Standards Conformance Guide

2550 Garcia Avenue A}
Mountain View, CA 94043 0 ¢
USA. < @

Part No: 802-1953-10 A Sun Microsystems, Inc. Business

Revision A, November 1995

0 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX System Laboratories, Inc., awholly owned
subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party
software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.
The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS
are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered
trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a
registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. OSF is a trademark
of the Open Software Foundation, Inc. Zusr/group®is a registered trademark of UniForum. Intel is a registered trademark of
Intel Corporation. XENIX® is a registered trademark of Microsoft Corporation. SCO Professional™ is a trademark of Santa Cruz
Operation Inc. Microsoft® is a registered trademark of Microsoft Corporation. Informix® is a registered trademark of Informix
Software Inc. Crystal Write™ is a trademark of Syntactics Inc. Crystal™ is a trademark of Syntactics Inc.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter, SPARCserver,
SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS I1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN. THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

or
e 9}

Contents

Preface. XiX
1. A Look at Some Standardization Organizations........... 1
Institute of Electrical and Electronics Engineers (IEEE) and POSIX1

X/ OPEN . 2

International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC)........

The X Consortium
UNiFOrUM . .. e

American National Standards Institute (ANSI).............

g~ A W W

The Open Software Foundation.

2. UNIX System V Release
4-Based (SVR4) Specifications

UNIX SystemV Release 4.........

Application Binary Interface

co 00 ~N

SunOS Compliance With the ABI Specification..........

ABI Specifications and Related Publications
System V Interface Definition (SVID)
SunOS Compliance WithSVID3
SVID Specification. i,
Device Driver Interface/Driver-Kernel Interface (DDI/DKI) .
SunOS Compliance with the Specification..............
DDI/DKI and DKI Specifications and Related Publications
Data Link Provider Interface (DLPI)
SunOS Compliance WithDLPI
DLPI Specification i
Transport Provider Interface.
SunOS Compliance with TPl
3. X11, PostScript and Sun Microsystems’ OpenWindows
OPEN LOOK . .. e
Solaris Compliance With OPEN LOOK
OPEN LOOK Specification and Related References
Licensing the OPEN LOOK Trademark
X Window System, Version 11 (X11)
PostScript Languaget
Solaris Compliance With X11
Solaris Compliance with PostScript
X11 Specification and Related Publications
4. Common Desktop Environment.........................

Common Desktop Environment

Standards Conformance Guide—November 1995

Developers, End Users,and CDE 22

Standardizing the Common Desktop Environment 22
Open Software Foundation/Motif. 22
CDEand Motif. 23
Solaris Compliance With OSF/Motif 24
The X Window System v 25
CDE Compliancewith X11........................... 26
Solaris Compliance with PostScript 26

Future Standardization.............. 27
X/0pen CDE Specification. 27
X/0pen Calendaring and Scheduling API. 28

5 X/Openand XPG3. 29
The X/Open Portability Guide, Issue 3................. 29
The X/Open Brand Trademark 30

X/0pen Conformance Statement for Solaris 32

X/0Open Conformance Statement 32

X/0pen Specification and Related Publications 63

6. X/IOpenand XPG4 65
The X/Open Portability Guide, Issue 4. 65

The X/Open Brand Trademark 65

The X/Open Conformance Statement for Solaris 67
X/0pen Conformance Statement 67

7. X/Open Interim UNIXBranding 105
X/0pen Conformance Statement for SPARC............... 105

Contents \Y;

X/0pen Conformance Statement 105

X/0pen Conformance Statementforx86.................. 106
X/0pen Conformance Statement 106
POSIX L. 109
Portable Operating System Interface for Computer Environments
(POSIX.1). oo e 109
Amending POSIX.1: The IEEE Standards 1003.1b and 1003.1c
109
SCOP . o i 110
C Standard Compliance 110
AUIENCE 110
Notation Used in the Remainder of this Chapter 111
Implementation-Defined Areas of POSIX.1 111
POSIX.1Section 1: General 111
1.3.1 Implementation Conformance 111

POSIX.1 Section 2, Terminology and General Requirements .. 112

22.2General Terms 112
2.3General Concepts.o 113
24 Error Numbers. 114
2.5 Primitive System Data Types 115
2.6 Environment Description 116
2.7 C Language Definitions. 116
2.8 Numerical Limits. 116
29 SymbolicConstants. 118
POSIX.1 Section 3, Process Primitives. 120

Standards Conformance Guide—November 1995

3.1.1.2 Process Creation: Description. 120

B L LA EITOrS. o 120
3.1.2.2 Execute a File: Description 120
3.1.24ExecuteaFile:Errors. 121
3.2.1.2 Wait for Process Termination: Description........ 122
3.2.2.2 Terminate a Process: Description. 122
3.3.11SignalNames i 123
3.3.1.2 Signal Generation and Delivery................. 123
3.3.1.3Signal Actions. 124
3.3.2.2 Send a Signal to a Process: Description. 125
3.3.3.4 Manipulate Signal Sets: Errors. 125

3.3.4.2 Examine and Change Signal Action: Description .. 126

3.3.6.4 Examine Pending Signals: Errors................ 126
3.3.8.2 Synchronously Accept a Signal: Description 126
POSIX.1 Section 4, Process Environment 126
4244 Get User Name: Errors 126
4.4.1.2 Get System Name: Description 127
45.1.4 Get System Time: Errors 127
4.6.1.4 Environment Variables: Errors. 127
4.7.1.4 Generate Terminal Pathname: Errors 127
4.7.2.4 Determine Terminal Device Name: Errors 128
POSIX.1 Section 5, Files and Directories. 128
5.1.1 Format of Directory Entries. 128
5.1.2.4 Directory Operations: Errors 128

Contents Vii

viii

5.2.2.4 Get Working Directory Pathname: Errors......... 129

5.3.1.2 Open a File: Description 129
5.3.3.2 Set File Creation Mask: Description. 130
5.3.4.2 Link to a File: Description. 130
5.4.1.2 Make a Directory: Description 130
5.4.2.2 Make a FIFO Special File: Description 131
5.5.1.2 Remove Directory Entries: Description........... 131
5.5.1.4 Remove Directory Entries: Errors 131
5.5.2.2 Remove a Directory: Description................ 131
5.5.2.4 Remove a Directory: Errors 132
5.5.3.2 Rename a File: Description..................... 132
5534 RenameaFile:Errors............. 132
5.6.1.2 File Characteristics: FileModes 133
5.6.2.2 Get File Status: Description 133
5.6.3.4 Check File Accessibility: Errors 133
5.6.4.2 Change File Modes: Description 133

5.6.5.2 Change Owner and Group of a File: Description .. 134

5.6.5.4 Change Owner and Group of a File: Errors 134
5.7.1.4 Get Configurable Pathname Variables: Errors 134
POSIX.1 Section 6, Input and Output Primitives. 135
6.3.1.2 Close a File: Description 135
6.4.1.2 Read from a File: Description. 136
6.4.2.2 Write to a File: Description..................... 136
6.5.2.2 File Control: Description. 136

Standards Conformance Guide—November 1995

6.5.3.2 Reposition Read/Write File Offset: Description ... 137
6.6 File Synchronization 137
6.6.1.2 Synchronize a File’s State: Description........... 137

6.7.1.1 Data Definitions for Asynchronous Input and Output:
Asynchronous I/0 Control Block 137

6.7.7.2 Cancel Asynchronous 1/0 Request: Description. .. 138

POSIX.1 Section 7, Device- and Class-Specific Functions. 138
7.1 General Terminal Interface........................ 138
7.1.1.3 The Controlling Terminal 138
7.1.1.5 Input Processing and ReadingData 139
7.1.1.6 Canonical Mode Input Processing. 139
7.1.1.7 Noncanonical Mode Input Processing 139
7.1.1.8 Writing Data and Output Processing 140
7.1.19Special Characters 140
7.1221InputModes 141
7.1.230utputModes 141
7.124ControlModes 142
7.1.25Local Modes 142
7.1.2.6 Special Control Characters 143
7.1.3.4 Baud Rate Functions: Errors. 143
7.2.1.2 Get and Set State: Description 144
7.2.2.2 Line Control Functions: Description............. 144

POSIX.1 Section 8, Language-Specific Services for the C
Programming Language, 144

Contents ix

8.1.1 Referenced C Language Routines, Extensions to Time

Functions 144

8.1.2.2 Extensions to setlocale(): Description 145
8.2.2.4 Open a Stream on a File Descriptor: Errors 145
8.2.3 Interactions of Other File-Type C Functions 145
8.2.7.4 Stdio with Explicit Client Locking: Errors 146
8.3.2.2 Set Time Zones: Description. 146
8.3.4.4 Find String Token: Errors 146
8.3.5.4 ASCII Time Representation: Errors 146
8.3.6.4 Current Time Representation; Errors. 147
8.3.7.4 Coordinated Universal Time: Errors 147
8.3.8.4 Local Time:Errors, 147
POSIX.1 Section 9, System Databases 147
9.1SystemDatabases. i 147
9.2.1.4 Group Database Access: Errors 147
9.2.2.4 User Database Access: Errors. 148
POSIX.1 Section 10, Data Interchange Format 148
10.1 Archive/Interchange File Format 148
10.1.1 Extended tar Format.......................... 148
10120 Header. 149
10.1.22FileName 149
10.1.3 Multiple Volumes L 149
POSIX.1 Section 11, Synchronization. 150

11.2.3.2 Initialize/Open a Named Semaphore: Description 150

Standards Conformance Guide—November 1995

11.3.1.2 Mutex Initialization Attributes: Description. 150

11.4.1.2 Condition Variable Initialization Attributes:
Description. 150

POSIX.1 Section 12, Memory Management 150

12.1.1.2 Lock/Unlock a Process’s Address Space: Description
151

12.1.1.4 Lock/Unlock a Process’s Address Space: Errors .. 151
12.1.2.4 Lock/Unlock a Range of Process Address Space: Errors

151
12.2.1.2 Map Process Addresses to a Memory Obiject:
Description. 151
12.3.1.2 Open a Shared Memory Obiject: Description 152
12.4.1.1.1 Process Memory Locking: Models 152
POSIX.1 Section 13, Execution Scheduling................. 152
13.2 Scheduling Policies 152
13.2.3 Scheduling Policies: SCHED OTHER 152
13.3.1.2 Set Scheduling Parameters: Description......... 153
13.3.3.2 Set Scheduling Policy and Scheduling Parameters:
Description. i e 153
13.4.1 Thread Scheduling Attributes. 154
13.4.2 Scheduling Contention Scope 154
13.4.3 Scheduling Allocation Domain.................. 155
13.5.2.2 Dynamic Thread Scheduling Parameters Access:
Description. 156
POSIX.1 Section 14, Clocksand Timers. 156
14.2.1.2 Clock and Timer Functions: Description. 156

Contents Xi

xii

14.2.2.2 Create a Per-Process Timer: Description......... 157

14.2.4.2 Per-Process Timers: Description. 157
POSIX.1 Section 15, Message Passing 157
15.1.1. Data Definitions for Message Queues: Data Structures

157
15.2.1.2 Open a Message Queue: Description. 158
POSIX 2. 159
Portable Operating System Interface —Part 2: Shell and Utilities
(POSIX.2). o oot 159
SCOPE . o 159
AUIENCE 160
Notation Used in the Remainder of this Chapter 160
Implementation-defined Areas of POSIX.2................. 161
POSIX.2 Section 1,General 161
1.3.1 Implementation Conformance 161

POSIX.2 Section 2, Terminology and General Requirements.. 162

22.2General Terms 162
24 Character Set. 164
2.4.1 Character Set DescriptionFile.................... 164
25L0cale ... 164
2.5.2: Locale Definition 165
2521 LC CTYPE ... e e 165
2525LC TIME. 165
2.5.3 Locale Definition Grammar. 166
2.6 Environment Variables, 166

Standards Conformance Guide—November 1995

29.15FileRemoval. 167

21152 1InputFiles. 167
2.14 Terminal Characteristics 168
POSIX.2 Section 3, Shell Command Language. 169
353 Variables. 169
37 Redirection 169
POSIX.2 section 4, Execution Environment Utilities......... 169
4.1.7.3 Variables and Special Variables 169
4.1.7.6.2.3 Input/Output and General Functions. 170
4.1.7.8 awk Lexical Conventions 170

Contents

4.2.2 basename - Return Nondirectory Portion of Pathname:

Description. i 170
4.5.2 cd - Change Working Directory: Description 170
45.40perands 170
4.7.2 chmod - Change File Modes: Description......... 171
4.7.7 chmod - Extended Description.................. 171
4.13.2 cp — Copy Files: Description. 172
4,133 0PtIONS. . .o 173
4.18.2 dirname — Return Directory Portion of Pathname:

DesCription. 173
4.19.40perands e 173
4.20.7.3.14ListCommand. 174
4.24.40perands 174
4.30.2 id — Return User Identity: Description 174
4.33.2 In - Link Files: Description..................... 175

xiii

Xiv

4.3340perands 175

4343 0PtIONS. . ..o 175
4.3440perands 175
4.35.2 localedef — Define Locale Environment: Description 175
4.36.2 logger — Log Messages: Description 176
4.39.30PtIONS. 176
4.39.5.3 Environment Variables 176
4.39.6.1 Standard OQutput 177
4.40.6.30utputFiles 177
4.40.7.1 mailx Internal Variables 178
4.40.7.3 mailx Command Escapes 178
4.43.2 mv — Move Files: Description. 178
4.45.7 Extended Description.......................... 178

4.48.2 pax — Portable Archive Interchange: Description .. 180

4483 0PtIONS. . ..o 180
44852 1InputFiles. 181
4.48.6.1 Standard Qutput 181
4.48.6.30utputFiles 181
4.55.7.3 sed EditingCommands 181
4.56.5.3 Environment Variables 182

4.59.2 stty - Set the Options for a Terminal: Description 182

45944 Local MOES 183
459.4.6 Combination Modesii. 183
4.6240perands 183

Standards Conformance Guide—November 1995

4.63.30PtIONS. 184

4.64.7 Extended Description. 184
4.68.2 uname — Return System Name: Description. 184
4.68.6.1 Standard Output 185
POSIX.2 Section 5, User Portability Utilities Option......... 185

Contents

5.2.2 Execute Commands at a Later Time: Description. ... 185

5.2.30PtioNS. ... 185
524 0perands 186

5.5.2 crontab — Schedule Periodic Background Work:
Description. i 186
5.7.4 Extended Description. 186
5.7.70perands 186
5.8.6.1Standard Output 187
510.7.25chdir 187
510.7.2.13 1Sto 187
5.10.7.2.14MaAP . . .ot 188
510.7.2.21PriNto 188
5.10.7.229S0UICEottt 188
510.7.237TWIIteo 188
5.10.7.5.8 ISt . .ot 188
5.10.7.5.12 paragraphs, para......................... 189
5.10.7.5.18 S€CtIONSot 189
5.10.7.5.24 A0S - . .o o v ot 189
5.10.7.528 WindOW 189
XV

XVi

5.12.2 fc — Process Command History List: Description ... 189
5.12.5.3 Environment Variables 190
5.14.2 file — Determine File Type: Description 190

5.16.2 man - Display System Documentation: Description 191

5.16.6.1 Standard Qutput 191
5.17.2 mesg - Permit or Deny Messages: Description. ... 191
5.18.30PtioNS. 191
5.18.7 Extended Description. 191
5.8 7L HEID . o oot 192
5.18.7.24 Invoke Editor 192

5.19.2 newgrp - Change to a New Group: Description... 192
5.20.2 nice — Invoke a Utility with an Altered System

Scheduling Priority: Description. 193
5.20.30PtIONS. 193
52152 1InputFiles. 193
5.21.6.1Standard Qutput 194
5.23.2 ps — Report Process Status: Description.......... 194
5.23.30PtiONS. 195
5.23.61Standard Qutput. 195
5.24.2 renice — Set System Scheduling Priorities of Running

Processes: Description. 196
5243 0PLIONS. . ..ot 197

5.26.2 strings — Find Printable Strings in Files: Description 197
5.26.30PLIONS. 197
5.28.2 talk — Talk to Another User: Description......... 197

Standards Conformance Guide—November 1995

530.40perands 198
5.36.2 who - Display Who is on the System: Description. 198
5.36.6.1 Standard Qutput 198
5.37.2 write — Write to Another User: Description. 199
POSIX.2 Section 6, Software Development Utilities Option... 199

6.2.7.1 Makefile Syntax 199
6.2.7.2 Makefile Execution 200
6.27.3TargetRules 200
6.274MaCrOS.ot 200

POSIX.2 Annex A: C Language Development Utilities Option 201

AL30pLioNs 201
ALAOperands. 201
AlS52InputFiles 202
A.l7.2External Symbols L. 202
A26.1StandardQutput............................. 203
A.26.2Standard Error. 203
A.2.7 Extended Description 206
A271lexDefinitions........... i 206
A.2.7.4 lex Regular Expressions. 207
A.3.6.3.3yacc DescriptionFile 207
A3TIOLIMITS ..o 207

10. OtherStandards 209
ANSI C Programming Language.coov... 209
Compliance With the ANSIC Standard 210

Contents XVii

Xviii

ANSI C Specification and Related Publications. 210

ANSI/ZIEEE 754 210
Compliance With ANSIZIEEE 754..................... 210
ANSI/IEEE 754-1985 Specification and Related Publications 211

International Standards Organization (ISO) 8859-1.......... 211
Compliance With 1ISO8859-1 211
ISO8859 Standard 211

Federal Information Processing Standard (FIPS) 151 212
Compliance With FIPS 151 212
FIPS 151 Specification 212

Federal Information Processing Standard (FIPS) 158 212
Compliance With FIPS 158 213
FIPS 158 Specification and Related Publications......... 213

The Application Binary Interface (ABI) 213
Compliance Withthe ABI. 214
ABI Publication 214

SPARC Compliance Definition (SCD) 214
Compliance Withthe SCD 214
SPARC Compliance Definition Specification............ 214

Standards Conformance Guide—November 1995

Preface

Solaris™ is Sun Microsystem’s integrated computing environment that
includes the SuUnOS™ operating system, OpenWindows™ and numerous
bundled utilities. SunOS is compliant with the System V Interface Definition,
Issue 3 from UNIX® System Laboratories.

This book is part of the Solaris documentation set. It discusses the compliance
of Solaris 2.5 and the SunOS 5.5 operating system to the following
specifications and standards:

Application Binary Interface (ABI)

System V Interface Definition, Issue 3 (SVID)
Device Driver Interface/Driver-Kernel Interface (DDI/DKI)
Data Link Provider Interface (DLPI)

Transport Provider Interface (TPI)

OPEN LOOK® Graphical User Interface (GUI)
OSF/Maotif 1.2

X Window System™ Protocol, Version 11 (X11)
X/0pen™ XPG3 BASE

X/0pen XPG4 BASE

X/Open UNIX® ‘93

ANSI/IEEE Standard 1003.1¢c-1995 — (POSIX.1)
ANSI/IEEE Standard 1003.2-1992 — (POSIX.2)
ANSI C Programming Language

International Standards Organization (ISO) 8859-1
Federal Information Processing Standard 151-2
Federal Information Processing Standard 158

XiX

XX

* ANSI/IEEE Standard 754
® SPARC Compliance Definition 2.1 (SCD 2.1)

Chapter 1 of this book introduces the organizations responsible for the
specifications and standards covered in this guide. Chapters 2 through 10
discuss the specifications and standards; a brief account of each specification or
standard is followed by a statement of compliance with it.

Standards Conformance Guide—November 1995

A Look at Some Standardization
Organizations 1

This chapter briefly discusses the histories of organizations responsible for the
specifications and standards discussed in this guide. SunSoft recognizes the
importance of compliance with existing and evolving standards and is firmly
committed to support and participate in ongoing efforts toward
standardization.

