NOBYLINE, see the “BYLINE System
Option” in SAS System Options: Reference.

Tips For compatibility with previous releases, SAS accepts some text without
quotation marks. When writing new programs or updating existing
programs, always enclose text in quotation marks.

You can use macro variables and macros to change the information in
TITLE statements. If the title is enclosed in double quotation marks (""),
the text indicated is substituted into the title. If the title is enclosed in
single quotation marks (''), the text is not substituted.

You can use macro variables and macros to change the information in
TITLE statements. The SAS macro facility resolves the macro variable.

See For more information about including quotation marks as part of the title,
see “Expressions” in SAS Language Reference: Concepts .

Details

A TITLE statement takes effect when the step or RUN group with which it is
associated executes. After you specify a title for a line, it is used for all subsequent
output until you cancel the title or define another title for that line. A TITLE

TITLE Statement 217

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1hr2wb7h5g6twn1gtt5r4zjsg39.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1hr2wb7h5g6twn1gtt5r4zjsg39.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p05cxkf6p0fnifn181pu6jj9r0y6.htm&locale=en

statement for a given line cancels the previous TITLE statement for that line and
for all lines with larger n numbers.

Operating Environment Information: The maximum title length that is allowed
depends on your operating environment and the value of the LINESIZE= system
option. For more information, see the SAS documentation for your operating
environment.

Comparisons

You can also create titles with the TITLES window.

Examples

Example 1: Using the TITLE Statement
These examples show how you can use the TITLE statement.

n This statement suppresses a title on line n and all lines after it:

titlen;

n These code lines are examples of TITLE statements:

o title 'First Draft';

o title2 "Year's End Report";

o title2 'Year''s End Report';

Example 2: Customizing Titles By Using BY Variable Values
You can customize titles by inserting BY variable values in the titles that you
specify in PROC steps. These examples show how to use #BYVALn, #BYVARn, and
#BYLINE:

n title 'Quarterly Sales for #byval(site)';

n title 'Annual Costs for #byvar2';

n title 'Data Group #byline';

Example 3: Customizing Titles and Footnotes By Using the
Output Delivery System
You can customize titles and footnotes with ODS. This example shows you how to
change the color, justification, and size of the text for the title and footnote:

ods html path='c:\temp' file='test.html';

title j=left
font= 'Times New Roman' color=blue bcolor=red "Student Data "
c=green bold italic "Growth Measurements";
title2 j=center color=red underlin=1

218 Chapter 2 / Dictionary of SAS Global Statements

height=28pt "2"
height=24pt "0"
height=20pt "1"
height=16pt "8";
footnote j=left height=20pt
color=red "Prepared "
c='#FF9900' "on";
footnote2 j=center color=blue
height=24pt "&sysdate9";
footnote3 link='http://support.sas.com/documentation' "SAS
Documentation";

proc print data=sashelp.class noobs;
run;

ods html close;

TITLE Statement 219

Output 2.1 Output with Customized Titles and Footnotes

See Also

n “Overview” in SAS Output Delivery System: Procedures Guide

Statements:

n “FOOTNOTE Statement” on page 128

System Options:

n “LINESIZE= System Option” in SAS System Options: Reference

220 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1e7inim7w83xun1oq20jg6z2uez.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1quv1ypgn8bojn1q4s7nfagkfwu.htm&locale=en

X Statement
Issues an operating-system command from within a SAS session.

Valid in: Anywhere

Restriction: In SAS Viya, the SAS Compute Server runs SAS sessions with the XCMD system
option disabled (set to NOXCMD by default). When NOXCMD is set, the X
statement is not valid. Your system administrator must configure the server to
enable the XCMD system option. For more information, see Configure Servers to
Allow XCMDs

Requirement: The XCMD system option must be enabled to submit X commands in your SAS
program. For more information about the XCMD system option, see the
documentation for your operating system:
n “XCMD System Option: Windows” in SAS Companion for Windows
n “XCMD System Option: UNIX” in SAS Companion for UNIX Environments
n “XCMD System Option: z/OS” in SAS Companion for z/OS

Syntax

X <'operating-environment-command'>;

Without Arguments
Using X without arguments places you in your operating environment, where you
can issue commands that are specific to your environment.

Arguments
'operating-environment-command'

specifies an operating-environment command that is enclosed in quotation
marks.

Details

In all operating environments, you can use the X statement when you run SAS in
windowing or interactive line mode. In some operating environments, you can use
the X statement when you run SAS in batch or noninteractive mode.