Institute of Electrical and Electronics Engineers (IEEE) and POSIX

A group of UNIX systems users, /usr/group®, established a committee with
the objective of proposing a set of standards for application level interfaces.
After publishing the 1984 /usr/group Standard, the group decided to seek
international status for the standard. In early 1984, the /usr/group Standards
Committee closed its activities in its own name and its members were
encouraged to become involved in the IEEE POSIX committee so that the work
could become the basis for an official international standard.

The first externally visible result of this initiative was the publication of the
IEEE Trial-Use Standard in March 1986. Formal approval followed in August
1988 of IEEE Standard 1003.1-1988, a “Portable Operating System Interface for
Computer Environments” (POSIX), which became the first step toward a truly
portable operating system standard.

Although originally planned to refer to the IEEE Standard 1003.1-1988, the
name POSIX has come to refer to the whole family of related standards and
parts of the International Standard ISO/IEC 9945. POSIX.1 has emerged as the
preferred reference to IEEE Standard 1003.1-1990. An update to the 1988

1]l
H

X/Open

standard, IEEE Standard 1003.1-1990, was also adopted as International
Standard ISO/IEC 9945-1:1990 by the International Organization for
Standardization (ISO) and by the International Electrotechnical Commission
(IEC). In 1993, POSIX.1 was amended to include extensions in support of real-
time applications. Chapter 8 of this manual discusses the compliance of Solaris
software with IEEE Standard 1003.1b-1993.

In 1992, IEEE Standard 1003.2-1992 became part of the POSIX series of
standards. Referred to as “POSIX.2,” IEEE Standard 1003.2-1992 defines a
standard interface and environment for applications that require a shell
command language interpreter and a set of common utility programs.
Chapter 9 of this manual discusses the compliance of Solaris software with
IEEE Standard 1003.2-1992.

Note — Use of an IEEE standard is voluntary.

Founded in 1984, X/Open™ is a worldwide consortium of system vendors,
ISVs, and users, organized to adopt existing standards and adapt them into a
consistent environment called the Common Applications Environment (CAE).
Through establishment of the CAE and awarding of the X/Open brand
trademark to products that comply with the X/Open definitions, X/Open aims
to ensure portability and connectivity of applications. Where there is no official
standard, it is X/Open policy to work closely with standards bodies to
encourage the emergence of common standards.

Many of the world’s major hardware suppliers, including Sun Microsystems,
are X/0Open members. Most of X/Open’s technical work is accomplished by
personnel from its member companies.

X/0pen publishes its specifications in the X/Open Portability Guide (XPG).
XPG defines the interfaces identified as components of the Common
Applications Environment. It contains an evolving portfolio of practical
applications programming interfaces (APIs), which enhance portability of
application programs at the source code level. The interfaces are supported by
an extensive set of conformance tests and the distinct X/Open brand
trademark. The X/Open Portability Guide, Issue 3 (XPG3) encompasses the
IEEE POSIX.1 operating system interface and numerous extensions. Issue 4
(XPG4) encompasses the POSIX.2 shell and utilities.

Standards Conformance Guide—November 1995

[EEN
I

In 1993, ownership of this UNIX trademark was transferred to X/Open
Company, Ltd.

Chapter 5 of this guide discusses the compliance of Solaris to the programming
interface specifications presented in the X/Open Portability Guide, Issue 3.

Chapter 6 of this guide discusses the compliance of Solaris to the programming
interface specifications presented in the X/Open Portability Guide, Issue 4.

Chapter 7 of this guide discusses the compliance of Soilaris to the X/Open
UNIX ‘93 Brand.

National Institute of Standards and Technology (NIST)

The National Institute of Standards and Technology, (formerly the National
Bureau of Standards), is a federal government agency that issues Federal
Information Processing Standards Publications (FIPS PUBS). Standards are first
approved by the Secretary of Commerce according to Section 111(d) of the
Federal Property and Administrative Services Act of 1949, as amended by the
Computer Security Act of 1987, Public Law 100-235.

International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC)

The X Consortium

The International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) together form a system for worldwide
standardization. National bodies that are members of ISO or IEC participate in
the development of international standards through technical committees
established by ISO and IEC to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest.
Other governmental and nongovernmental international organizations also
take part in the work.

The X Consortium, Inc. is a non-profit organization that solicits, develops,
standardizes, distributes, and maintains a collection of technologies that come
under the umbrella term of the “X Window System.” The technologies are
devoted to graphic presentation and human interaction that can be distributed
over computer networks. The X Consortium is sustained by corporate

A Look at Some Standardization Organizations 3

1]l
H

UniForum

membership fees. This organization has recently broadened its original charter
by taking on a role as prime contractor to the Open Software Foundation in the
development of licensable software in the form of Motif and the Common
Desktop Environment.

UniForum, formerly Zusr/group, is an association of individuals, corporations
and institutions with an interest in open systems. This organization provides
input to POSIX and other standards committees and consortia to aid in the
development of independent industry-driven standards. UniForum has more
than 10,000 members representing a cross-section of the UNIX system
community. The membership includes hardware manufacturers, vendors of
operating systems and software development tools, software designers,
consultants, academics, authors and applications programmers, among others.

American National Standards Institute (ANSI)

The American National Standards Institute (ANSI) verifies that requirements
for due process, consensus, and other criteria for approval have been met by
the standards developer before it grants a standard approval as an American
National Standard.

Consensus is established when the ANSI Board of Standards Review
determines that the criteria for standards approval has been met by the
standards development organizations. Consensus requires that all views and
objections be considered and that a concerted effort be made toward their
resolution.

ANSI does not develop standards, nor does it interpret any American National
Standards.

Note — Use of an American National Standard is voluntary:.

Standards Conformance Guide—November 1995

[EEN
I

The Open Software Foundation

The Open Software Foundation (OSF™) was founded in 1988 with the goal of
bringing global acceptance to a single user interface standard for open
software. The OSF Motif graphical user interface bases its foundation on
industry standards such as POSIX and X/Open.

In its efforts to develop a single user interface standard, OSF uses an open
process to solicit technologies from hardware and software vendors
worldwide. The selection criteria used by OSF include technical excellence,
maturity, compatibility with established industry standards, and the ability to
perform in a heterogeneous networked environment that may incorporate a
variety of platforms.

A Look at Some Standardization Organizations 5

Standards Conformance Guide—November 1995

UNIX System V Release
4-Based (SVR4) Specifications 2

This chapter provides an introduction to UNIX System V Release 4, discusses
related specifications, and identifies how the SunOS operating system
conforms to those specifications.

UNIX System V Release 4

The UNIX operating system was developed by Ritchie and Thompson at Bell
Laboratories in the early 1970s. From 1977 to 1982, Bell Laboratories combined
several variants of the UNIX system devised by American Telephone and
Telegraph (AT&T), into a single system, known commercially as UNIX System
I11. Bell Laboratories later added several features to UNIX System I, calling
the new product UNIX System V, and AT&T announced official support for
System V in January 1983.

UNIX System V Release 4 (SVR4), the result of a cooperative venture entered
into by Sun Microsystems and AT&T, was announced in November of 1989.
SVR4 is a synthesis of the best functionality of AT&T’s UNIX System V Release
3, Berkeley Software Distribution 4.3, Sun’s SunOS releases, and Microsoft’s
XENIX®. SVR4 provides the notions of a consistent Application Programming
Interface (API) and a single Application Binary Interface (ABI) for each
hardware platform. It offers scalability that allows users, depending on their
needs, to move to larger or smaller machines while still using the same
environment.

2

Application Binary Interface

The System V Application Binary Interface (ABI) defines a standard binary
interface for compiled applications on systems that implement UNIX System V
Release 4 or other operating systems that comply with the System V Interface
Definition, Third Edition.!

The ABI defines a binary interface for application programs that are compiled
and packaged for System V implementations on different hardware
architectures. Because a binary specification must include information
particular to the computer processor architecture for which it is intended, it is
not possible for a single document to specify the interface for all possible
System V implementations. Therefore, the System V ABI is a family of
specifications.

The System V ABI is composed of two basic parts: a generic part that is a
source-level interface which describes those aspects that remain constant across
all hardware implementations of System V, and a processor-specific part that
provides a complete binary interface for specific CPU architectures. Together,
the generic ABI and the processor-specific supplement for a single hardware
architecture provide a complete interface specification for compiled application
programs on systems that share a common hardware architecture.

Software that is ABI-compliant for a particular architecture runs unchanged in
its binary form on any ABI-compliant machine of that architecture. Also, this

software is source compatible with any other ABI-compliant system and runs
unchanged after compilation on the target system.

SunOS Compliance With the ABI Specification

The SunOS operating system is compliant with both the generic ABI as defined
in the AT&T System V Application Binary Interface: Generic ABI (ISBN 0-13-
100439-5) and the processor-specific part of the ABI as defined in the
Application Binary Interface SPARC Processor Supplement (ISBN 0-13-104696-9) or
the Application Binary Interface Intel 386 Processor Supplement (ISBN 0-13-104670-
5), depending on the underlying hardware architecture.

1. The System V Interface Definition, Third Edition is also referred to as SVID89 and SVID3.

Standards Conformance Guide—November 1995

N
1]

ABI Specifications and Related Publications

The following documents comprise the ABI specification for the SunOS
operating system:

® AT&T System V Application Binary Interface: Generic ABI
® AT&T System V Application Binary Interface SPARC Processor Supplement
® AT&T System V Application Binary Interface Intel 386 Processor Supplement

The documents listed above refer to other specifications and standards, some
of which are identified below:

® The System V Interface Definition, Third Edition

® The IEEE Std. 1003.1-1990 Portable Operating System Interface (POSIX.1)-
Part 1: System Application Program Interface [C Language]

® The IEEE Std 754-1985 Floating Point Processing Specification

® The X/Open Portability Guide, Issue 3

® The X/Open Portability Guide, Issue 4

® The ANSI Std. X3.159-1989 C Language Specification

® The X11 X Window System Graphical User Interface Specification
® The SPARC Architecture Manual, Version 8

® 486 MICROPROCESSOR Programmer’s Reference Manual

® 80386 Programmer’s Reference Manual

® 80387 Programmer’s Reference Manual

These specifications and standards are discussed elsewhere in this manual.

System V Interface Definition (SVID)

The System V Interface Definition (SVID), first published by AT&T in 1985,
represented a major standards initiative. AT&T was a prominent member of
/usr/group and the influence of Zusr/group is evident in the SVID.

The SVID specifies an operating system environment that allows users to
create applications software that is independent of any particular computer
hardware. It specifies the operating system components available to both end-

UNIX System V Release 4-Based (SVR4) Specifications 9

users and application programs and defines the functionality, but not the
implementation, of components. The SVID specifies the source code interfaces
of each operating system component, as well as the runtime behavior seen by
an application program or an end-user.

An application using only components defined in the SVID will be compatible
with and portable to any computer that supports the SVID. The SVID is
organized into a Base System Definition with a series of Extension Definitions.
The Base System Definition specifies the components that all System V
operating systems must provide. The extensions to the Base System are not
required.

All conforming systems must support the source-code interfaces and runtime
behavior of all the components of the Base System. A system may conform to
none or some extensions. All of the required components must be present for a
system to meet the requirements of the extension.

SunOS Compliance With SVID3

The SunOS operating system is compatible with the Base System of the System
V Interface Definition, Third Edition. Writing to SVID3 ensures that your
applications will be source compatible. Applications that are SVID3 compliant
will compile and run on the SunOS operating system.

The SunOS operating system meets all SVID requirements for the following:
Base System, Basic Utilities, Kernel, Network Services, Terminal Interface
Extensions, Advanced Utilities, and Software Development Extensions.

SVID Specification

System V Interface Definition, Third Edition, Volumes 1-4, AT&T

Device Driver Interface/Driver-Kernel Interface (DDI/DKI)

10

The Solaris 2.4 DDI, Device Driver Interface and DKI, Driver-Kernel Interface,
comprise a set of standard interfaces for device drivers. SVR4 requires that
each vendor provide and document a hardware-specific DDI. The Solaris 2.4
DDl is a set of device driver interfaces defined by SunSoft that meets that
requirement. The DKI is intrinsic to System V, Release 4 (SVR4). The DKI is

Standards Conformance Guide—November 1995

2

divided into two parts: the set of interfaces called DDI/DKI that will continue
to be supported in future release of System V and the set of interfaces called
DKI only that may not be supported in the future.

SunOS Compliance with the Specification

The SunOS implementation of the DDI/DKI and DKI-only interfaces for device
drivers is compliant with the specification described in the UNIX System V
Release 4 Device Driver Interface/Driver-Kernel Interface (DDI/DKI) Reference
Manual.

DDI/DKI and DKI Specifications and Related Publications

The following manuals describe the DDI and DKI interfaces.
® DDI interfaces are described in the Writing Device Drivers.

® For detailed information on how to write device drivers to these interfaces,
see Writing Device Drivers.

® The DKI interfaces are specified in The UNIX System V Release 4 Device
Driver Interface/Driver-Kernel Interface (DDI/DKI) Reference Manual.

Data Link Provider Interface (DLPI)

The SVR4 STREAMS-based Data Link Provider Interface (DLPI) is a kernel-
level interface that supports the services of the Data Link Layer for both
connection-mode and connectionless-mode services. The specification, A
STREAMS-Based Data Link Provider Interface, Version 2, designates the format
for a set of messages between the data link provider and the data link user. The
DLPI header, <dlpi.h >, is part of SVR4 and is included with this SunOS
release.

DLPI enables a data link service user to access and use any of a variety of
conforming data link service providers without special knowledge of the
provider’s protocol. Specifically, the interface is intended to support X.25,
LAPB, BX.25 level 2, SDLC, ISDN, LAPD, Ethernet”™, CSMA/CD, token ring,
token bus, Bisync, FDDI, and other data link protocols.

UNIX System V Release 4-Based (SVR4) Specifications 11

1]l
N

SunOS Compliance With DLPI

The SunOS operating system is compliant with the DLPI specification, Version
2, 1991, revised by the Open Systems Interconnection Working Group
(OSIWG), a working group within UNIX International (Ul). The version 2
<dlpi.h > header is delivered with SunOS.

DLPI Specification

The following specification is based on the DLPI specification and includes
version 2 of the <dIpi.h > header.

A STREAMS-Based Data Link Provider Interface -Version 2, UNIX International

Transport Provider Interface

The Transport Provider Interface (TPI) consists of the kernel components of the
Transport Level Interface. TPI specifies the transport service interface in terms
of STREAMS messages. The TPI structure is described in the TPI specification
for System V Release 4.0.

SunOS Compliance with TPI

The SunOS operating system is entirely compliant with the Transport Provider
Interface and intends to remain compliant as TPI continues to evolve. The
X/0pen Transport Interface (XTI), which was based on and evolved from the
Transport Level Interface (TLI), will influence the evolution of TPI. (It is the
intention of SunSoft to be compliant with XTI in the near future.)

12 Standards Conformance Guide—November 1995

OPEN LOOK

X11, PostScriptand Sun
Microsystems’ OpenWindows 3

This chapter discusses the OPEN LOOK development environment, the X
Window System, Version 11 (X11) and the parts of OpenWindows 3.5 that
implement aspects of X11.

The OPEN LOOK Graphical User Interface (GUI) was developed by Sun
Microsystems in partnership with AT&T. In July 1988, Sun and AT&T
distributed more than 1000 copies of the OPEN LOOK specification draft to
UNIX system users for review. The comments received from the industry were
used to create the final version of the OPEN LOOK specification.

OPEN LOOK is a specification for a user interface within a window
environment based on the pioneering work done on graphical user interfaces
at Xerox PARC in the 1970s. A graphical user interface standard describes how
applications appear on the screen and their behavior in relation to the user. The
OPEN LOOK GUI was designed to provide a simple, consistent, and efficient
interface.

The OPEN LOOK GUI uses windows and menus with common graphic
symbols instead of typed system commands to provide an intuitive
environment with a consistent screen layout that can be used across various
platforms and operating systems.

13

14

OPEN LOOK compliance has two components: toolkit compliance and
environment compliance. There are three types of software that fit within these
two categories: toolkits, applications, and environments. Because most
applications are built using toolkits, they usually assume the level of
compliance characteristic of the toolkit used to create them. ToolKits,
applications and environments as understood in OPEN LOOK parlance are
described below:

Toolkits. A toolkit is a set of programming components used to build OPEN
LOOK GUI applications. It consists of a high-level programming interface
that provides the elements required to build a user interface. Toolkits
provide a set of routines that implement the various interface elements as
defined by the specification. The application developer uses the routines
provided by the toolkit to create and position the interface elements as
needed. The toolkit makes application development easier and ensures that
the user interface remains consistent by using the same building blocks.
Toolkits help developers create user-interface prototypes by providing a
simple and easy-to-use programming interface.

Applications. An application is a program or set of programs designed to
perform a specific task. Applications are built using a user-interface toolkit
or other developer tools. While it is possible for the application developer to
implement the OPEN LOOK User Interface (Ul) without a toolkit, the usual
approach is to use a toolkit written for a specific windowing platform.
Together, applications and their use of the toolkit define the way programs
look and feel to users.

Environments. An environment is a program or set of programs that effect
the design and operation of an OPEN LOOK GUI implementation. An
OPEN LOOK compliant environment consists of an OPEN LOOK User
Interface (Ul) window manager, file manager, workspace properties
window, and other utility programs.

To guarantee an OPEN LOOK GUI-compliant application, the developer must
write the application with an OPEN LOOK GUI compliant toolkit and run the
application in a compliant OPEN LOOK GUI environment.

Trademark licensing is available for the following three levels of OPEN LOOK
certification:

Standards Conformance Guide—November 1995

3

® Level 1: This level contains all the essential components of a complete user
interface. It delineates the minimum features required to certify an
implementation as OPEN LOOK GUI compliant. Among the features
covered in Level 1 are window types and properties, menu formats, and
mouse and keyboard.

® Level 2: Compliance with Level 2 requires the presence of all of the features
comprising Level 1 and additional features mandatory for Level 2. These
include abbreviated buttons, nonstandard window types, scrollbars, and
icon settings for color implementations.

® Level 3: Level 3 is a superset of Level 2. This level requires that an
application contain certain specialized features and a process manager for
extending the functionality of the OPEN LOOK GUI.

For a complete list of the required features for each level, see “Appendix A,
Certification” in the OPEN LOOK Graphical User Interface Functional
Specification.

Solaris Compliance With OPEN LOOK

The Sun GUI is a superset of OPEN LOOK and includes Sun value-added
features. In moving toward full support of the Sun GUI, all required OPEN
LOOK features will be supported by Sun at all levels.

OpenWindows implements the OPEN LOOK GUI standard. OpenWindows
implements both the 2-D and 3-D OPEN LOOK GUI standard.

OpenWindows is a component of Solaris 2.5. The OPEN LOOK components
indicated below implement the OPEN LOOK GUI.

® OPEN LOOK Intrinsics Toolkit (OLIT): The OPEN LOOK Intrinsics Toolkit
was created by building a set of widgets for the X Toolkit Intrinsics (Xt) that
conform to the OPEN LOOK GUI specification. The OPEN LOOK Intrinsics
Toolkit APl matches the X11 Release 4 Xt Intrinsics programming interface.
For Solaris 2.5, OLIT is Level 2 compliant with certain exceptions.

® XView Toolkit (X11-based Visual/Integrated Environment for Workstations):
XView is an X11 toolkit for building applications. The XView API is based
upon Xlib, the lowest level of programming available to the X window
system programmer. XView implements the OPEN LOOK GUI. For Solaris
2.5, XView is Level 2 compliant with certain exceptions.

X11, PostScript and Sun Microsystems’ OpenWindows 15

16

® OpenWindows DeskSet: OpenWindows includes a set of OPEN LOOK
applications that are collectively known as the DeskSet environment. All of
the DeskSet applications support the OPEN LOOK model of dragging and
dropping objects. The File Manager DeskSet tool is required by the OPEN
LOOK standard for Level 2 compliance; it represents files (including
directories and applications) with glyphs. The OpenWindows DeskSet File
Manager program fulfills the Level 2 compliance requirement.

OPEN LOOK Specification and Related References

The specifications listed below address OPEN LOOK. They are published by
Addison-Wesley.

® OPEN LOOK Graphical User Interface Functional Specification (ISBN 0-201-
52365-5)

® OPEN LOOK Graphical User Interface Application Style Guidelines (ISBN 0-201-
52364-7)

Licensing the OPEN LOOK Trademark

OPEN LOOK is a trademark of UNIX System Laboratories (USL), a wholly
owned subsidiary of Novell, Inc. The Trademark License Agreement is the
contract entered into by OPEN LOOK trademark applicants and USL. As a
developer of OPEN LOOK applications, you may wish to license the OPEN
LOOK trademark. USL has developed a trademark agreement as a formality to
protect the trademark. To obtain the use of the OPEN LOOK trademark, follow
the recommendations described below; no payment is required.

® For information on how to develop an OPEN LOOK application, refer to the
OPEN LOOK Graphical User Interface Functional Specification that is delivered
with OpenWindows.

® To receive your “OPEN LOOK Graphical User Interface Trademark License
Agreement” forms, call 1 (800) 828-UNIX. If you are a UNIX system licensee,
ask for your account representative. Otherwise, a sales associate will handle
your request. After an authorized representative of your company signs the
agreement, send it to USL at the following address:

Standards Conformance Guide—November 1995

w
1]

UNIX System Laboratories

Attention: Sales Associate (or the name of your account representative)
PO Box 25000

Greensboro, NC 27420-5000.

Within 30 days, USL will send you an executed agreement authorizing you
to use the OPEN LOOK trademark on your software.

X Window System, Version 11 (X11)

The X Window System, Version 11 (X11), developed by the Massachusetts
Institute of Technology (MIT) X Consortium includes the following
specifications: the Xlib C Language Interface (Xlib), the X Toolkit Intrinsics C
Language Interface (Xt), and the Bitmap Distribution Format 2.1 (BDF).

X11 is a network-based protocol. A client application can run on the same or

different system from the server that controls the display. In this server-client
model, the application (which may run on one machine) is referred to as the

window client. The system on which the user-interface is displayed may be a
different machine and is referred to as the display host or window server.

Window systems are usually based on a pixel imaging model or a stencil/paint
imaging model. The imaging model layer of the windows architecture controls
how the window system accesses the display. X11 uses a pixel-based (raster)
model in which images are viewed as rectangular areas of device-dependent
pixels.

The Xlib library routines communicate with the X11 server via the X protocol.
Xlib is the lowest-level C language application programming interface (API) to
the X protocol.

The main task of Xlib is to translate C data structures and procedures into X
protocol events; it sends them off and receives protocol packets in return that
are unpacked into C data structures. Xlib provides full access to the capabilities
of the X protocol but does little to make programming easier. It handles the
interface between an application and the network and includes some
optimizations that encourage efficient network usage.

Because application development at the Xlib level can be tedious, MIT
developed the X toolkit, Xt. The designers of Xt were aware that the toolkit
would need to support a variety of graphical user interface standards. For this

X11, PostScript and Sun Microsystems’ OpenWindows 17

1]l
w

PostScript Language

reason, Xt was divided into two portions. The first portion is a prebuilt set of
user interface components known as widgets. The second portion is the
programmer interface for manipulating widgets, known as intrinsics.

Although it is device-independent, X11 allows an application to tailor itself to
the hardware on which it is run.

The PostScript™ language, from Adobe Systems Inc., is the modern standard
for electronic printing. The first edition of the PostScript Language Reference
Manual, published in 1985 by Addison and Wesley, established PostScript Level
One. Today, PostScript is supported as a standard by all major computer,
printer, and imagesetter vendors.

Numerous extensions were requested by the industry, so, in 1990, the second
edition of the reference manual was published. It describes three major
extensions to PostScript Level One: (1) An extension to deal with color output,
(2) A composite font model, mainly used for very large fonts (for example,
Asian languages) and (3) A set of extensions for screen output, called the
Display PostScript™ system, or DPS. DPS displays graphical information on
the computer screen with the same imaging model and PostScript language
that are the standards for printers and typesetters.

These major extensions and a large number of minor ones comprise PostScript
Level Two, often referred to as PS2 or PSL2.

Solaris Compliance With X11

18

OpenWindows consists of the OpenWindows server, the Display PostScript™
(DPS) extension support, the OpenFonts™ Technology, the OPEN LOOK
window manager (olwm), the XView Toolkit, the OPEN LOOK Intrinsics
Toolkit (OLIT), the DeskSet™ tools, and demonstration applications.

The OpenWindows server and the associated X libraries, which include Xlib
and Xt, are compliant with X11, Release 5.

The OPEN LOOK Intrinsics Toolkit API is an implementation of MIT’s Xt
toolkit with an OPEN LOOK widget set. AT&T created the OPEN LOOK
Intrinsics Toolkit by building a set of widgets for Xt that conform to the OPEN
LOOK GUI specification.

Standards Conformance Guide—November 1995

3

The XView toolkit (X Window System-based Visual/Integrated Environment
for Workstations) is a C-language toolkit providing a rich set of components
for building applications. Like the Intrinsics, XView is built on Xlib. SunSoft
has made the source code to the XView Toolkit freely available. It is shipped as
part of the standard MIT X distribution and with UNIX System V Release 4.

OpenWindows, through the OPEN LOOK window manager, fully supports the
X11 Inter-Client Communications Conventions (ICCC) as defined in X11
Release 5. The ICCC manual provides basic policy intentionally omitted from X
itself, such as rules for transferring data between applications, transfer of
keyboard focus, layout schemes, colormap installation and other features.

Solaris Compliance with PostScript

The OpenWindows server is a complete implementation of PostScript Level
Two. The Display PostScript system is implemented as an extension to the X
Window System and includes the following enhancements:

® Support for F3 Latin and Asian fonts

® Support for obtaining prescaled bitmap font formats from X11 font code

X11 Specification and Related Publications

The first publication listed below defines the X11 protocol specification; it is
also defined in subsequent supplements supplied with X11 Release 5.

® X Window System Third Edition, Schiefler & Gettys, Digital Press, 1992
® XView Programming Manual, O’Reilly & Associates, Inc., 1989

® XView Reference Manual, O’Reilly & Associates, Inc.

® PostScript Language Reference Manual, Second Edition, Addison-Wesley
® XView Developer’s Notes, Sun Microsystems, Inc.

® OpenWindows Desktop Reference Manual, Sun Microsystems, Inc.

® Desktop Integration Guide, Sun Microsystems, Inc.

X11, PostScript and Sun Microsystems’ OpenWindows 19

20

Standards Conformance Guide—November 1995

Common Desktop Environment 1=

This chapter introduces the Common Desktop Environment (CDE), a graphical
user interface and development environment that debuts with Solaris 2.5. This
chapter provides an overview of CDE’s development history, discusses the
compliance of CDE to industry standards and specifications and outlines
current efforts at standardizing the CDE components.

Common Desktop Environment

In March of 1993, Sun, Hewlett—Packard, IBM and Novell announced an
agreement to develop a graphical user interface that would bring a consistent
look and feel to major UNIX system-based workstations and desktop
computers. From the start, the CDE development effort was guided by one
goal: to make UNIX easier-to-use for end users and application developers.

The result of this joint development effort is the Common Desktop
Environment or “CDE.” CDE debuts with Solaris 2.5, and along with
OpenWindows, is one of two desktops packaged with this release. Over time,
CDE will emerge as the standard desktop for Sun, Hewlett-Packard, IBM,
Novell and many others in the UNIX workstation market.

CDE includes a desktop server, a Session Manager, a Window Manager (based
on HP’s Visual User Environment), and numerous desktop utilities, (based on
SunSoft’s OPEN LOOK and DeskSet tools).

21

Developers, End Users, and CDE

Because CDE provides a consistent computing environment across major UNIX
platforms, end users will have less trouble moving between different machines.
CDE also aids application development by supplying a single, standard set of
programming interfaces for any conforming Sun, HP, IBM, and Novell
platform. A single API allows developers to create applications that will be
consistent in appearance and behavior across CDE-compliant systems.

The CDE development environment is based on the X11R5 server and
produces applications with a look and feel based on the Open Software
Foundation’s Motif 1.2 specification.

Standardizing the Common Desktop Environment

22

Recognizing the development and procurement needs of their customers, the
CDE development partners have pledged that the desktop will comply with
industry standards wherever possible. Where a standard does not yet exist,
CDE specifications are being provided to recognized standards bodies for
consideration as new standards.

The remaining sections of this chapter detail the compliance of various CDE
components to major standards and specifications; additionally, it provides an
overview of the cooperative efforts of the CDE partners and major standards
bodies in the development of new CDE-related standards.

Open Software Foundation/Motif

The Motif graphical user interface was developed by the Open Software
Foundation (OSF) and based on work by Hewlett—Packard and Digital
Equipment Corp. Motif uses windows and menus with common graphic
symbols to provide an intuitive, consistent environment across a variety of
platforms that support the X Window System, X11R5.

Motif 1.2 consists of a user interface toolkit, a user interface language, a
window manager and a single application programmers interface. Motif 1.2
serves as the base graphical user interface specification for the Common
Desktop Environment.

Standards Conformance Guide—November 1995

N
1]

OSF/Motif Application Certification

OSF/Motif’s Certification and Trademark Program offers application
developers a method to communicate compliance with OSF/Motif. A Motif-
compliant application must be developed with the Motif toolkit and run in a
Motif-compliant environment.

The OSF/Motif Style Guide describes the way applications should “behave” or
interact with users and offers the basis for application certification. Developers
that follow the guidelines presented in the Style Guide are assured that their
applications will emulate the Motif look. Applications that pass the
certification process are granted use of a statement signifying compliance to
the OSF/Motif Style Guide.

Note — OSF has announced submission of the Motif API specification to
X/0Open for licensing. Once branding is awarded, (expected in late 1995), the
OSF/Motif certification program will be overseen by X/Open. Until that time,
OSF will continue to certify implementations.

CDE and Motif

CDE’s development toolkit is an enhanced version of Motif 1.2 that has been
dubbed “CDE Motif.” CDE Motif is based on Motif 1.2.3, but extends the Motif
widget library and contains some new features. CDE Motif shares source and
binary compatibility with Motif, meaning that existing Motif 1.2 applications
will compile and run on CDE platforms without modification.

The CDE Motif API is based on the Motif 1.2 toolkit API and is compliant with
the IEEE Std. 1295-1993 API specification.

Porting Motif Applications to CDE/Developing New CDE
Applications

Developers wishing to port an existing Motif 1.2 application to CDE or develop
a new CDE-compliant application should follow the guidelines outlined in The
Common Desktop Environment: Style Guide and Certification Checklist. It defines
the guidelines that allow an existing Motif application to integrate well with
CDE.

Common Desktop Environment 23

24

Note — Because Motif 1.2 defines only the basic behavior for applications and
widgets and not for a desktop, The Common Desktop Environment: Style Guide
and Certification Checklist supplements and extends the OSF/Motif Style Guide.
For this reason, developers wishing to write a CDE conforming application
should follow the guidelines presented in both guides.

Developers porting application to the desktop or developing new CDE
applications can choose from three levels of application integration:

® Level 1- Minimal: This level requires that the application appear under the
desktop’s Application Manager folder and be launchable from the
application’s data file icon.

® Level 2- Recommended: This level requires that the application interact
with the desktop’s components.

® Level 3— Optional: This level provides an integration checklist of desktop
components with which applications may optionally interact.

Certifying CDE Applications

Compliance with CDE interface guidelines is voluntary and self-regulated,;
there is no formal certification process. Applications that meet all the required
guidelines of the CDE Style Guide and Certification Checklist and the OSF/Motif
Style Guide can be considered CDE-compliant.

For a discussion of issues that can affect application portability between
different platforms that support CDE, see the Common Desktop Environment:
Programmer’s Overview.

Solaris Compliance With OSF/Motif

At the time of this book’s publication, the OSF/Motif certification process was
not yet complete. However, SunSoft fully expects Solaris to be certified as a
conforming implementation of Motif 1.2 for its 2.5 release.

Standards Conformance Guide—November 1995

N
1]

OSF/Motif Specifications and Related References

For more information on the Motif 1.2 toolkit and for guidelines on developing
Motif 1.2 applications, see the following OSF publications:

OSF/Motif Style Guide, Release 1.2, PTR Prentice Hall
OSF/Motif Programmer’s Reference, Release 1.2, PTR Prentice Hall

OSF/Motif Programmer’s Guide, Release 1.2, PTR Prentice Hall

CDE/Motif Specifications and Related References

For more information on the CDE Motif toolkit and for guidelines for
developing CDE Motif applications, see the following publications:

Common Desktop Environment: Programmer’s Overview
Common Desktop Environment: Programmer’s Guide

Common Desktop Environment Style Guide and Certification Checklist

The X Window System

The X Window System, Version 11 (X11), includes the following specifications:
the Xlib C Language Interface (Xlib), the X Toolkit Intrinsics C Language
Interface (Xt), and the Bitmap Distribution Format 2.1 (BDF).

X11 is a network-based protocol. A client application can run on the same or

different system from the server that controls the display. In this server-client
model, the application (which may run on one machine) is referred to as the

window client. The system on which the user-interface is displayed may be a
different machine and is referred to as the display host or window server.

The X library routines or “xlib” provide a standard programmer’s interface to
the X Window System. Xlib is a standard set of C language routines that
developers can use to program basic graphics functions, and that automatically
produce the corresponding X protocol. Xlib communicates with the X11 server
via the X protocol.

The main task of Xlib is to translate C data structures and procedures into X
protocol events; it sends them off and receives protocol packets in return that
are unpacked into C data structures. Xlib provides full access to the capabilities

Common Desktop Environment 25

26

of the X protocol but does little to make programming easier. It handles the
interface between an application and the network and includes some
optimizations that encourage efficient network usage.

Because application development at the Xlib level can be tedious, MIT
developed the X toolkit, Xt. The designers of Xt were aware that the toolkit
would need to support a variety of graphical user interface standards. For this
reason, Xt was divided into two portions. The first portion is a prebuilt set of
user interface components known as widgets. The second portion is the
programmer interface for manipulating widgets, known as intrinsics.

CDE Compliance with X11

The Common Desktop Environment consists of the desktop server, the Session
Manager, the Window Manager, the CDE/Motif toolkit, the desktop utilities
and the Display PostScript™ (DPS) extension support.

The desktop server and the associated X libraries, which include Xlib and Xt,
are fully compliant with X11, Release 5.

The Session Manager fully supports the X11 Inter-Client Communications
Conventions (ICCCM) 1.1 Session Management protocol. The Session Manager
preserves the state of applications at logout.

The Window Manager, which is based on the Motif 1.2.3 window manager
with workspace extensions, is ICCCM compliant.

The CDE/Motif toolkit is an implementation of OSF/Motif’s 1.2.3 toolkit with
extended functionality. The CDE/Motif toolkit is based on X11 Intrinsics,
which is specified as a U.S. federal procurement standard.

Solaris Compliance with PostScript

The Common Desktop Environment’s server is a complete implementation of
PostScript Level Two. The Display PostScript system is implemented as an
extension to the X Window System and includes the following enhancements:

® Support for F3 Latin and Asian fonts

® Support for obtaining prescaled bitmap font formats from X11 font code

Standards Conformance Guide—November 1995

N
1]

X11 Specification and Related Publications

The first publication listed below defines the X11 protocol specification; it is
also defined in subsequent supplements supplied with X11 Release 5.

® X Window System Third Edition, Scheifler & Gettys, Digital Press, 1992
® PostScript Language Reference Manual, Second Edition, Addison-Wesley

Future Standardization

A number of CDE services and applications are currently targeted for
standardization. At the time of this book’s publication, the CDE
standardization efforts were ongoing and not yet complete.

This section discusses the CDE standardization efforts, identifies the standards
bodies working with the CDE development partners and identifies the CDE
components targeted for standardization.

X/Open CDE Specification

Specifications for a broad range of CDE components have been submitted to
X/0pen for consideration as standards. Representatives from Sun, Hewlett—
Packard, IBM, and Novell are working closely with X/Open in guiding the
emergence of the new X/Open CDE standards.

CDE components that are branded by X/Open will become part of X/Open’s
Common Applications Environment (CAE), which covers the standards that
are required to support open systems.

Among the CDE components being submitted for incorporation into the
Portability Guide are the CDE Motif toolkit API, the Session Manager, the data
interchange “drag and drop” protocols, and the Application Help Developer’s
Kit.

At present, X/Open has completed a “fast track” review of the submitted CDE
specifications. If approved, publication of the final standard is expected by
Spring 1995. A formal branding and certification program is expected to be in
place by late 1995.

Common Desktop Environment 27

28

X/Open Calendaring and Scheduling API

The X/Open Calendaring and Scheduling Application Program Interface (CSA
API) is a high-level interface that facilitates the development of calendar-
enabled applications.

The X/Open CSA API is based upon work done by the X.400 Application
Programming Interface Association (XAPIA). It defines a set of high-level
functions that are available to calendar enabled applications, including adding,
deleting, modifying, and reading a calendar and the calendar entries.

The interface supports searches for free time intervals within a calendar
through a generic definition of capabilities for calendaring and scheduling. The
X/0pen CSA API features a single function set that helps minimize the
number of function calls needed to manage multiple types of calendar entries.

In November 1994, a preliminary specification for the Calendaring and
Scheduling API was published by X/Open. The final specification is expected
by Spring 1995. The X/Open branding and certification program is expected to
be in place by late 1995. CDE’s calendaring and scheduling service is expected
to fully comply with the final X/Open specification.

Standards Conformance Guide—November 1995

X/Openand XPG3 5

The X/0Open consortium was established to make multivendor open systems a
practical reality. X/Open takes existing standard interfaces and adapts them to
the specifics of open systems. These interfaces comprise what is known as the
Common Applications Environment (CAE) and are documented in the
X/0pen Portability Guide.

This chapter discusses the compliance of Solaris 2.5 to the programming
interface specifications detailed in the X/Open Portability Guide, Issue 3
(XPG3).

The X/Open Portability Guide, Issue 3

In 1988, X/Open published the X/Open Portability Guide Issue 3, commonly
referred to as “XPG3.” It is a collection of seven volumes that includes the
interfaces specified in the IEEE 1003.1-1988 POSIX standard.

Adherence to the programming interface specifications contained in XPG3
ensures application portability at the source code level. Compliance with these
interfaces is determined through an extensive set of conformance tests and is
assured through the X/Open branding process which entitles a product to bear
the X/Open trademark.

29

30

Note — In 1992, X/Open published Issue 4 of the Portability Guide, (XPG4). It
retains compliance to the IEEE 1003.1-1988 standard but is extended to the
ISO/IEC updated POSIX.1 standard and the ISO/IEC C language standard.
While XPG3 is still available and systems and components can still be branded
to XPG3, XPG4 offers significant additional capability. For more information on
XPG4, see Chapter 6, “X/Open and XPG4.”

This chapter identifies Solaris 2.5 as a conforming implementation of XPG3,
and displays the XPG3 Base brand trademark. It also presents the X/Open
Conformance Statement, which documents Solaris’ compliance to the
programming interface specifications of the X/Open Portability Guide, Issue 3.

The X/Open Brand Trademark

X/0pen provides a verification and branding program that developers can use
to show that their products are X/Open compliant. Sun Microsystems has been
a strong supporter of the X/Open branding process since its inception.

Components of the Common Applications Environment are categorized into
three levels: BASE, PLUS, and OPTIONS. A system that provides all of the
BASE components is awarded an XPG3 BASE profile trademark. A system that
implements all of the BASE and PLUS components may bear the XPG3 PLUS
profile trademark.