Operating Environment Information: The X statement is dependent on your
operating environment. See the SAS documentation for your operating
environment to determine whether it is a valid statement on your system. Keep in
mind that the way you return from operating-environment mode to the SAS session

X Statement 221

http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n02699r064oqccn19vblte8xzr8m.htm&docsetTargetAnchor=n1fymlq4bi7vl3n1igvfssa4a7po&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n02699r064oqccn19vblte8xzr8m.htm&docsetTargetAnchor=n1fymlq4bi7vl3n1igvfssa4a7po&locale=en
https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calcontexts&docsetTarget=n1hjn8eobk5pyhn1wg3ja0drdl6h.htm#n0vaodiuepq6inn1n0dd3naghxur
https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calcontexts&docsetTarget=n1hjn8eobk5pyhn1wg3ja0drdl6h.htm#n0vaodiuepq6inn1n0dd3naghxur
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p0xtd57b40ehdfn1jyk8yxemfrtv.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n02699r064oqccn19vblte8xzr8m.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p0lbh84qtpzm3mn0zm14cxk0oxn9.htm&locale=en

is dependent on your operating environment and the commands that you use with
the X statement are specific to your operating environment.

You can use the X statement with SAS macros to write a SAS program that can run
in multiple operating environments. For more information, see SAS Macro Language:
Reference.

XCMD functionality can be processed in SAS code. You can use SAS functions and
call routines that have XCMD functionality. For users who have not enabled the X
command in their environment, this table shows a sample of alternative calls that
can be used:

Table 2.5 XCMD Functionality That Exists in SAS Functions and Call Routines

Functionality
XCMD/OS
Function SAS Language Element

Access network endpoint wget/curl PROC HTTP

Copy a file cp FCOPY

Create a directory mkdir DCREATE

Delete a file or directory rm FDELETE

Rename a file mv RENAME

Manipulate ZIP file zip/unzip FILENAME Statement:
ZIP

Searches files and directories for
specified criteria

find FILENAME

DOPEN

DREAD

DCLOSE

PRXMATCH

Searches data sets for lines that match
a regular expression.

grep PRXMATCH

Specify file metadata information. ls FINFO

Specify the directories and files within
the current directory.

dir FILENAME

DOPEN

DREAD

DCLOSE

222 Chapter 2 / Dictionary of SAS Global Statements

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0bdg5vmrpyi7jn1pbgbje2atoov.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n10dz22b5ixohin1vwzilweetek0.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1aj29pf4cxnirn15q5hmf0tv438.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0h945u5r0cv6yn1u6qs35hiqt9t.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p14axci3mo3egan1okbcydvbt433.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n15scht124hr4nn1g296cqg2kqfa.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0hpa8p9kacbran1ndqiw3krwohq.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1u8n0tue0ymkrn109xu8ya01kle.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n19037hth6jo52n14hqvcbjngw9e.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0bj9p4401w3n9n1gmv6tfshit9m.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0bj9p4401w3n9n1gmv6tfshit9m.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0cpuq4ew0dxipn1vtravlludjm7.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n15scht124hr4nn1g296cqg2kqfa.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0hpa8p9kacbran1ndqiw3krwohq.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1u8n0tue0ymkrn109xu8ya01kle.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n19037hth6jo52n14hqvcbjngw9e.htm&locale=en

Comparisons

In a windowing session, the X command works exactly like the X statement except
that you issue the command from a command line. You submit the X statement
from the Program Editor window.

The X statement is similar to the SYSTEM function, the X command, and the CALL
SYSTEM routine. In most cases, the X statement, X command or %SYSEXEC macro
statement are preferable because they require less overhead. However, the
SYSTEM function can be executed conditionally. The X statement is a global
statement and executes as a DATA step is being compiled.

See Also

CALL Routines:

n “CALL SYSTEM Routine” in SAS Functions and CALL Routines: Reference

Functions:

n “SYSTEM Function” in SAS Functions and CALL Routines: Reference

X Statement 223

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p089n536m1spv9n1cpuo8u34hw5m.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p028ivnihf9y1hn1n05tp55587jz.htm&locale=en

224 Chapter 2 / Dictionary of SAS Global Statements

3
Dictionary of SAS Global
Statement Environment
Variables

Dictionary . 225
SAS_FTP_AUTHTLS Environment Variable . 225
TD_1MB_ROW Environment Variable . 227

Dictionary

SAS_FTP_AUTHTLS Environment Variable
Enables Transport Layer Security (TLS) authentication.

Valid in: SAS configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Used by: SAS FILENAME statement, FTP Access Method

Syntax

SAS_FTP_AUTHTLS 0 | 1 | 2 | 3

225

Required Arguments
0

Uses the FILENAME statement, FTP Access Method option to determine TLS
security. This is the default setting.

1
Enforces TLS authentication. If security authorization fails, an error is returned.

2
Enforces TLS authentication if the AUTHTLS, PROT=, or PBSZ= option is
specified in the FILENAME statement, FTP Access Method.

Note If you do not specify the AUTHTLS, PROT=, or PBSZ= option in the
FILENAME statement, FTP Access Method, TLS authentication is
attempted. If the FTP server does not accept TLS authentication, then
basic FTP authentication is used.

3
Enforces TLS authentication and a note is written to the SAS log. If security
authorization fails, an error is returned.

Details

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL),
are cryptographic protocols that are designed to provide communication security
over the internet. TLS and SSL are protocols that provide network data privacy,
data integrity, and authentication.