Figure 5-1 The XPG3 Base Brand Logo

Xx/Open

BASE XPG3

Solaris has earned the XPG3 BASE brand. Solaris products and software
products from independent software vendors that have received XPG3
branding are described below:

< Window Management (OpenWindows)—The Solaris window system,
which supports the OPEN LOOK Graphical User Interface, has earned the
XPG3 brand by implementing the programmer’s interface to the X Window
System. OpenWindows supports the Window Management component of
the X/Open PLUS level.

Standards Conformance Guide—November 1995

5

= Commands and Utilities—X/Open’s specification of standard interfaces for
utilities allows for portable shell scripts. Solaris meets the Commands and
Utilities component requirements of the BASE system.

= ProCompiler™ C 2.0.1— The ProCompiler for Solaris for x86 is fully
conformant with the ANSI/ZISO Standard for C. It has passed X/Open
verification test suite VSX3 and meets the C Language component
requirements of the BASE level.

< SPARCompiler C 2.0.1—The SPARCompiler for the C programming
language based on Common Usage C has passed X/Open verification test
suite VSX4.2.4 and meets the C Language component requirements of the
BASE level.

= Sun FORTRAN 3.0—Sun’s compiler for the FORTRAN programming
language is fully compliant with the definition in the American National
Standards Institute (ANSI) document and carries the XPG3 brand when run
on Solaris.

= Sun Pascal 3.0.1—Sun’s compiler for the Pascal programming language is
fully compliant with the 1SO standard and carries the XPG3 brand when run
on Solaris.

= Magnetic Media (Source Code Transfer)—Sun conforms to X/Open’s
specifications for transferring source code between machines with
compatible media and facilitating the transfer of source code in machine-
readable form. Solaris supports the Source Code Transfer component of the
X/0pen OPTIONS level.

= Inter-Process Communication—Sun supports X/Open'’s specifications for
interfaces providing message queue, semaphore, and shared memory
facilities for communication and synchronization between processes. The
SunOS operating system fulfills the requirements of the Inter-Process
Communications component of the X/Open OPTIONS level.

= Terminal Interfaces (XSI Curses Interface)—The XSI Curses Interface meets
X/0pen’s specifications for providing a generic terminal interface that is
independent of terminal hardware or connection methods for updating
screens on character-oriented and block-oriented terminals. Solaris systems
fulfill the requirements of the Terminal Interfaces component of the X/Open
OPTIONS level.

X/Open and XPG3 31

5

X/Open Conformance Statement for Solaris

The remaining pages of this chapter feature the X/Open Conformance
Statement for Solaris.

X/Open Conformance Statement

32

X/0OPEN Conformance Statement Questionnaire

Chapter 2: Internationalized System Calls and Libraries

Product Identification

Product Identification Solaris

Version/Release No. 2.5

If you do not supply this component yourself, please identify below the
supplier you reference.

Conformance Reference

Indicator of Compliance

VSX Test Suite Release VSX 4.3.2
Testing Agency Name Mindcraft, Inc.
Address 410 Cambridge Avenue

Palo Alto, California 94306

Environment Specification

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behavior and
any test results to be reproduced.

Standards Conformance Guide—November 1995

o1
1]

x86

SPARC running Solaris 2.5. Installation procedures are provided in
SPARC: Installing Solaris Software

To reproduce the test environment, follow these steps:
1. Edit the /etc/saf/zsmon/_pmtab file to turn off the ttysoftcarrier detect:

Change the ttya and ttyb fields from :y: to :n: . (The colons (:) act as
field separators).

2. Verify that the ttymodes settings in the /kernel/drv/options.conf file
are set to:

2502:1805:bd:8a3b:3:1¢:7:15:4:0:0:0:11:13:1a:19:12:f:17:16

3. Disable ypbind to allow rebooting of the system:
a. cd /usr/lib/netsvclyp
b. mv ypbind ypbind-
4. Set the eeprom variables that affect the tty :
a. On the keyboard, hit STOP-Ato display the prom prompt.
b. At the prompt, execute the following steps:

setenv ttya-ignore-cd false
setenv ttyb-ignore-cd false
setenv ttya-rts-dtr-off false
setenv ttyb-rts-dtr-off false

5. Reboot the system

Note — When installing Solaris, set the time zone by selecting a time zone
format that conforms to the POSIX.1 format for TZ defined on page 152 and
page 153 of the IEEE Std. 1003.1-1990.

x86 running Solaris 2.5. Installation procedures are provided in x86: Installing
Solaris Software.

X/Open and XPG3 33

34

To reproduce the test environment, follow these steps:

1. Become root .

N

Ensure the correct serial port links:

- /devittya should be a link to /devices/isa/asy@3f8,0:a

= /dev/term/a should be a link to /devices/isa/asy@3f8,0:a
< /dev/tty00 should be a link to /devices/isa/asy@3f8,0:a
= /devittyb should be a link to /devices/isa/asy@2f8,0:a

= /dev/term/b should be a link to /devices/isa/asy@2f8,0:a
= /dev/tty0Ol should be a link to /devices/isa/asy@2f8,0:b

a. If the /dev/tty01 link is missing, perform the following:

= Edit /kernel/drv/asy.conf and uncomment the COM2 entry
= # touch /reconfigure

3. Set the correct serial port permissions:

= # chmod 666 /devices/eisal/asy*

4. Turn off the ttysoftcarrier detect:
Using an editor such as vi , in the /etc/saf/zsmon/_pmtab file, change
the next to last field for both the ttya entry and the ttyb entry fromy to n
(the colon (:) acts as the field separator):

vi letc/saf/zsmon/_pmtab

5. Reboot the system.

Note — When installing Solaris, set the time zone by selecting a time zone
format that conforms to the POSIX.1 format for TZ defined on page 152 and
page 153 of the IEEE Std. 1003.1-1990.

Temporary Waivers

List below references to any temporary waivers granted by X/Open in respect
to minor errors in the product referenced above. This should include the
X/0pen reference and the waiver expiration date. The waivers as granted shall
be made available with this document on request.

There are no temporary waivers.

Standards Conformance Guide—November 1995

o1
1]

Section 2.1 General Attributes
2.1.1 POSIX.1 Supported Features

Question 1: Which of the following options, specified in the <unistd.h> header
fileSCC are available on the system?

Answer:
Macro Name Meaning Provided
_POSIX_CHOWN_RESTRICTED The use of chown() Variable
is restricted
_POSIX_JOB_CONTROL Job Control option Yes
_POSIX_NO_TRUNC Long pathname Variable
components generate
an error
_POSIX_SAVED_IDS Effective user and group Yes
IDs are saved
_POSIX_VDISABLE Terminal special Variable

characters can be disabled

When native SunQOS file systems and terminal drivers are used,
_POSIX_CHOWN_RESTRICTED is supported, POSIX_ NO_TRUNC is
supported, and _POSIX_VDISABLE has the value ‘0’, or ‘\0’ in C language
source. When other file system types are used, such as through NFS, or
terminal drivers from third party vendors, the results may vary and can be
gueried using pathconf() and fpathconf()

Rationale
For an X/Open conforming implementation, the POSIX_SAVED _IDS option
must be provided. The other options may or may not be provided. The
provision of the file system related options can vary within a system. For
example, a system which has traditionally supported both System V and BSD
type file systems may provide a mechanism whereby the option is enforced for
certain files or processes but not for others. This technique can be used to
achieve a degree of backwards compatibility that would not otherwise be
possible.

Reference
XPG3 Volume 2, page 579-< unistd.h>

X/Open and XPG3 35

36

2.1.2 C Standard

Question 2: Does the implementation only support Common Usage C or also support
ANSI C Standard interface definitions?

Answer:
Both Common Usage C and ANSI C are provided.

Rationale
The POSIX.1 standard allows for a conforming system to support either
Common Usage C or ANSI C Standard interface definitions. The XPG is based
on a Common Usage C definition but does not prohibit an ANSI C
implementation. A Common Usage C definition must provide function
declarations for the C language functions in the XPG as well as providing
function semantics that conform to the XPG. An ANSI C Standard interface
must provide function prototypes and ANSI C semantics as well as providing
XPG semantics. There are no known areas of contradiction between the ANSI C
and the XPG semantics.

Reference
XPG3 Volume 2, page 12 - The Compilation Environment

2.1.3 Limit Values

Question 3: What are the values associated with the following limits specified in the
<limits.h> header file?

Answer:

Macro Name Meaning Minimum Maximum

ARG_MAX Max length of argument 4096 1048320
list and environment data

CHILD_MAX Max number of processes per 6 See note
user ID

LINK_MAX Max number of links to a 8 32767
single file

MAX_CANON Max bytes in a terminal 255 256

canonical input line

Standards Conformance Guide—November 1995

o1
1]

MAX_INPUT Max bytes in a terminal 255 512
input queue

NAME_MAX Max characters in a filename 14 See note

OPEN_MAX Max number of files open 16 See note
in a process

PASS_MAX Max significant characters 8 8
in a password

PATH_MAX Max characters in a pathname 255 See note

PIPE_BUF Max bytes in an atomic write 512 5120
to a pipe

NGROUPS_MAX Max number of 0 16
supplementary group IDs

TMP_MAX Max number of unique 17576 17576
temporary file names

Notes:

CHILD_MAX depends on how the system kernel is configured.

The maximum values for NAME_MAX and PATH_MAX vary depending on
the file system type, but always provide at least the minimum requirement.
The most common values are 255 for NAME_MAX and 1024 for PATH_MAX.
Values for a specific path are available using pathconf()

OPEN_MAX defaults to 64, but users can increase or decrease this value using
routines not specified by POSIX.1 or XPG3.

Rationale
Each of these limits can vary within bounds set by the X/Open Portability
Guide. The minimum value that a limit can take on any X/Open conforming
system is given in the corresponding _POSIX_ value. A specific conforming
implementation may provide a higher minimum value than this and the
maximum value that it provides can differ from the minimum. Some
conforming implementations may provide a potentially infinite value as the
maximum, in which case the value is considered to be indeterminate. The
minimum value must always be definitive since the POSIX_value provides a
known lower bound for the range of possible values.

Reference
XPG3 Volume 2, page 538 - <limits.h>

X/Open and XPG3 37

38

Question 4: What are the values associated with the following constants specified in

the <limits.h> header file?

Answer:

Macro Name Meaning Value

CHAR_BIT Number of bits in a char 8

LONG_BIT Number of bits in a long 32

WORD_BIT Number of bits in a word 32

DBL_DIG Digits of precision of a double 15

DBL_MAX Maximum decimal value 1.7976931348623157E+308
of a double

FLT_DIG Digits of precision of a float 6

FLT_MAX Maximum decimal value 3.40282347E+38
of a float

Rationale

This set of constants provides useful information regarding the underlying

architecture of the implementation.

Reference
XPG3 Volume 2, page 537 - <limits.h>

2.1.4 Error Conditions

Question 5: Which of the following optional errors listed in the XPG are detected in the

circumstances specified?

Answer:
Function Error Detected
access() EINVALT Yes
ETXTBSY No
atof() ERANGE Yes
atoi() ERANGE Yes

Standards Conformance Guide—November 1995

(continued)

Function Error Detected
atol() ERANGE Yes
cfsetispeed() EINVAL No
cfsetospeed() EINVAL No
chmod() EINVAL No
chown() EINVALT Yes
closedir() EBADFT Yes
exec ENOMEM' Yes
ETXTBSY No
fentl() EDEADLKT Yes
fdopen() EBADF No
EINVAL No
feof() EBADF No
ferror() EBADF No
fileno() EBADF No
fopen() EINVAL No
ETXTBSY No
freopen() EINVAL No
ETXTBSY No
fork() ENOMEM Yes
fseek() EINVAL Yes
ftw() EINVAL No
getcwd() EACCESt Yes
isatty() EBADF No
ENOTTY No

X/Open and XPG3

39

40

(continued)

Function Error Detected
open() EINVAL No
ETXTBSY No
opendir() EMFILEt Yes
ENFILET Yes
pathconf() EACCESt Yes
EINVALT Yes
ENAMETOOLONGT Yes
ENOENTTt Yes
ENOTDIRY Yes
fpathconf() EBADFT Yes
EINVALT Yes
printf() EINVAL No
readdir() EBADFT Yes
rename() ETXTBSY No
scanf() EINVAL No
setvbuf() EBADF No
sigaddset() EINVALT Yes
sigdelset() EINVALT Yes
sigismember() EINVALT Yes
strcoll() EINVAL No
strerror() EINVAL No
strtol() EINVAL Yes
ERANGE Yes
strxfrm() EINVAL No
unlink() ETXTBSY No

Standards Conformance Guide—November 1995

o1
1]

Rationale
Each of the above error conditions is marked as optional in the XPG and an
implementation may return this error in the circumstances specified or may not
provide the error indication. Those items marked with a t are also considered
to be optional error conditions in POSIX.1. The EINVAL error condition for the
three functions sigaddset(), sigdelset(), and sigismember() are mandated in
the XPG but are considered optional in POSIX.1. An X/Open conforming
implementation will always produce these errors, but a POSIX.1 conforming
implementation may not.

Reference
XPG3 Volume 2, page 32— Error Numbers.

2.1.5 Mathematical Interfaces
Question 6: What format of floating point numbers is supported by this implementation?

Answer:
IEEE floating point format is supported.

Rationale
Most implementations support IEEE floating point format either in hardware
or software. Some implementations support other formats with different
exponent and mantissa accuracy. These differences need to be defined.

Question 7: Is long double form supported and what precision is associated with this
form?

Answer:
Long double uses 16 bytes. The low order 112 bits are used to hold the
mantissa, the next 15 bits hold the exponent, and the high order bit is used as
the sign bit.

Rationale
The long double format can vary both in length and precision. If it is
supported, other than as a synonym for double, the format needs to be
described.

Reference
XPG3 Volume 2, page 328 - printf()
XPG3 Volume 2, page 362 - scanf()

X/Open and XPG3 41

1]l
o1

2.1.6 Data Encryption

Question 8: Are the optional data encryption interfaces provided?

Answer:
crypt() Yes
encrypt() Yes (Decryption capabilities not provided to areas restricted by
U.S Export Law.)
setkey/() Yes
Rationale

Normally an implementation will either provide all three of these routines or
will provide none of them at all. If the routines are not provided, then the
implementation must provide a dummy interface which always raises an
ENOSYS error condition.

It is also possible that the implementation of the encrypt() function may be
affected by export restrictions, in which case, the restrictions should be
documented here.

For example, historical implementations have supplied all three of the routines
outside the USA, but due to export restrictions on the decoding algorithm, a
dummy version of encrypt() is provided that does encoding, but not decoding.

Reference
XPG3 Volume 2, page 3 - Status of Interfaces

Section 2.2 Process Handling

2.2.1 Process Generation

Question 9: Which file types (regular, directory, FIFO, special etc.) are considered to be
executable?

Answer:
Only regular files may be executed.

Rationale
The EACCESerror associated with exec functions occurs in circumstances when
the implementation does not support execution of files of the type specified. A
list of these file types needs to be provided.

42 Standards Conformance Guide—November 1995

o1
1]

Reference
XPG3 Volume 2, page 129 -exec

2.2.2 Process Termination
Question 10: Is the SIGCHLD signal sent to the parent process when a child exits?

Answer:
Yes

Rationale
Some systems support the sending of SIGCHLD in these circumstances. This is
mandatory if job control is supported.

Reference
XPG3 Volume 2, page 132 -exit()

2.2.3 Process Environment
Question 11: Is the setpgid() interface provided?

Answer:
Yes

Rationale
This interface is mandatory on systems which support job control and may be
provided on other systems.

Reference
XPG3 Volume 2, page 3 - Status of Interfaces

Section 2.3 File Handling
2.3.1 Access Control
Question 12: What file access control mechanisms does the implementation provide?

Answer:
There is no additional access or optional file control mechanism.

Rationale
The XPG (and POSIX) allow an implementation to provide either additional or
alternate file access control mechanisms other than the standard access control
mechanism. The document should either describe or provide a reference to the
details of alternate or additional access mechanisms. In particular, the method

X/Open and XPG3 43

44

by which an application can execute (using standard file access control) should
be explained, and details of the changes required to utilize alternate or
additional access mechanisms should be given.

Reference
XPG3 Volume 2, page 16 - File Access Permissions

2.3.2 Files and Directories

Question 13: Are any extended security controls implemented that could cause fstat() or
stat() to fail?

Answer:
No

Rationale
The XPG notes that there could be an interaction between extended security
controls and the success of fstat() and stat(). This would suggest that an
implementation can allow access to a file but not allow the process to gain
information about the status of the file.

Reference
XPG3 Volume 2, page 478 -tempnam()

2.3.3 Formatting Interfaces
Question 14: Is the L modifier to printf() and scanf() supported in this implementation?

Answer:
Yes

Rationale
The XPG notes that the L modifier, which is exactly equivalent to the | modifier
when the implementation does not differentiate between double and long
double, is not supported on all systems and is only included for compatibility
with ANSI C.

Reference
XPG3 Volume 2, page 328 - printf()
XPG3 Volume 2, page 362 - scanf()

Question 15: Does the printf() function produce character string representations for
Infinity and NaN to represent the respective special double precision values?

Standards Conformance Guide—November 1995

o1
1]

Answer:
Yes

Rationale
This behavior is often provided on systems with mathematical functions that
produce these results.

Reference
XPG3 Volume 2, page 331 - printf()

Section 2.4 General Terminal Interface

2.4.1 Interfaces Supported

Question 16: Are the following terminal control interfaces provided?

tcgetpgrp() tesetpgrp()

Answer:
Yes

Rationale
These interfaces are mandatory for implementations that support job control.
Implementations that do not support job control may either always return the
error indication [ENOSYS] or may provide the interface with the behavior
specified for an implementation that supports job control. The latter case is
useful for implementations that support only part of the job control
specifications.

Reference
XPG3 Volume 2, page 471 - tcgetpgrp
XPG3 Volume 2, page 475 - tcsetpgrp

Section 2.5 Internationalized System Interfaces
2.5.1 Codesets

Question 17: Does the implementation support the 1ISO 8859-1:1987 codeset for data
transmission?

Answer:
Yes

X/Open and XPG3 45

46

Rationale
The XPG defines the ISO 8859-1:1987 as the major Western European
transmission codeset and also recommends its use as the corresponding
internal codeset.

Reference
XPG3 Volume 3, page 19 - Character Codesets and Text Transfer

Question 18: Does the implementation use the 1SO 8859-1:1987 as its internal codeset?

Answer:
Yes

Rationale
The XPG defines the ISO 8859-1:1987 as the major Western European
transmission codeset and also recommends its use as the corresponding
internal codeset.

Reference
XPG3 Volume 3, page 19 - Character Codesets and Text Transfer

2.5.2 Regular Expression Interfaces

Question 19: What form of regular expression syntax is supported by the regexp()
interface?

Answer:
Simple regular expression

Rationale
The regexp() interface may support either the simple regular expression or the
simple internationalized regular expression syntax as defined in the XPG3
Volume 3 - Supplementary Definitions.

Reference
XPG3 Volume 3, pages 49-51 - Regular Expressions

Standards Conformance Guide—November 1995

o1
1]

Chapter 3: Commands and Utilities
Product Identification

Product Identification Solaris

Version/Release No. 2.5

If you do not supply this component yourself, please identify below the
supplier you reference.

Conformance Reference
Indicator of Compliance

None
Environment Specification

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behavior and
any test results to be reproduced.

SPARC and x86, running Solaris. Installation procedures are
provided in SPARC: Installing Solaris Software or x86: Installing
Solaris Software.

Conformance Expectation

Volume 1 of XPG3 recognizes that convergence of implementations towards a
common specification for commands and utilities is not yet complete and
therefore does not require a vendor to supply all of the commands and utilities
(and individual options) specified in XPG3.

This chapter explicitly identifies those commands and utilities not supplied by
the vendor and any supplied that do not conform to the published
specification. (Reference: XPG3 Volume 1, page 1.)

X/Open and XPG3 47

48

Section 3.1 Basic Utilities
3.1.1 Supported Commands

Question 1: Which of the basic utilities (non-development utilities) defined in the XPG are
not provided with the implementation?