The SAS_FTP_AUTHTLS environment variable can be used instead of adding the
AUTHTLS, PROT=, or PBSZ= option to your FILENAME FTP access method
statement to enforce TLS authentication. If the SAS_FTP_AUTHTLS environment
variable is used, the default values of PROT=P and PBSZ=0 are used in conjunction
with AUTHTLS.

How you define the SAS environment variables depends on your operating
environment. For most operating environments, you can define the environment
variables either locally (for use only in your SAS session) or globally. For example,
you can define the SAS environment variables with the SET system option in a SAS
configuration file, at SAS invocation, with the OPTIONS statement, or in the SAS
System Options window. In addition, you can use your operating system to define
the environment variables.

This table includes examples of defining the SAS_FTP_AUTHTLS environment
variable.

Table 3.1 Defining the SAS_FTP_AUTHTLS Environment Variable

Method Example

SAS configuration file -set SAS_FTP_AUTHTLS 1

226 Chapter 3 / Dictionary of SAS Global Statement Environment Variables

Method Example

SAS invocation -set SAS_FTP_AUTHTLS 1

OPTIONS statement options set=SAS_FTP_AUTHTLS 1;

For more information about TLS, see Encryption in SAS

See Also

Statements:

n “FILENAME Statement: FTP Access Method” on page 67

TD_1MB_ROW Environment Variable
Specifies whether response row sizes up to 1MB are supported for data on Teradata.

Category: Data Access

Default: ON

Restriction: This option applies to SAS 9.4M8 only. It is not relevant for SAS Viya 3.5.

Details

Use the TD_1MB_ROW environment variable to specify whether you want to
support response rows up to 1MB for the Teradata interface. By default,
SAS/ACCESS supports 1MB response rows. If you do not want to support response
rows that are this large, set TD_1MB_ROW to OFF. When TD_1MB_ROW is OFF,
response rows up to 64K are supported.

In your SAS session, you can set this environment variable by using the OPTIONS
statement:

options set=TD_1MB_ROW OFF;

You can also set this environment variable on invocation of the SAS session, in the
SAS autoexec file:

sas -nodms -set TD_1MB_ROW OFF

For more information, see “Processing Large Response Rows” in SAS/ACCESS for
Relational Databases: Reference.

TD_1MB_ROW Environment Variable 227

http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=n0ht8i7t92tocpn18vn0krftm85m.htm&docsetTargetAnchor=n050hx54pls1w5n1hy1j0ty1h5dq&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=n0ht8i7t92tocpn18vn0krftm85m.htm&docsetTargetAnchor=n050hx54pls1w5n1hy1j0ty1h5dq&locale=en

228 Chapter 3 / Dictionary of SAS Global Statement Environment Variables

	Contents
	Syntax Conventions for the SAS Language
	Overview of Syntax Conventions for the SAS Language
	Syntax Components
	Style Conventions
	Special Characters
	References to SAS Libraries and External Files

	What’s New in SAS 9.4 Global Statements
	Overview
	New SAS Statements
	Enhanced SAS Statements
	Locked-Down State Restrictions

	About SAS Global Statements
	Definition of Global Statements
	Using Global Statements
	Other Statement Documentation

	Dictionary of SAS Global Statements
	Global Statements by Category
	Dictionary
	CATNAME Statement
	CHECKPOINT EXECUTE_ALWAYS Statement
	Comment Statement
	DM Statement
	ENDSAS Statement
	FILENAME Statement
	FILENAME Statement: Azure Access Method
	FILENAME Statement: CATALOG Access Method
	FILENAME Statement: CLIPBOARD Access Method
	FILENAME Statement: DATAURL Access Method
	FILENAME Statement: EMAIL (SMTP) Access Method
	FILENAME Statement: FILESRVC Access Method
	FILENAME Statement: FTP Access Method
	FILENAME Statement: Hadoop Access Method
	FILENAME Statement: S3 Access Method
	FILENAME Statement: SFTP Access Method
	FILENAME Statement: SOCKET Access Method
	FILENAME Statement: URL Access Method
	FILENAME Statement: WebDAV Access Method
	FILENAME Statement: ZIP Access Method
	FOOTNOTE Statement
	%INCLUDE Statement
	LIBNAME Statement
	LIBNAME Statement: CVP Engine
	LIBNAME Statement: JMP Engine
	LIBNAME Statement: JSON Engine
	LIBNAME Statement: WebDAV Server Access
	%LIST Statement
	LOCK Statement
	MISSING Statement
	Null Statement
	OPTIONS Statement
	PAGE Statement
	RESETLINE Statement
	RUN Statement
	%RUN Statement
	SASFILE Statement
	SKIP Statement
	SYSECHO Statement
	TITLE Statement
	X Statement

	Dictionary of SAS Global Statement Environment Variables
	Dictionary
	SAS_FTP_AUTHTLS Environment Variable
	TD_1MB_ROW Environment Variable