Answer:
All the defined utilities are provided.

Rationale
The XPG Volume 1 states that “this volume in its current form is useful only as
a guide to portability, but it is not possible to precisely define or test
conformance to it.” This question determines whether or not the
implementation provides a command of the name specified in the XPG; it does
not attempt to determine whether it supports the semantics of that command.
The (optional) development utilities are excluded from this question and are
dealt with in the next section of the questionnaire.

Reference
XPG3 Volume 1, page 1 - Introduction

3.1.2 Command Behavior

Question 2: In what ways do the commands provided by the implementation behave
differently from the specifications contained in the XPG?

Answer:
The -n option to ps is not supported.

Rationale
This question provides a greater degree of granularity than the previous
guestion, requiring the semantic differences associated with the commands to
be specified. Again, the question relates to the basic utilities rather than the
development utilities. The question only relates to the semantics of the options
specified within the XPG; implementation specific extensions should not be
documented.

Section 3.2 Development Utilities
3.2.1 Supported Commands

Question 3: Which of the development utilities defined in the XPG are not provided with
the implementation?

Standards Conformance Guide—November 1995

o1
1]

Answer:
The sdb utility is not provided.

Rationale
The XPG Volume 1 states that “The development utilities might not be present
in all X/Open compliant systems; in designated (DEVELOPMENT) systems all
of the development utilities must be present and must conform to the
published definition.”

Reference
XPG3 Volume 1, page 2 - Status of Interfaces

3.2.2 Command behavior

Question 4: In what ways do the development utilities provided by the implementation
behave differently from the specifications contained in the XPG?

Answer:
The make utility looks for sccs s.files in the directory ./SCCS instead of in the
current directory.

Rationale
This question provides a greater degree of granularity than the previous
guestion, requiring the semantic differences associated with the development
utilities to be specified. The question only relates to the semantics of the
options specified within the XPG; implementation-specific extensions should
not be documented.

Section 3.3 Internationalization Option
3.3.1 Commands and Utilities

Question 5: Is an internationalized environment, reflecting changes in the locale setting as
described in XPG Volume 1- XSI Commands and Utilities, supported?

Answer:
Command Behavior Specified in XPG3 Supported
ar LC_TIME affects date format Yes
awk LC_COLLATE, LC_CTYPE affect No

regular expression matching

X/Open and XPG3 49

50

(continued)

Command Behavior Specified in XPG3 Supported
LC_COLLATE affects the behavior No
of string comparisons
LC_NUMERIC affects the behavior No
of the radix character

comm LC_COLLATE affects sorting sequence No

cp,In,mv LANG affects yes string Yes

cpio LC_COLLATE, LC_CTYPE affect No
filename pattern matching
LC_TIME affects date format Yes
date LC_TIME affects date formatting options Yes
ed,red LC_COLLATE, LC_CTYPE affects regular No
expression matching
LC_CTYPE is used to determine whether Yes
characters are printable

egrep LC_COLLATE, LC_CTYPE affects No
regular expression matching
LC_CTYPE is used to determine Yes
character classification
(alphabetic, upper case, lower case)

expr LC_COLLATE, LC_CTYPE affects regular No
expression matching
LC_COLLATE affects the behavior of No
relational operators

fgrep LC_CTYPE is used to determine character Yes
classification
(alphabetic, upper-case, lower case)

find LANG affects yes string No
LC_COLLATE, LC_CTYPE affects No

filename pattern matching

Standards Conformance Guide—November 1995

(continued)

Command behavior Specified in XPG3 Supported
grep LC_COLLATE, LC_CTYPE affects regular No
expression matching
LC_CTYPE is used to determine character Yes
classification
(alphabetic, upper-case, lower case)
join LC_COLLATE affects sorting sequence No
Ipstat LC_TIME affects date format Yes
Is LC_COLLATE affects sorting sequence Yes
LC_CTYPE is used to determine Yes
whether a character is printable
LC_TIME affects date format Yes
mail LC_TIME affects date format Yes
mailx LC _COLLATE, LC_CTYPE affects No
filename pattern matching
LC_TIME affects date format Yes
pg LC_COLLATE, LC_CTYPE affects No
filename pattern matching
pr LC_TIME affects date format Yes
LC_CTYPE is used to determine Yes
whether a character is printable
ps LC_TIME affects date format Yes
rm,rmdir LANG affects yes string No
sed LC_COLLATE LC_CTYPE affects No
regular expression matching
LC_CTYPEis used to determine Yes
whether a character is printable
sh LC_COLLATE LC_CTYPEaffects No
filename pattern matching
X/Open and XPG3 51

1]l
o1

(continued)

Command behavior Specified in XPG3 Supported
LC_CTYPEis used to determine No
whether a character is alphabetic

sort LC_COLLATE affects sorting sequence No
LC_CTYPEaffects character classification Yes
(alphabetic, upper case, printing)

LC_NUMERICaffects the determination No
of the radix character

tar LC_TIME affects date format No
LANGaffects yes string No

tr LC_COLLATE, LC_CTYPEaffects No
bracketed expressions
LC_CTYPEaffects the definition of No
the character universe

uniq LC_COLLATE affects sorting sequence No

uucp LC_TIME affects date format No

uustat LC_TIME affects date format No
wce LC_CTYPEis used to determine Yes
white-space characters

who LC_TIME affects date format Yes

yacc LC_CTYPE is used to determine Yes
character classification

Rationale

This behavior is collectively optional, that is, it should be provided for all
commands listed (subject to sections 3.1 and 3.2, which identify those
commands not supplied by the vendor and those which do not fully support
the X/Open specification).

Reference

XPG3 Volume 1, pages 4-5 - Status of Interfaces.

52 Standards Conformance Guide—November 1995

o1
1]

3.3.2 Regular Expressions in Commands

Question 6: Which form of regular expression syntax is supported by those commands
which use regular expressions?

Answer:
Command Regular Expression Syntax Supported
awk Extended
csplit Simple
ed Simple
egrep Extended
ex Simple
expr Simple
grep Simple
lex Extended
pg Simple
sdb sdb is not supported
sed Simple
Vi Simple
Rationale

The XPG Volume 3 - XSI Supplementary Definitions requires that an
internationalized set of commands will provide regular expression syntax for
the above commands in one of the forms specified for that command. The XPG
encourages the implementation of internationalized regular expressions for all
of the above utilities. It should be noted that the sdb command is an optional
development utility and may not be available on all XPG conforming systems.

Reference
XPG3 Volume 3, pages 49-51 - Regular Expressions

X/Open and XPG3 53

Chapter 4. C Language

SPARC
Product Identification
Product Identification SPARCompiler C
Version/Release No. 2.0.1
If you do not supply this component yourself, please identify below the
supplier you reference.
Conformance Reference
Indicator of Compliance
VSX Test Suite Release VSX 4.3.2
Testing Agency Name Mindcraft, Inc.
Address 410 Cambridge Avenue
Palo Alto, California 94306
x86

Product Identification

Product Identification ProCompiler C

Version/Release No. 2.0.1

If you do not supply this component yourself, please identify below the
supplier you reference.

54 Standards Conformance Guide—November 1995

o1
1]

Conformance Reference

Indicator of Compliance

VSX Test Suite Release
Testing Agency Name
Address

VSX 4.3.2
Mindcraft, Inc.

410 Cambridge Avenue
Palo Alto, California 94306

Environment Specification

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behavior and
any test results to be reproduced.

SPARC and x86, running Solaris. Installation procedures are
provided in SPARC: Installing Solaris Software or x86: Installing

Solaris Software.

Temporary Waivers

List below references to any temporary waivers granted by X/Open in respect
to minor errors in the product referenced above. This should include the
X/0pen reference and the waiver expiration date. The waivers as granted shall
be made available with this document on request.

There are no temporary waivers.

Section 4.1 Implementation Limits

Question 1: What limits does the implementation impose on the significant part of an

identifier?

Answer:

External identifiers

Non-External identifiers

No limits; all characters
are significant

No limits; all characters are
significant

X/Open and XPG3

55

56

Rationale
The XPG states that, while there is no limit to the length of an identifier, only a
certain number of characters are significant. The XPG points out that there
must be at least eight characters for a non-external name, but may be less for
external names.

Reference
XPG 3 Volume 4, page 3 - Lexical Conventions

4.2 General

Question 2: What truncation rules are applied when a floating value is converted to an
integral value?

Answer:
Truncation of floating point values is always towards zero.

Rationale
The XPG states that such conversions are machine dependent. In particular, the
XPG points out the differences related to the truncation of negative numbers.

Reference
XPG Volume 4, page 10 - Conversions

Question 3: What truncation rules are applied when using the division operator and either
of the operands is negative?

Answer:
Truncation towards zero

Rationale:
The XPG states that such truncations are machine dependent.

Reference
XPG Volume 4, page 16 - Expressions

Chapter 11: Terminal Interfaces

Product Identification

Product Identification Solaris

Version/Release No. 2.5

Standards Conformance Guide—November 1995

o1
1]

If you do not supply this component yourself, please identify below the
supplier you reference.

Conformance Reference
Indicator of Compliance

None
Environment Specification

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behavior and
any test results to be reproduced.

SPARC and x86, running Solaris. Installation procedures are given
in SPARC: Installing Solaris Software or x86: Installing Solaris
Software.

Temporary Waivers

List below references to any temporary waivers granted by X/Open in respect
to minor errors in the product referenced above. This should include the
X/0pen reference and the waiver expiration date. The waivers as granted shall
be made available with this document on request.

There are no temporary waivers.

Chapter 12: Window Management
Product Identification

Product Identification OpenWindows

Version/Release No. 3.0 and subsequent releases

If you do not supply this component yourself, please identify below the
supplier you reference.

X/Open and XPG3 57

1]l
o1

Conformance Reference
Indicator of Compliance

None

Environment Specification

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behavior and
any test results to be reproduced.

SPARC and x86, running Solaris. Installation procedures are
provided in SPARC: Installing Solaris Software or x86: Installing
Solaris Software.

Temporary Waivers

List below references to any temporary waivers granted by X/Open in respect
to minor errors in the product referenced above. This should include the
X/0Open reference and the waiver expiration date. The waivers as granted shall
be made available with this document on request.

There are no temporary waivers.

Chapter 14: Inter-process Communication

Product Identification

Product Identification Solaris

Version/Release No. 2.5

If you do not supply this component yourself, please identify below the
supplier you reference.

Conformance Reference
Indicator of Compliance

None

58 Standards Conformance Guide—November 1995

o1
1]

Environment Specification

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behavior and
any test results to be reproduced.

SPARC and x86, running Solaris. Installation procedures are
provided in SPARC: Installing Solaris Software or x86: Installing
Solaris Software.

Temporary Waivers

List below references to any temporary waivers granted by X/Open in respect
to minor errors in the product referenced above. This should include the
X/0Open reference and the waiver expiration date. The waivers as granted shall
be made available with this document on request.

There are no temporary waivers.

Chapter 15: Source Code Transfer
Section 15.1 Utilities

Product Identification

Product Identification Solaris

Version/Release No. 2.5

If you do not supply this component yourself, please identify below the
supplier you reference.

Conformance Reference
Indicator of Compliance

None

X/Open and XPG3 59

60

x86

Environment Specification

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behavior and
any test results to be reproduced.

SPARC and x86, running Solaris. Installation procedures are
provided in SPARC: Installing Solaris Software or x86: Installing
Solaris Software.

For floppy disk hardware:
SPARCstation with external or internal floppy disk drive (part number X554H)
For magnetic tape hardware:

SPARC Office Servers (SPARCsystem 330 or SPARCsystem 470) with 1/2-inch
tape drive subsystem (part number 680A), and

SPARC Data Center Servers (SPARCserver 390 or SPARCserver 490) with 1/2-
inch tape drive subsystem (part numbers 682A or 683A)

For Source Code Transfer software:

x86, running Solaris 2.5. Installation procedures are given in the Solaris System
Configuration and Installation Guide.

For floppy disk hardware:

x86 machine, with external or internal floppy disk drive

Temporary Waivers

List below references to any temporary waivers granted by X/Open regarding
minor errors in the product referenced above. This should include the X/Open
reference and the waiver expiration date. The waivers as granted shall be made
available with this document on request.

There are no temporary waivers.

Standards Conformance Guide—November 1995

o1
1]

Formats

Question 1. Which exchange media format(s) may be written by the system?

Answer:
80 track floppy disk Yes
40 track floppy disk No
1600 bpi PE magnetic tape Yes
Rationale

XPG3 states that standards are referenced for transfer of floppy disks and
magnetic tapes between machines. Because of the different nature of X/Open
conformant systems, it is not possible to define a single portable medium
which is supported across the whole range of systems.

Reference
XPG3 Volume 3, Chapters 15, 16, and 17

Question 2: Which exchange media format(s) may be read by the system?

80 track floppy disk Yes
40 track floppy disk No
1600bpi PE magnetic tape Yes

Rationale
XPG3 states that standards are referenced for transfer of floppy disks and
magnetic tapes between machines. Because of the different nature of X/Open
conformant systems, it is not possible to define a single portable medium
which is supported across the whole range of systems. In addition, some
systems can read a wider range of formats than they can write.

Reference
XPG3 Volume 3, Chapters 15, 16, and 17

X/Open and XPG3 61

62

Utilities
Question 3: Which utilities are used to create and read the archive formats specified in XPG
Volume 3-XSI Supplementary Definitions?

Answer:
Format Creating Reading
Extended tar cpio -H USTAR cpio -H USTAR
cpio cpio -H odc cpio -H odc
Rationale

There is no explicit definition as to the commands that must be used to create
and retrieve these archives. On most systems this will be achieved by the tar
and cpio commands. There are other commands available which produce
these archives. On some implementations the command may need a special
option to enable reading of the specified formats with the “standard” option
being to create archives which are backwards compatible with previous
versions of the command.

Reference
XPG3 Volume 3, page 151-2 — Utilities

Invalid Files Names

Question 4. What file name is used to contain data from the archive in the case that the file
name on the archive is invalid for the system on which the file hierarchy is being

created?
Answer:
Format File Name
Extended tar All legal file names in a USTAR archive are legal in the
filesystem.
cpio All legal file names in a cpio archive are legal in the
filesystem.

Standards Conformance Guide—November 1995

o1
1]

Rationale
Because an archive can contain non-portable file names it is necessary for an
archive reading utility to be able to generate a file and store the data associated
with a non-portable file name when this is encountered on the archive. There
may be a need to generate a number of such file names in the same directory
and the specification should detail the algorithm used to generate these file
names.

Reference
XPG3 Volume 3, page 151- Utilities

Multivolume Archives

Question 5: How does the archive reading utility determine which file to read as the next
volume when an end-of-media condition is encountered?

Answer:
Format Method
Extended tar The tar utility prompts the user for the pathname of the
next file in the archive. (The path need not name a device.)
Cpio The cpio utility prompts the user for the pathname of the
next file in the archive. (The path need not name a device.)
Rationale

In many cases the utility will prompt the user for the path name of the device
to use for the next volume. There may be extensions to the utility syntax that
allow the definition of alternate addresses for subsequent volumes.

Reference
XPG3 Volume 3, page 151-2 — Utilities.

X/Open Specification and Related Publications

The X/Open Portability Guide is published by Prentice-Hall in the United
States. The set is comprised of the seven volumes listed below; the ISBN
number follows the volume title:

= Volume 1: XSI Commands and Utilities, 0-13-68555835-X
= Volume 2: XSI System Interface and Headers, 0-13-685843-0

X/Open and XPG3 63

64

= Volume 3: XSI Supplementary Definitions, 0-13-685850-3
< \Volume 4: Programming Languages, 0-13-685868-6

= \olume 5: Data Management, 0-13-685876-7

< Volume 6: Window Management, 0-13-685884-8

< Volume 7: Networking Services, 0-13-685892-9

Standards Conformance Guide—November 1995

X/Openand XPG4 6

This chapter discusses the compliance of Solaris 2.5 to the programming
interface specifications contained in the X/Open Portability Guide Issue 4,
(XPG4).

The X/Open Portability Guide, Issue 4

In 1992, X/Open published the X/Open Portability Guide, Issue 4. XPG4
retains compliance to the POSIX.1-1988 standard but is extended to the
ISO/IEC updated POSIX.1 standard and the ISO/IEC C language standard.
The X/Open Portability Guide Issue 3 remains available and system and
components can still be branded to XPG3, but XPG4 branding offers significant
additional capability.

This chapter identifies Solaris 2.5 as a conforming implementation of XPG4,
and displays the XPG4 Base brand trademark. It also presents the X/Open
Conformance Statement, which documents Solaris’ compliance to the
programming interface specifications of the X/Open Portability Guide, Issue 4.

The X/Open Brand Trademark

X/0Open provides a verification and branding program that developers can use
to show that their products are X/Open compliant. Sun Microsystems has been
a strong supporter of the X/Open branding process since its inception.

65

66

Figure 6-1 The XPG4 Base Brand Logo

x/Open

XPG4
BASE PROFILE

Solaris is available as an XPG4 and/or XPG3 BASE branded configuration.
Solaris products and software products from independent software vendors
that have received XPG4 branding are described below:

Window Management (OpenWindows)—The Solaris window system,
which supports the OPEN LOOK Graphical User Interface, has earned the
XPG4 brand by implementing the programmer’s interface to the X Window
System. OpenWindows supports the Window Management component of
the X/Open BASE level.

Internationalized System Calls and Libraries— Solaris meets the
Internationalized System Calls and Libraries component requirements of the
BASE level.

Commands and Utilities—X/Open’s specification of standard interfaces for
utilities allows for portable shell scripts. Solaris meets the Commands and
Utilities component requirements of the BASE system.

ProCompiler™ C 2.0.1— The ProCompiler for Solaris for x86 is fully
conformant with the ANSI/ZISO Standard for C. It has passed X/Open
verification test suite VSX 4.3.2 and meets the C Language component
requirements of the BASE level.

SPARCompiler C 2.0.1—The SPARCompiler for the C programming
language based on Common Usage C has passed X/Open verification test
suite VSX 4.3.2 and meets the C Language component requirements of the
BASE level.

Sun FORTRAN 3.0—Sun’s compiler for the FORTRAN programming
language is fully compliant with the definition in the American National
Standards Institute (ANSI) document.

Sun Pascal 3.0.1—Sun’s compiler for the Pascal programming language is
fully compliant with the ISO standard.

Standards Conformance Guide—November 1995

6

= Magnetic Media (Source Code Transfer)—Sun conforms to X/Open’s
specifications for transferring source code between machines with
compatible media and facilitating the transfer of source code in machine-
readable form. Solaris supports the Source Code Transfer component of the
X/0pen BASE level.

= Inter-Process Communication—Sun supports X/Open'’s specifications for
interfaces providing message queue, semaphore, and shared memory
facilities for communication and synchronization between processes. The
SunOS operating system fulfills the requirements of the Inter-Process
Communications component of the X/Open BASE level.

« Terminal Interfaces (XSI Curses Interface)—The XSI Curses Interface meets
X/0pen’s specifications for providing a generic terminal interface that is
independent of terminal hardware or connection methods for updating
screens on character-oriented and block-oriented terminals. Solaris systems
fulfill the requirements of the Terminal Interfaces component of the X/Open
BASE level.

The X/Open Conformance Statement for Solaris

The remaining pages of this chapter feature the X/Open Conformance
Statement for Solaris.

X/Open Conformance Statement

X/0OPEN Conformance Statement Questionnaire

1. Internationalized System Calls and Libraries

Product Identification

Product Identification Solaris

Version/Release No. 2.5

If you do not supply this component yourself, please identify below the
supplier you reference.

X/Open and XPG4 67

68

(2]

@]

Indicator of Compliance

VSX Test Suite Release VSX 4.3.4
Testing Agency Name Mindcraft, Inc.
Address 410 Cambridge Avenue

Palo Alto, California 94306

Environment Specification

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behavior and
any test results to be reproduced.

SPARC running Solaris 2.5. Installation procedures are provided in SPARC:
Installing Solaris Software

To reproduce the test environment, do these steps:
1. Edit the /etc/saf/zsmon/_pmtab file to turn off the ttysoftcarrier detect:

Change the ttya and ttyb fields from :y: to :n: . (The colons (:) act as
field separators.)

2. \Verify that the ttymodes settings in the /kernel/drv/options.conf file
are set to:

2502:1805:hd:8a3b:3:1¢:7f:15:4:0:0:0:11:13:1a:19:12:f:17:16
3. Disable ypbind to allow rebooting of the system:
a. cd /usr/lib/netsvclyp
b. mv ypbind ypbind-
4. Set the eeprom variables that affect the tty :
a. On the keyboard, hit STOP-Ato display the prom prompt.

b. At the prompt, execute the following steps:

Standards Conformance Guide—November 1995

(@)}
1]

X86

setenv ttya-ignore-cd false
setenv ttyb-ignore-cd false
setenv ttya-rts-dtr-off false
setenv ttyb-rts-dtr-off false

5. Reboot the system

Note — When installing Solaris, set the time zone by selecting a time zone
format that conforms to the POSIX.1 format for TZ defined on page 152 and
page 153 of the IEEE Std. 1003.1-1990.

Note — The following option must be added to any compiler line:
-D_XOPEN_VERSION=4

Note — The following must be added to any link/load line:
/usr/ccsl/lib/values_xpg4.o

x86 running Solaris 2.5. Installation procedures are provided in x86: Installing
Solaris Software.

To reproduce the test environment, follow these steps:

1. Become root .

N

Ensure the correct serial port links:

= /devl/ttya should be a link to /devices/isa/asy@3f8,0:a

« /dev/term/a should be a link to /devices/isa/asy@3f8,0:a
= /dev/tty00 should be a link to /devices/isa/asy@3f8,0:a
= /dev/ttyb should be a link to /devices/isa/asy@2f8,0:a

« /dev/term/b should be a link to /devices/isa/asy@?2f8,0:a
= /dev/tty01 should be a link to /devices/isa/asy@2f8,0:b

a. If the /dev/tty01 link is missing, perform the following:

= Edit /kernel/drv/asy.conf and uncomment the COM2 entry
touch /reconfigure

X/Open and XPG4 69

3. Set the correct serial port permissions:

= # chmod 666 /devices/eisal/asy*

4. Turn off the ttysoftcarrier detect:
Using an editor such as vi , in the /etc/saf/zsmon/_pmtab file, change
the next to last field for both the ttya entry and the ttyb entry fromy to n
(the colon (:) acts as the field separator):

« # vi letc/saf/zsmon/_pmtab

5. Reboot the system.

Note — When installing Solaris, set the time zone by selecting a time zone
format that conforms to the POSIX.1 format for TZ defined on page 152 and
page 153 of the IEEE Std. 1003.1-1990.

Note — The following option must be added to any compiler line:
-D_XOPEN_VERSION=4

Note — The following must be added to any link/load line:
/usr/ccs/lib/values_xpg4.o

Temporary Waivers

None.
Section 1.1: General Attributes
1.1.1 XPG4 Feature Groups

Question 1: Which of the following Feature Groups are supported by the
implementation?

Response:

POSIX C-language Binding Yes
Shared Memory Yes
Encryption Yes
Enhanced Internationalization Yes

Standards Conformance Guide—November 1995

(@)}
1]

Note: All the interfaces in all these groups must exist on all XPG4 XSI-
conformant systems, and each interface must either behave according to the
description in System Interfaces and Headers, Issue 4, or indicate an error, with
errno set to [ENOSYS].

Support for particular Feature Groups may be required in order to conform to
particular X/Open Profiles. Support for a Feature Group can only be claimed if
all interfaces in that group behave according to the relevant descriptions in
System Interfaces and Headers, Issue 4.

Rationale
System Interfaces and Headers, Issue 4 states that the system may provide one
or more of the Feature Groups listed.

Reference
X/0Open CAE Specification, System Interfaces and Headers, Issue 4, Section 1.2,
Conformance and Section 1.3, Feature Groups.

1.1.2 POSIX.1 Supported Features

Question 2 Which of the following options, specified in the <unistd.h > header file,
are available on the system?

Response:
Macro Name Meaning Provided
_POSIX_CHOWN_RESTRICTED The use of chown() Yes

is restricted to a process
with appropriate privileges
and to changing the group
ID of a file only to the
effective group ID of the
process or one of its
supplementary groups IDs.

_POSIX_NO_TRUNC Pathname components Yes
longer than {NAME_MAX}
generate an error

X/Open and XPG4 71

72

(continued)

Macro Name Meaning Provided

_POSIX_VDISABLE Terminal special characters Yes
defined in <termios.h >
can be disabled using this
character value.

_POSIX_SAVED_IDS Each process has a saved Yes
set-user-1D and saved
set-group-ID.
_POSIX _JOB_CONTROL Implementation supports Yes
job control.
Rationale

For an XSl-conformant implementation, all of these POSIX features must be
provided. In some cases the feature need not be provided for all files or devices
supported by the implementation.

Reference
X/0pen CAE Specification, System Interfaces and Headers, Issue 4, Chapter 4,
Headers <unistd.h >.

1.1.3 Float, Stdio and Limit Values

Question 3: What are the values associated with the following constants specified in
the <float.h> header file?

Response:

Macro Name Meaning Value

FLT_RADIX Radix of the exponent representation. 2

FLT_MANT_DIG Number of base-FLT_RADIX digits 24
in the float significand.

DBL_MANT_DIG Number of base-FLT_RADIX digits 53
in the double significand.

LDBL_MANT_DIG Number of base_FLT_RADIX digits 64

in the long double significand.

Standards Conformance Guide—November 1995

(@)}
1]

(continued)

Macro Name

Meaning Value

FLT DIG

DBL_DIG

LDBL_DIG

FLT _MIN_EXP

DBL_MIN_EXP

LDBL_MIN_EXP

FLT_MIN_10_EXP

DBL_MIN_10_EXP

LDBL_MIN_10_EXP

X/Open and XPG4

Number of decimal digits, g, such that 6
any floating point number with g digits

can be rounded into a float representation

and back again without change to the

g digits.

Number of decimal digits, g, such that 15
any floating point number with q digits

can be rounded into a double repre-

sentation and back again without change to

the g digits.

Number of decimal digits, g, such that 18
any floating point number with q digits

can be rounded into a long double representation
and back again without change to the

q digits.

Minimum negative integer such that -125
FLT_RADIX raised to that power minus

1 is a normalized float.

Minimum negative integer such that -1024
FLT_RADIX raised to that power minus
1 is a normalized double.

Minimum negative integer such that -16381
FLT_RADIX raised to that power minus
1 is a normalized long double.

Minimum negative integer such that 10 -125
raised to that power is in the range of
normalized floats.

Minimum negative integer such that 10 -307
raised to that power is in the range of
normalized doubles.

Minimum negative integer such that 10 -4931
raised to that power is in the range of
normalized long doubles.

73

(continued)

Macro Name

Meaning Value

FLT_MAX_EXP

DBL_MAX_EXP

LDBL_MAX_EXP

FLT_MAX_10_EXP

DBL_MAX_10_EXP

LDBL_MAX_10_EXP

FLT_MAX

DBL_MAX

LDBL_MAX

FLT_EPSILON

DBL_EPSILON

74

Maximum integer such that FLT_RADIX 128
raised to that power minus 1 is a

representable finite float.

Maximum integer such that FLT_RADIX 1024
raised to that power minus 1 is a

representable finite double.

Maximum integer such that FLT_RADIX 16384
raised to that power minus 1 is a

representable finite long double.

Maximum integer such that 10 raised to 38
that power is in the range of

representable finite floats.

Maximum integer such that 10 raised to 308
that power is in the range of

representable finite doubles.

Maximum integer such that 10 raised to 4932
that power is in the range of

representable finite long doubles.
Maximum representable finite float. 3.402823466E+38F

Maximum representable finite
double.

1.7976931348623157E+308

Maximum representable 1.189731495357231765085759326628007016E+4932L

finite long double.

Difference between 1.0 and the least 1.192092896E-07F
value greater than 1.0 that is

representable as a float.

Difference between 1.0 and the least
value greater than 1.0 that is
representable as a double.

2.2204460492503131E-16

Standards Conformance Guide—November 1995

(@)}
1]

(continued)

Macro Name Meaning Value

LDBL_EPSILON Difference between 1.0 1.925929944387235853055977942584927319E-34L
and the least value greater
than 1.0 that is
representable as a long double.

FLT_MIN Minimum normalized positive float. 1.175494351E-38F
DBL_MIN Minimum normalized positive double. 2.2250738585072014E-308
LDBL_MIN Minimum normalized 3.3621031431120935062626778173217522603E-4932L

positive long double.

Rationale
This set of constants provides useful information regarding the underlying
architecture of the implementation.

Reference
X/0pen CAE Specification, System Interfaces and Headers, Issue 4, Chapter 4,
Headers, <float.h>.

Question 4 What are the values associated with the following constants (optionally
specified in the <limits.h> header file)?

Response:

Macro Name Meaning Minimum Maximum

ARG_MAX Maximum length of argument to 4096 1048320
the exec functions including the
environment data.

CHILD_MAX Maximum number of processes 6 See note
per user ID.

LINK_MAX Maximum number of linkstoa 8 32767
single file.

MAX_CANON Maximum number of bytesina 255 256

terminal canonical input line.

X/Open and XPG4 75

76

(continued)

Macro Name Meaning Minimum Maximum

NAME_MAX Maximum number of bytes 14 See note
allowed in a terminal input queue.

OPEN_MAX Maximum number of open files 16 See note
that one process can have open
at any one time.

PATH_MAX Maximum number of bytesina 255 See note
pathname (including the
terminating null).

PIPE_BUF Maximum number of bytes that 512 5120
is guaranteed to be atomic when
writing to a pipe.

STREAM_MAX Number of streams one process 8 8
can have open at one time.

TZ_NAME_MAX Maximum number of bytes 3 3
supported for the name of a
time zone.

Notes:

CHILD_MAX depends on how the system kernel is configured.

The maximum values for NAME_MAX and PATH_MAX vary depending on
the file system type, but always provide at least the minimum requirement.
The most common values are 255 for NAME_MAX and 1024 for PATH_MAX.
Values for a specific path are available using pathconf().

OPEN_MAX defaults to 64, but users can increase or decrease this value using
routines not specified by POSIX.1 or XPG4.

Rationale

Each of these limits can vary within bounds set by the Systems Interfaces and
Headers, Issue 4. The minimum value that a limit can take on any XSI
conforming system is given in the corresponding POSIX_ value. A specific
conforming implementation may provide a higher minimum value than this
and the maximum value that it provides can differ from the minimum. Some
conforming implementations may provide a potentially infinite value as the

Standards Conformance Guide—November 1995

6

maximum, in which case the value is considered to be indeterminate. The
minimum value must always be definitive since the POSIX _value provides a

known lower bound for the range of possible values.

Reference

X/0pen CAE Specification, System Interfaces and Headers, Issue 4, Chapter 4,

Headers, <limits.h>

Question 5: What are the values associated with the following constants specified in

the <limits.h> header file?

Response:

Macro Name Meaning Min.

Maximum

BC_BASE_MAX Maximum ibase and obase values 99
allowed by the bc utility.

BC_DIM_MAX Maximum number of elements 2048
permitted in an array by the
bc utility.

BC_SCALE_MAX Maximum scale value allowed 99
by the bc utility.

BC_STRING_MAX Maximum length of a string 1000
constant accepted by the bc
utility.

COLL_WEIGHTS_MAX
Maximum number of weights 2
that can be assigned to an entry
of the LC_COLLATE order
keyword in the local definition
file.

EXPR_NEST_MAX Maximum number of expressions 32
that can be nested within
parentheses by the expr utility.

LINE_MAX Maximum length in bytes 2048
including the trailing newline
of a utility’s input line when
the utility is described as
processing text files.

X/Open and XPG4

32767 (SHRT_MAX)

32768 (SHRT_MAX+1)

32767 (SHRT_MAX)

2048 (LINE_MAX)

32

2048

77

(continued)

Macro Name Meaning Min. Maximum

NGROUPS_MAX Maximum number of 16 16
simultaneous supplementary
group IDs per process.

RE_DUP_MAX Maximum number of repeated 255 255
occurrences of a regular
expression permitted when using
interval notation.

Rationale
Each of these limits can vary within bounds set by the System Interfaces and
Headers, Issue 4. The minimum value that a limit can take on any XSI
conforming system is given in the corresponding POSIX_ or POSIX2_ value.
A specific conforming implementation may provide a higher minimum value
than this and the maximum value that it provides can differ from the
minimum. Some conforming implementations may provide a potentially
infinite value as the maximum, in which case the value is considered to be
indeterminate. The minimum value must always be definitive since the
POSIX or _POSIX2_ value provides a known lower bound for the range of
possible values.

Reference
X/0pen CAE Specification, System Interfaces and Headers, Issue 4, Chapter 4,
Headers, <limits.h>

Question 6:What are the values associated with the following numerical constants
specified in the <limits.h > header file?

Response:

Macro Name Meaning Value
CHAR_BIT Number of bits in a char. 8
CHAR_MAX Maximum value of a char. 127
INT_MAX Maximum value of an int. 2147483647

Standards Conformance Guide—November 1995

(@)}
1]

(continued)

Macro Name Meaning Value
LONG_BIT Number of bits in a long int. 32
LONG_MAX Maximum value of a long int. 2147483647L
MB_LEN_MAX Maximum number of bytes in 5
a character, for any supported
locale.
SCHAR_MAX Maximum value of a signed 127
char.
SHRT_MAX Maximum value of a short. 32767
SSIZE_MAX Maximum value of an object 2147483647
of type ssize_t.
UCHAR_MAX Maximum value of an 25
unsigned char.
UINT_MAX Maximum value of an 4294967295U
unsigned int.
ULONG_MAX Maximum value of an 4294967295UL
unsigned long int.
USHRT_MAX Maximum value of an 65535
unsigned short int.
WORD_BIT Number of bits in a word 32
or int.
Rationale

This set of constants provides useful information regarding the underlying
architecture of the implementation.

Reference

X/0pen CAE Specification, System Interfaces and Headers, Issue 4, Chapter 4,

Headers, <limits.h>.

X/Open and XPG4

79

80

Question 7: What are the values associated with the following numerical constants specified
in the <stdio.h> header file?

Response:

Macro Name Meaning Value

FOPEN_MAX Number of streams which 20 (SPARC)
the implementation guarantees 60 (x86)
can be open simultaneously.

L_tmpnam Maximum size of character array 25
to hold tmpnam() output.

TMP_MAX Minimum number of unique 17567
filenames generated by tmpnam(),
which is the maximum number
of times an application can call
tmpnam() reliably.

Rationale

This set of constants provides useful information about the implementation.

Reference
X/0pen CAE Specification, System Interfaces and Headers, Issue 4, Chapter 4,
Headers, <stdio.h>

1.1.4 Error Conditions

Question 8: Which of the following option errors listed in the System Interfaces and
Headers, Issue 4 are detected in the circumstances specified?

Response:

Function Error Detected

access() EINVAL Yes
ETXTBSY No

acos() EDOM Yes

asin() EDOM Yes
ERANGE No
ERANGE No

Standards Conformance Guide—November 1995

(continued)

Function Error Detected
atan() EDOM Yes
atan2() EDOM Yes
ERANGE Yes
catclose() EBADF No
EINTR No
catgets() EBADF No
EINTR No
catopen() EACCES Yes
EMFILE Yes
ENAMETOOLONG Yes
ENFILE Yes
ENOENT Yes
ENOMEM Yes
ENOTDIR Yes
ceil() EDOM Yes
cfsetispeed() EINVAL No
cfsetospeed() EINVAL No
chmod() EINVAL No
chown() EINVAL Yes
closedir() EBADF Yes
EINTR No
cos() EDOM Yes
ERANGE No
cosh() EDOM Yes
erf() EDOM Yes
ERANGE No
erfc() EDOM Yes
ERANGE No
exec() ENOMEM Yes
ETXTBSY No

X/Open and XPG4

81

82

(continued)

Function Error Detected
exp() EDOM No
ERANGE Yes
fabs() EDOM Yes
ERANGE No
fentl() EDEADLK Yes
fdopen() EBADF No
EINVAL No
EMFILE Yes
ENOMEM Yes
fgetc() ENOMEM Yes
ENXIO Yes
fgetwec() ENOMEM Yes
ENXIO Yes
EILSEQ Yes
fileno() EBADF No
floor() EDOM Yes
fmod() EDOM Yes
ERANGE No
fopen() EINVAL No
EMFILE Yes
ENOMEN Yes
ETXTBSY No
fork() ENOMEM Yes
fpathconf() EBADF Yes
EINVAL Yes
fprintf() EINVAL Yes
EILSEQ Yes
fputc() ENOMEM Yes
ENXIO Yes

Standards Conformance Guide—November 1995

(continued)

Function Error Detected
fputwec() ENOMEM Yes
ENXIO Yes
EILSEQ Yes
freopen() EINVAL No
ENOMEM No
ETXTBSY No
frexp() EDOM Yes
fseek() EINVAL Yes
EPIPE No
ftw() EINVAL No
getcwd() EACCES Yes
ENOMEM Yes
getgrgid() EIO Yes
EINTR No
EMFILE Yes
ENFILE Yes
getgrnam() EIO Yes
EINTR No
EMFILE Yes
ENFILE Yes
getlogin() EMFILE Yes
ENFILE Yes
ENXIO Yes
getpass() EINTR No
EIO No
EMFILE Yes
ENFILE No
ENXIO No
getpwnam() EIO Yes
EINTR No
EMFILE Yes
ENFILE Yes

X/Open and XPG4

83

84

(continued)

Function Error Detected
getpwuid() EIO Yes
EINTR Yes
EMFILE Yes
hsearch() ENOMEM Yes
hypot() EDOM Yes
ERANGE No
iconv() EBADF Yes
iconv_close() EBADF Yes
iconv_open() EMFILE Yes
ENFILE Yes
ENOMEM Yes
EINVAL Yes
isatty() EBADF No
ENOTTY No
j00) EDOM No
ERANGE Yes
i10 EDOM No
ERANGE Yes
in() EDOM No
ERANGE Yes
Idexp() EDOM Yes
ERANGE No
lgamma() EDOM No
ERANGE Yes
link() EPERM Yes
EXDEV Yes
log() EDOM Yes
ERANGE No
1og10() EDOM Yes
ERANGE No

Standards Conformance Guide—November 1995

(continued)

Function Error Detected
mblen() EILSEQ Yes
mbstowcs() EILSEQ Yes
mbtowc() EILSEQ Yes
modf() EDOM Yes
ERANGE No
open() EINVAL No
ETXTBSY No
opendir() EMFILE Yes
ENFILE Yes
pathconf() EACCES Yes
EINVAL Yes
ENAMETOOLONG Yes
ENOENT Yes
ENOTDIR Yes
pow() EDOM Yes
ERANGE No
putenv() ENOMEM Yes
read() ENXIO Yes
readdir() EBADF Yes
rename() ETXTBSY No
setvbuf() EBADF No
sigaction() EINVAL Yes
sigaddset() EINVAL Yes
sigdelset() EINVAL Yes
sigismember() EINVAL Yes
signal() EINVAL Yes
sin() EDOM No
ERANGE Yes

X/Open and XPG4

85

86

(continued)

Function Error Detected
sinh() EDOM No
ERANGE Yes
sqrt() EDOM Yes
strcoll() EINVAL No
strerror() EINVAL No
strxfrm() EINVAL No
tan() EDOM Yes
ERANGE No
tanh() EDOM Yes
ERANGE No
tcdrain() EIO Yes
tcflush() EIO Yes
tcsendbreak() EIO Yes
tesetattr() EIO Yes
tmpfile() EMFILE Yes
ENOMEM Yes
ttyname() EBADF Yes
ENOTTY Yes
ungetwec() EILSEQ Yes
unlink() ETXTBSY No
wecscoll() EINVAL Yes
wcestombs() EILSEQ Yes
wesxfrm() EINVAL Yes
write() ENXIO Yes
y0() EDOM Yes
ERANGE No
y10 EDOM Yes
ERANGE No

Standards Conformance Guide—November 1995

(@)}
1]

(continued)

Function Error Detected
yn() EDOM Yes
ERANGE No
Rationale

Each of the above error conditions is marked as optional in System Interfaces
and Headers, Issue 4 and an implementation may return this error in the
circumstances specified or may not provide the error indication.

Reference
X/0pen CAE Specification, System Interfaces and Headers, Issue 4, Section 2.3,
Error Numbers.

1.1.5 Mathematical Interfaces
Question 9: What format of floating-point numbers is supported by this implementation?

Response:
IEEE floating point format.

Rationale
Most implementations support IEEE floating point format either in hardware
or software. Some implementations support other formats with different
exponent and mantissa accuracy. These differences need to be defined.

Reference
X/0pen CAE Specification, System Interfaces and Headers, Issue 4, Section 1.6,
Relationship to Formal Standards.

1.1.6 Data Encryption

Question 10: Are the optional data encryption interfaces provided?

Response:
Function Provided
crypt() Yes

X/Open and XPG4 87

(continued)

Function Error Detected
encrypt() Yes (Decryption capabilities not provided to
areas restricted by U.S. export law.)
setkey() Yes
Rationale

Normally, an implementation will either provide all three of these routines or
will provide none of them at all. If the routines are not provided, then the
implementation must provide a dummy interface which always raises an
ENOSYS error condition.

It is also possible that the implementation of the encrypt() function may be
affected by export restrictions, in which case, the restrictions should be
documented here.

For example, historical implementations have supplied all three of these
routines outside the U.S.A., but due to export restrictions on the decoding
algorithm, a dummy version of encrypt() is provided that does encoding but no
decoding.

Reference
X/0pen CAE Specification, System Interfaces and Headers, Issue 4, Section 1.2,
Conformance.

Section 1.2 Process Handling

1.2.1 Process Generation

Question 11: Which file types (regular, directory, FIFO, special, and so on) are considered to
be executable?

Response:
Only regular file types may be executed.

Rationale
The [EACCES] error associated with exec functions occurs in circumstances
when the implementation does not support execution of files of the type
specified. A list of these file types needs to be provided.

Standards Conformance Guide—November 1995

(@)}
1]

Reference
X/0pen CAE Specification, System Interfaces and Headers, Issue 4, Chapter 3,
Functions, exec .

Section 1.3 File Handling
1.3.1 Access Control

Question 12: What file access control mechanisms does the implementation provide?

Response:
There is no additional or optional file access control mechanism.

Rationale
System Interfaces and Headers, Issue 4 notes that implementations may
provide additional or alternate file access control mechanisms, or both.

Reference
X/0pen CAE Specification, System Interfaces Definitions, Issue 4, Chapter 2,
Glossary, file access permissions.

1.3.2 Files and Directories

Question 13: Are any additional or alternate file access control mechanisms implemented
that could cause fstat() or stat() to fail?

Response:
There is no additional or optional file access control mechanism.

Rationale
System Interfaces and Headers, Issue 4 notes that there could be an interaction
between additional and alternate access controls and the success of fstat()
and stat() . This would suggest that an implementation can allow access to a
file but not allow the process to gain information about the status of the file.

Reference
X/0pen CAE Specification, System Interfaces Definitions, Issue 4, Chapter 3,
Functions, fstat() and stat().

1.3.3 Formatting Interfaces

Question 14: Does the printf() function produce character string representations for
Infinity and NaN to represent the respective values?

X/Open and XPG4 89

90

Response: Yes

Rationale
This behavior is often provided on systems with mathematical functions that
produce these results.

Reference
X/0pen CAE Specification, System Interfaces and Headers, Issue 4, Chapter 3,
Functions, fprintf().

Section 1.4: Internationalized System Interfaces

1.4.1 Coded Character Sets

Question 15: What coded character sets are supported by the implementation?

Response:
Solaris 2.4 supports the following coded character sets:

ASCII

ISO 8859-1

JIS X0201

JIS X0208

KS C 5601-87
GB 2312-80
CNS 11643-1986

Rationale
System Interface Definitions, Issue 4 states that conforming implementations
support one or more coded character sets, and that each of these includes the
portable character set.

Reference
X/0pen CAE Specification, System Interfaces Definitions, Issue 4, Chapter 4,
Character Set.

Question 16: What is the implementation’s underlying internal codeset?

Response:
ISO 8859-1:1987

Rationale
It is useful to be aware of the underlying codeset of the implementation.

Standards Conformance Guide—November 1995

(@)}
1]

wn

@]

Reference
X/0pen CAE Specification, System Interfaces Definitions, Issue 4, Chapter 4,
Character Set.

1. Commands and Utilities

PRODUCT IDENTIFICATION

Product Identification Solaris

Version/Release No. 2.5

If you do not supply this component yourself, please identify below the
supplier you reference.

INDICATOR OF COMPLIANCE

VSX Test Suite Release VSC 4.1.4
Testing Agency Name SunSoft, A Sun Microsystems, Inc. Business
Address 2550 Garcia Avenue

Mountain View CA 94043

ENVIRONMENT SPECIFICATION

Enter below details of the hardware and software environment in which
testing took place, including compilation routines and installation procedures
(if any). Sufficient detail must be supplied to enable conformant behavior and
any test results to be reproduced.

SPARC running Solaris 2.5. Installation procedures are provided in SPARC:
Installing Solaris Software.

To reproduce the test environment, follow these steps:

1. Edit the /etc/saf/zsmon/_pmtab file to turn off the ttysoftcarrier detect:

X/Open and XPG4 91

92

x86

Change the ttya and ttyb fields from:y: to :n: . (The colons () act as
field separators.)

2. Verify that the ttymodes settings in the /kernel/drv/options.conf file
are set to:

2502:1805:bd:8a3b:3:1¢:7f:15:4:0:0:0:11:13:1a:19:12:f:17:16
3. Disable ypbind to allow rebooting of the system:
a. cd /usr/lib/netsvclyp
b. mv ypbind ypbind-
4. Set the eeprom variables that affect the tty
a. On the keyboard, hit STOP-Ato display the prom prompt.
b. At the prompt, execute the following steps:

setenv ttya-ignore-cd false
setenv ttyb-ignore-cd false
setenv ttya-rts-dtr-off false
setenv ttyb-rts-dtr-off false

5. Reboot the system

Note — When installing Solaris, set the time zone by selecting a time zone
format that conforms to the POSIX.1 format for TZ defined on page 152 and
page 153 of the IEEE Std. 1003.1-1990.

Note — The following option must be added to any compiler line:
-D_XOPEN_VERSION=4

Note — The following must be added to any link/load line:
/usr/ccs/lib/values_xpg4.o

x86 running Solaris 2.5. Installation procedures are provided in x86: Installing
Solaris Software.

Standards Conformance Guide—November 1995

(@)}
1]

To reproduce the test environment, follow these steps:
1. Become root .

2. Ensure the correct serial port links:

- /devittya should be a link to /devices/isa/asy@3f8,0:a

= /dev/term/a should be a link to /devices/isa/asy@3f8,0:a
< /dev/tty00 should be a link to /devices/isa/asy@3f8,0:a
= /devittyb should be a link to /devices/isa/asy@2f8,0:a

= /dev/term/b should be a link to /devices/isa/asy@2f8,0:a
= /dev/tty0Ol should be a link to /devices/isa/asy@2f8,0:b

a. If the /dev/tty01 link is missing, perform the following:

= Edit /kernel/drv/asy.conf and uncomment the COM2 entry
= # touch /reconfigure

3. Set the correct serial port permissions:

= # chmod 666 /devices/eisal/asy*

4. Turn off the ttysoftcarrier detect:
Using an editor such as vi , in the /etc/saf/zsmon/_pmtab file, change
the next to last field for both the ttya entry and the ttyb entry fromy to n
(the colon (:) acts as the field separator):

vi letc/saf/zsmon/_pmtab

5. Reboot the system.

Note — When installing Solaris, set the time zone by selecting a time zone
format that conforms to the POSIX.1 format for TZ defined on page 152 and
page 153 of the IEEE Std. 1003.1-1990.

Note — The following option must be added to any compiler line:
-D_XOPEN_VERSION=4

Note — The following must be added to any link/load line:
/usr/ccs/lib/values_xpg4.o

X/Open and XPG4 93

94

TEMPORARY WAIVERS

List below references to any temporary waivers granted by X/Open regarding
minor errors in the product referenced above. This should include the X/Open
reference and the waiver expiration date. The waivers as granted shall be made
available with this document on request.

There are no temporary waivers.
1.1 General Attributes
1.1.1 XPG4 Feature Groups

Question 1: Which of the following Feature Groups are supported by the
implementation?

XCU4 DEVELOPMENT Option
XCU4 FORTRAN Option
Answer: XCU4 DEVELOPMENT Option

Rationale
Commands and Ultilities, Issue 4 states that the system may provide one or
more of the Feature Groups listed.

Reference
X/0pen CAE Specification, Commands and Ultilities, Issue 4, Section 1.2,
Conformance and Section 1.3, Status of Interfaces.

1.1.2 XPG4 Development Utilities
Question 2: Does the implementation support the development utility dis?
ANnswer: Yes

Rationale
Commands and Utilities, Issue 4 states that optional utilities listed in Section
1.3.1 on page 2 need not be provided. Section 1.3.1 lists the dis utility as
OPTIONAL.

Reference
X/0pen CAE Specification, Commands and Utilities, Issue 4, Section 1.2,
Conformance and Section 1.3, Status of Interfaces.

Standards Conformance Guide—November 1995

(@)}
1]

1.1.3 XPG4 Unsupportable Utilities

Question 3: Are the following utilities supported by the implementation?

Answer:

Utility Supported
cancel YES
cu YES
Ipstat YES
uucp YES
uulog YES
uuname YES
uupick YES
uuto YES

Rationale

Commands and Ugtilities, Issue 4 states that the system need not provide the
possibly unsupportable utilities listed.

Reference

X/0pen CAE Specification, Commands and Utilities, Issue 4, Section 1.2,
Conformance and Section 1.3, Status of Interfaces.

Question 4: Are the following options to the specified utilities supported by the

implementation?

Answer:

Options Supported
-s option to ar YES

-E option to cc YES

-P option to cc YES

-S option to cc YES

X/Open and XPG4

95

1]l
(@)

(continued)

Options Supported
-m option to Ip YES
-0 option to Ip YES
-t option to Ip YES
-w option to Ip YES
-p option to mail YES
-q option to mail YES
-r option to mail YES
-t option to mail YES
-n option to pg YES

-z option to sort

-s option to ar

-r option to sum
+m[n] option to tabs
-q option to uustat
-r option to uustat

-j option to uux

NO (See Note)
YES
YES
YES
YES
YES

YES

The support of these options to the specified utilities are an extension to the
X/0pen CAE Specification standard. These options need not be supported on
all XSl-conformant systems.

Rationale

Possibly unsupportable feature.

Reference

X/0pen CAE Specification, Commands and Utilities, Issue 4.

96 Standards Conformance Guide—November 1995

(@)}
1]

Note - sort ignores the -z option and allocates as much memory as needed to
sort the lines. It will not fail if a line longer than recsz is encountered.

1.1.4 POSIX.2 Supported Features

Question 5: Are the following features available on the system?

Answer:
Macro Name Meaning Provided
POSIX2_C_DEV The implementation supports the C-language

development utilities in Annex A of POSIX.2. Yes
POSIX2_CHAR_TERM The implementation supports character-

based terminals. Yes
POSIX2_FORT_DEV The implementation supports the FORTRAN

language development utilities in Annex C

of POSIX.2. No
POSIX2_FORT_RUN The implementation supports the FORTRAN

runtime utilities in Annex C of POSIX.2. No
POSIX2_SW_DEV The implementation supports the software

development utilities in Section 6 of POSIX.2. Yes
POSIX2_UPE The implementation supports the User Portability

Utilities in Section 5 of POSIX.2. Yes

Rationale
POSIX.2 states that a POSIX.2 conforming implementation may provide one or
more of the following: the User Portability Option, the Software Development
Utilities Option, the C-Language Development Utilities Option, the FORTRAN
Development Utilities Option, or the FORTRAN Runtime Utilities Option. It
also lists POSIX2_CHAR_TERM and POSIX2_LOCALEDEF as the
implementation options.

Reference
POSIX-PART 2: SHELL AND UTILITIES, Section 1.3.

Question 6: Which terminal types are supported by the implementation?

X/Open and XPG4 97

1]l
(@)

Answer: Any terminal for which a user can obtain a TERMINFO description
and run through the tic utility.

Rationale
The implementation shall document which terminal types it supports and
which of the features and utilities are not supported by each terminal.

Reference
POSIX-PART 2: SHELL AND UTILITIES, Section 2.14.

Question 7: Does the implementation support moving files across file systems using
the mv utility?

ANswer: Yes

Rationale
The mv utility shall perform actions equivalent to the POSIX.1 rename()
function, called with the following arguments:
(a) The source_file operand is used as the old argument.
(b) The destination path is used as the new argument.

If the links named by new and old are on different file systems, and the
implementation does not support links between file systems, the rename()
function shall return -1 and set errno to [EXDEV].

Reference
POSIX-PART 2: SHELL AND UTILITIES, Section 2.14.

POSIX-PART 1: SYSTEM APPLICATION PROGRAM INTERFACE, Section
553

Question 8: Does the implementation require write permission for an existing
directory in order for mv utility to rename that directory?

Answer: No

Rationale
The mv utility shall perform actions equivalent to the POSIX.1 rename()
function, called with the following arguments:

(a) The source_file operand is used as the old argument.

(b) The destination path is used as the new argument.

98 Standards Conformance Guide—November 1995

6

If write permission is required and is denied for a directory pointed to by the
old or new arguments, the rename() function shall return -1 and set errno to
[EACCES].

Reference
POSIX-PART 2: SHELL AND UTILITIES, Section 4.43.

POSIX-PART 1: SYSTEM APPLICATION PROGRAM INTERFACE, Section
5.5.3.

Question 9: Does the implementation consider it to be an error if a nonprivileged
process attempts to rename a file or directory using the mv utility while that file or
directory is being used by the system or another process?

Answer: No

Rationale
The mv utility shall perform actions equivalent to the POSIX.1 rename()
function, called with the following arguments:

(a) The source_file operand is used as the old argument.
(b) The destination path is used as the new argument.

If the directory nhamed by old or new cannot be renamed because it is being
used by the system or another process and the implementation considers this
to be an error, the rename() function shall return -1 and set errno to [EBUSY].

Reference
POSIX-PART 2: SHELL AND UTILITIES, Section 4.43.

POSIX-PART 1: SYSTEM APPLICATION PROGRAM INTERFACE, Section
5.5.3.

Question 10: Does the implementation support creating hard links across file
systems using the In utility?

Answer: No

Rationale
The In utility shall perform actions equivalent to the POSIX.1 link() function
using source_file as the pathl argument, and the destination path as the path2
argument.

X/Open and XPG4 99

100

If the link named by new and the file named by existing are on different file
systems, and the implementation does not support links between file systems,
the link() function shall return -1 and set errno to [EXDEV].

Reference

POSIX-PART 2: SHELL AND UTILITIES, Section 4.33.

POSIX-PART 1: SYSTEM APPLICATION PROGRAM INTERFACE, Section
5.3.4.

Question 11: Does the implementation support the floating point conversions in
the format string of the printf utility?

ANswer: Yes

Rationale

The e, E, f, g, and G conversion specifications need not be supported in the
format string of the format operand of the printf utility.

Reference

POSIX-PART 2: SHELL AND UTILITIES, Section 4.50.

Question 12: In the system’s handling of Basic Regular Expressions, do the following

characters in a subexpression anchor that subexpression?

Answer:

Feature Response
The circumflex (©) character NO
The dollar-sign ($) character NO

Rationale

The implementation may treat circumflex as an anchor when used as the first
character of a subexpression. The implementation may treat a dollar-sign as an
anchor when used as the last character of a subexpression.

Reference

POSIX-PART 2: SHELL AND UTILITIES, Section 2.8.

Standards Conformance Guide—November 1995

6

Question 13: Does the implementation support the use of numeric signal numbers in the
shell’s trap command?

AnNswer: Yes

Rationale
An implementation may allow numeric signal numbers for the conditions in
the trap built-in utility as an extension.

Reference
POSIX-PART 2: SHELL AND UTILITIES, Section 3.14.13.

1.1.5 POSIX.1 Supported Features
Question 14: Does the implementation support the POSIX.1 C language interfaces?
Answer: Yes

Rationale
If the implementation conforms to POSIX.1, all but the shell special built-in
utilities can be exec()‘ed.

Reference
POSIX-PART 2: SHELL AND UTILITIES, Section 2.3.

1.1.6 Implementation-Dependent Limits Affecting Utilities

Question 15: What are the minimum values associated with the following symbols?

Answer:

Macro Name Meaning Min. Value
BC_BASE_MAX Maximum obase value allowed by the bc

utility. 99
BC _DIM_MAX Maximum number of elements permitted in

an array by the bc utility. 2048
BC_SCALE_MAX Maximum scale value allowed by the bc

utility 99
BC_STRING_MAX Maximum length of a string constant accepted

by the bc utility. 1000

X/Open and XPG4 101

1]l
(@)

(Continued)

Macro Name Meaning Min. Value

COLL_WEIGHTS_MAX Maximum number of weights that can be
assigned to an entry of the LC_COLLATE order
keyword in the locale definition file. 2

EXPR_NEST_MAX Maximum number of expressions that can be
nested within parentheses by the expr utility. 32

LINE_MAX Maximum length in bytes including the
trailing newline of a utility’s input line when
the utility is described as processing text files. 2048

RE_DUP_MAX Maximum number of repeated occurrences
of a regular expression permitted when using
interval notation. 255

Rationale
The minimum value of these symbols on any XSI conforming system must not
be more restrictive than the value of the corresponding POSIX2_ symbols. A
specific conforming implementation may provide a higher minimum value
than this.

Reference
POSIX-PART 2: SHELL AND UTILITIES, Section 2.13.

Section 1.2: Internationalized System Interfaces

1.2.1 Coded Character Sets
Question 16: What coded character sets are supported by the implementation?

Answer: Any character set that can be encoded in EUC: 1SO 8859-1, CNS 11643-
1992, JIS X0208, KS C 5861-1992, GB23/2-80

Rationale
System Interface Definitions, Issue 4 states that conforming implementations
support one or more coded character sets, and that each of these includes the
portable character set.

102 Standards Conformance Guide—November 1995

(@)}
1]

Reference
X/0pen CAE Specification, System Interfaces Definitions, Issue 4, Chapter 4,
Character Set

Question 17: What is the implementation’s underlying internal codeset?
Answer: Encoding method uses EUC (Extended UNIX codeset).

Rationale
It is useful to be aware of the underlying codeset of the implementation.

Reference
X/0pen CAE Specification, System Interface Definitions, Issue 4, Chapter 4,
Character Set.

X/Open and XPG4 103

104

Standards Conformance Guide—November 1995

X/Open Interim UNIX Branding =

This chapter discusses the compliance of Solaris 2.5 to the questions contained
in the X/Open Conformance Statement Questionnaire on Interim UNIX
Branding.

X/Open Conformance Statement for SPARC

This section addresses the questionnaire for SPARC based systems.

X/Open Conformance Statement

X/0OPEN Conformance Statement Questionnaire

1. Interim UNIX Branding

Product Identification

Product Identification Solaris for SPARC based systems
Version/Release No. Solaris 2.4 and on with SPARCompiler C 2.0.1
and on

If you do not supply this component yourself, please identify below the
supplier you reference.

105

1]l
\l

Conformance
a. The product is XPG4 branded.
b. The profile registration number is P0O034.
c. The product conforms to SVID Edition 3 Base.
d. The product is derived from Novell’s operating system technology.

e. The product does qualify as a sublicensed product.

X/Open Conformance Statement for x86

This section addresses the questionnaire for x86 based systems.

X/Open Conformance Statement

X/0OPEN Conformance Statement Questionnaire

1. Interim UNIX Branding

Product Identification

Product Identification Solaris for x86

Version/Release No. Solaris 2.4 and on with ProCompiler 2.0.1
and on for x86 based systems

If you do not supply this component yourself, please identify below the
supplier you reference.

106 Standards Conformance Guide—November 1995

\l
1]

Conformance
a. The product is XPG4 branded.
b. The profile registration number is P0O033.
c. The product conforms to SVID Edition 3 Base.
d. The product is derived from Novell’s operating system technology.

e. The product does qualify as a sublicensed product.

X/Open Interim UNIX Branding 107

108

Standards Conformance Guide—November 1995

POSIX.1 8

Portable Operating System Interface for Computer Environments (POSIX.1)

The IEEE Std 1003.1-1990 Portable Operating System Interface Part 1

(POSIX .1) is part of the POSIX series of standards for applications and user
interfaces to open systems. POSIX.1 has also been adopted as international
standard ISO/IEC 9945-1: 1990 by the International Organization for
Standardization/International Electrotechnical Commission. It defines the
applications interface to basic system services for input/output, file system
access, and process management, using the C programming language, which
establishes standard semantics and syntax. Because this interface enables
application writers to write portable applications, it has been named POSIX, an
acronym for Portable Operating System Interface. POSIX.1 is based on the
UNIX operating system and is derived from efforts of the Zusr/group
Standards Committee. Within this chapter the POSIX.1 standard is referred to
in places as “the standard.”

Amending POSIX.1: The IEEE Standards 1003.1b and 1003.1c

IEEE Std 1003.1b-1993 and IEEE Std 1003.1¢-1995 are standards that amend
POSIX.1 to include extensions in support of real-time and multithreaded
applications. The functionality of SunOS 5.5 is intended to provide compliance
and support of POSIX.1 as amended by IEEE Stds 1003.1b-1993 and 1003.1c-
1995.

109

1]l
0]

Scope

C Standard Compliance

Audience

110

To comply with Section 1.3.1.2 (Documentation), this chapter describes the
behavior of features in the SunOS 5.5 operating system which are described in
the standard as implementation-defined or for which it is stated that
implementations may vary. It does not describe any extensions or
enhancements outside the scope of the standard.

Note — Section 2.2.1.2 of the standard defines the term implementation-defined as
follows: “An indication that the implementation shall define and document the
requirements for correct program constructs and correct data of a value or
behavior.”

The information contained within this chapter does not replace the standard;
rather, it serves as an adjunct to the standard for supplying the technical
information needed by application developers to write source code within the
SunOS 5.5 operating system framework.

The SunOS 5.5 operating system conforms to POSIX.1. The C language
compiler and libraries conform to ANSI C.

This explication is for the experienced C programmer who, when writing an
applications program designed to conform to the standard, needs to know the
specific behavior of the implementation-defined features mentioned in the
standard.

Each subsection is prefaced by the appropriate section taken directly from the
standard and has the corresponding section number attached to the title.

Note — For maximum portability, applications should not depend upon any
particular behavior that is implementation-defined.

Standards Conformance Guide—November 1995

00
1]

Notation Used in the Remainder of this Chapter

The following format is used to identify which passage of text is quoted from
the standard and which passage of text describes how the SunOS 5.5 operating
system implements that area.

® P, stands for POSIX.
® S, stands for SunOS 5.5.

Section numbers cited in the remainder of this chapter correspond to those of
the standard. When creating an application program, this format will help you
to quickly locate additional information that you need from the standard.

Implementation-Defined Areas of POSIX.1
POSIX.1 Section 1: General

1.3.1 Implementation Conformance

1.3.1.1 Requirements
P. The conformance document shall define an environment in which an
application can be run with the behavior specified by the standard.

S. Solaris 2.5 conforms to IEEE Std 1003.1b-1993 as installed. There are no
special procedures required.

1.3.1.2 Documentation
P. The conformance document shall contain a statement that indicates the full
name, number, and date of the standard that applies.

S. The SunOS 5.5 operating system is a conforming implementation as defined
in Section 1.3.1.2 (Documentation) of the IEEE Std 1003.1b-1993 Portable
Operating System Interface (POSIX)-Part 1: System Application Program Interface
[C Language].

P. The conformance document may also list international software standards
that are available for use by a Conforming POSIX.1 Application.

S. The ANSI X3.159-1989 C Language Standard.

POSIX.1 111

1.3.3.2 C Standard Language Dependent System Support

P. Implementors shall meet the requirements of Section 8 using for reference
the C Standard {2}. Implementors shall clearly document the version of the C
Standard {2} referenced in fulfilling the requirements of Section 8.

S. The system provides an ANSI C Standard Language Binding as specified by
X3.159-1989. This language binding is accessed by specifying either -Xa or
-Xc on the cc command line.

POSIX.1Section 2, Terminology and General Requirements

112

2.2.2 General Terms

2.2.2.4: appropriate privileges

P. An implementation-defined means of associating privileges with a process with
regard to the function calls and function call options defined in the standard
that need special privileges. There may be zero or more such means.

S. A process whose effective user ID is 0 has all available privileges. Means by
which the effective UID may be set to 0 include: logging in as root or any user
with a UID equal to zero; issuing the su command to change the UID to root or
any user with UID equal to zero; successful execution of a file with the S_ISUID
bit set and UID equal to zero.

2.2.2.9: character special file

P. One specific type of character special file is a terminal device file, whose
access is defined in 7.1. Other character special files have no structure defined
by this part of ISO/IEC 9945, and their use is unspecified by this part of
ISO/IEC 9945.

S. In addition to terminal device files, the /dev/iksyms character special file is
available. The /dev/iksyms structure is described in the ksyms (7) man page.

2.2.2.55: parent process 1D

P. The parent process ID of a process is the process ID of its creator, for the
lifetime of the creator. After the creator’s lifetime has ended, the parent process
ID is the process ID of an implementation-defined system process.

S. If a child process continues to exist after its creator process ceases to exist,
the child process is inherited by init. The init process ID is 1.

Standards Conformance Guide—November 1995

00
1]

2.2.2.57: pathname
P. A pathname that begins with two successive slashes may be interpreted in an
implementation-defined manner.

S. Multiple successive slashes are considered the same as one slash.

2.2.2.68: process lifetime
P. When another process executes a wait() or waitpid() function for an inactive
process, the remaining resources are returned to the system.

S. All resources except the session ID, the process ID and the process group ID
are returned to the system.

2.2.2.69: read-only file system
P. A file system that has implementation-defined characteristics restricting
modifications.

S. A read-only file system does not allow for modification of its files or
directories.

2.2.2.83: supplementary group ID
P. Whether a process’s effective group ID is included in or omitted from its list
of supplementary group IDs is unspecified.

S. A process’s effective group ID is included in its list of supplementary group
IDs only if the login user ID is a member of the group associated with the
effective group ID.

2.3 General Concepts

2.3.1: extended security controls
P. The access control and privilege mechanisms have been defined to allow
implementation-defined extended security controls.

S. No extended security controls are supported.

2.3.2: file access permissions
P. Implementations may provide additional or alternate file access control
mechanisms, or both.

S. There is no additional or optional file access control mechanism.

POSIX.1 113

114

2.3.5: file times update
P. An implementation may update fields that are marked for update
immediately, or may update such fields periodically.

S. The UFS file system updates periodically.

2.4Error Numbers

P. Implementations may support additional errors not included in this clause,
may generate errors included in this clause under circumstances other than
those described in this clause, or may contain extensions or limitations that
prevent some errors from occurring.

S. In addition to the errors listed in this clause, Solaris supports the following
errors:

Error Error Code Condition

EBADMSG 77 Message waiting to be read on a data
stream is unreadable.

EMULTIHOP 74 Components of path require hopping to
multiple remote machines and the file
system does not allow it.

ENOLINK 67 Path points to remote machine; link to
that machine has been severed or is no
longer active.

ENOSR 63 Insufficient streams memory resources
available in the system.

EOVERFLOW 79 Value too large to be stored in data type.

[EFAULT]

P. The reliable detection of this error is implementation-defined; however,
implementations that do detect this condition shall use this value.

S. The functions listed below reliably detect a bad address and return EFAULT
when the address is not in a page mapped into the process.

access chdir chmod
chown clock_settime clock_getres
creat execl execle
execlp execv execve

Standards Conformance Guide—November 1995

00
1]

execvp fentl fstat

getgroups link mkdir

nanosleep open read

rmdir rename sigpending

sigprocmask sigsuspend sigaction

sigwaitinfo sigtimedwait sigqueue

stat tcgetattr tcsetattr

timer_create timer_gettime timer_settime

times uname unlink

utime write

[EFBIG]

P. The size of a file would exceed an implementation-defined maximum file size.
S. The maximum file size is defined by the setrlimit() function and can be
retrieved by the getrlimit() function.

2.5Primitive System Data Types

<sys/types.h>
P. Some data types used by the various system functions are not defined as part
of this standard, but are defined by the implementation.

S. Additional fundamental data types are:

uchar_t ushort_t 0_mode_t
uint_t ulong_t o0 _dev_t
caddr_t daddr_t o_uid_t
major_t minor_t 0_gid_t
key t o_nlink_t hostid_t
addr_t cnt_t o_ino_t
label_t paddr_t use_t
sysid_t index_t lock_t
boolean_t k_sigset_t k_fltset_t
id_t o _pid_t clock_t
wchar_t

POSIX.1 115

116

2.6 Environment Description

P. Environment variable names used or created by an application should consist
solely of characters from the portable filename character set. Other characters
may be permitted by an implementation; applications shall tolerate the
presence of such names.

S. Any character except NULL and *“=" is permitted; however applications
should restrict characters to that of the portable filename character set to
ensure portability.

2.7 C Language Definitions

2.7.2. POSIX.1 Symbols
P. Implementations, future versions of this part of ISO/IEC 9945, and other
standards may define additional feature test macros.

S. Additional defined feature test macros: XOPEN_SOURCE,
_POSIX_C _SOURCE, _ REENTRANT and _KERNEL. Use of these macros is
described in the X/Open Portability Guide Issue 3 and IEEE Std 1003.1b-1993.

2.8 Numerical Limits

P. The conformance document shall describe the limit values found in the
<limits.h > header, stating values, the conditions under which those values
may change, and the limits of those variations, if any.

S. <limits.h > contains the following magnitude limitations:

Name Value Comments
AIO_LISTIO_MAX Undefined. Value may Maximum number of 1/0 operations
be configurable in future. in a single list 1/0 call supported by
the implementation.
AIO_MAX Undefined. Value may Maximum number of outstanding
be configurable in future. asynchronous 1/0 operations
supported by the implementation.
AIO_PRIO_DELTA_MAX Undefined. Value may The maximum amount by which a
be configurable in future. process can decrease its asynchro-

nous 1/0 priority level from its own
scheduling priority.
ARG_MAX 1048320 Maximum length of arguments for

Standards Conformance Guide—November 1995

00
1]

CHILD_MAX Configurable with
minimum value 25.
DELAYTIMER_MAX Undefined. Value may
be configurable in future.
LINK_MAX 32767
LOGIN_NAME_MAX Undefined. Value may be
configurable in future.

MAX_CANON 256
MAX_INPUT 512
MQ_OPEN_MAX Undefined. Value may

be configurable in future.

MQ_PRIO_MAX Undefined. Value may
be configurable in future.

NAME_MAX Undefined. Depends on
underlying file system
type.

NGROUPS_MAX 16

OPEN_MAX Default maximum 64 can

be raised or lowered by

calling setrlimit().
PAGESIZE Undefined. Depends on

system hardware.

PATH_MAX 1024

PIPE_BUF 5120

PTHREAD_DESTRUCTOR_ITERATIONS

Undefined. Value may

be configurable in future.
PTHREAD_KEYS_MAX Undefined. Value may

be configurable in future.
PTHREAD_STACK_MIN

Run the valuated expression

POSIX.1

the exec functions, in bytes,
including environment data.
Maximum number of simultaneous
processes per real user ID.
Maximum number of timer
expiration overruns.

Maximum value of a files link count.
Maximum value of a login name.

Maximum number of bytes in a
terminal canonical input line.
Minimum number of bytes for which
space will be available in a terminal
input queue; therefore, the maximum
number of bytes a portable
application may require to be typed.
The maximum number of open
message queue descriptors a
process may hold.

The maximum number of

message priorities supported

by the implementation.

Maximum number of bytes in a

file name (not a string length; count
excludes a terminating null).
Maximum number of simultaneous
supplementary groups IDs per
process.

Maximum number of files that one
process can have open at one time.

Granularity in bytes of memory
mapping and process memory
locking.

Maximum number of bytes in a
pathname (not a string length; count
excludes a terminating null).
Maximum number of bytes that can
be written atomically when writing
to a pipe.

Maximum number of attempts made
to destroy a thread’s thread-specific
data values on thread exit.
Maximum number of data keys that
can be created per process
Minimum size in bytes of thread
stack storage.

117

118

PTHREAD_THREADS_MAX

RTSIG_MAX

SEM_NSEMS_MAX
SEM_VALUE_MAX

SIGQUEUE_MAX

STREAM_MAX

SSIZE_MAX

TIMER_MAX

TTY_NAME_MAX

TZNAME_MAX

Undefined. Value may
be configurable in future.
Undefined. Value may
be configurable in future.

Undefined. Value may
be configurable in future.
Undefined. Value may
be configurable in future.
Undefined. Value may
be configurable in future.

Not defined. Depends on
OPEN_MAX and number of
files open not using

fopen().

2147483647

Undefined. Value may
be configurable in future.

Undefined. Value may

be configurable in future.
Undefined. Time zone
name length is limited only
by address space.

Maximum number of threads that
can be created per process.

Maximum number of real-time
signals reserved for application

use in this implementation.
Maximum number of semaphores
that a process may have.

Maximum value a semaphore

may have.

Maximum number of queued signals
that a process may send and have
pending at the receiver(s) at any
time.

The number of streams that one
process can have open at one time.
If defined, it shall have the same
value as {FOPEN_MAX} from the C
Standard {2}.

The maximum value that can be
stored in an object of type ssize_t.
Maximum number of timers per
process supported by the
implementation.

Maximum length of terminal device
name.

Maximum number of bytes suppor-
ted for the name of a time zone.
(Not of the TZ variable).

2.9 Symbolic Constants

P. The conformance document shall describe the limit values found in the

<unistd.h

> header, stating values, the conditions under which those values

may change, and the limits of those variations, if any.

S. <unistd.h > contains the following values:
Name Value Comments
_POSIX_CHOWN_RESTRICTED* Not defined. The use of the chown () function is

Depends on under-

lying file system
type.

Standards Conformance Guide—November 1995

restricted to a process with
appropriate privileges, and to
changing the group ID of a file
only to the effective group ID
of the process or to one of its

00
1]

_POSIX_FSYNC

_POSIX_JOB_CONTROL
_POSIX_MAPPED_FILES
_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE

e

_POSIX_MEMORY_PROTECTION 1
_POSIX_NO_TRUNC* Not defined.

Depends on under-
lying file system

type.
_POSIX_REALTIME_SIGNALS 1
_POSIX_SAVED_IDS 1
_POSIX_SYNCHRONIZED_IO 1
_POSIX_TIMERS 1
_POSIX_THREADS 1
_POSIX_THREADS_ATTR_STACKADDR

1
_POSIX_THREADS_ATTR_STACKSIZE

1
_POSIX_THREADS_PRIORITY_SCHEDULING

1

_POSIX_THREADS_
_POSIX_THREADS_

PRIO_INHERIT Not defined.
PRIO_PROTECT

Not defined.
_POSIX_THREADS_PROCESS_SHARED

1
_POSIX_THREADS_SAFE_FUNCTIONS

1
_POSIX_VERSION 199506L
_POSIX_VDISABLE* 0

supplementary group IDS.

fsync() is supported.

Job control is supported.

Mapped files are supported.
Memory locking is supported.
Memory range locking

is supported.

Memory protection is supported.
Pathname components longer than
NAME_MAX generate an error.

Real-time signal extension is
supported.

Saved IDs is supported.
Synchronized 170 is provided.
Clocks and timers are

supported.

Solaris 2.5 supports the Thread option.
Solaris 2.5 supports the Thread Stack
Address Attribute option.

Solaris 2.5 supports the Thread Stack
Size Attribute option.

Solaris 2.5 supports the Thread
Execution Scheduling option

Solaris 2.5 supports the Process-Shared
Synchronization option.

Solaris 2.5 supports the Thread-Safe
Functions option.

Solaris conforms to IEEE

Standard 1003.1-1990, as amended
by the IEEE Standard for Real-time
Extensions approved Sept. 1993 and
for Thread Extensions approved June
1995.

Terminal special characters can

be disabled using this character
value.

* _POSIX_CHOWN_RESTRICTEdnd _POSIX_NO_TRUNGpply to all files on a native SunOS filesystem. _POSIX_VDISABLE

applies to terminal files.

POSIX.1

119

8

POSIX.1Section 3, Process Primitives

120

3.1.1.2 Process Creation: Description

P. For the SCHED_FIFO and SCHED_RR scheduling policies, the child process
shall inherit the policy and priority settings of the parent process during a
fork() function. For other scheduling policies, the policy and priority settings on
fork() are implementation-defined.

S. All new child processes inherit the parent’s scheduling policy and
parameters.

P. The child process has its own copy of the parent’s open directory streams.
Each open directory stream in the child process may share directory stream
positioning with the corresponding directory stream of the parent.

S. Each open directory stream in the child process does not share directory
stream positioning with the corresponding directory stream of the parent.

3.1.1.4Errors

P. For each of the following conditions, if the condition is detected, the fork()
function shall return -1 and set errno to the corresponding value:

[ENOMEM] The process requires more space than the system
is able to supply.

S. The fork() function detects the conditions and returns the corresponding errno
value for [ENOMEM].

3.1.2.2 Execute aFile: Description

P. The argument file is used to construct a pathname that identifies the new
process image file. If the file argument contains a slash character, the file
argument shall be used as the pathname for this file. Otherwise, the path prefix
for this file is obtained by a search of the directories passed as the environment
variable PATH (see 2.6). If this environment variable is not present, the results
of the search are implementation-defined.

S. When PATH is not set, SunOS 5.5 supplies a default search path:

Standards Conformance Guide—November 1995

00
1]

/usr/sbin:/usr/bin (if the real or effective UID is root.)
/usr/bin; (if neither the real nor the effective UID is that of root.)

P. For the SCHED_FIFO and SCHED_RR scheduling policies, the policy and
priority settings shall not be changed by a call to an exec function. For other
scheduling policies, the policy and priority settings on exec are implementation-
defined.

S. For all scheduling policies, the policy and scheduling parameters are not
changed by a call to an exec function.

P. Any outstanding asynchronous I/0 operations may be canceled.Those
asynchronous I/0 operations which are not canceled shall complete as if the
exec function had not yet occurred, but any associated signal notifications shall
be suppressed. It is unspecified whether the exec function itself blocks awaiting
such 170 completion. In no event, however, shall the new process image
created by the exec function be affected by the presence of outstanding
asynchronous I/0 operations at the time the exec function is called. Whether
any 1/0 is canceled, and which 1/0 may be canceled upon exec is
implementation-defined.

S. Any cancelable asynchronous 1/0 operations are canceled.

3.1.2.4ExecuteaFile:Errors

P. If any of the following conditions occur, the exec functions shall return -1 and
set errno to the corresponding value:

[EACCES] Search permission is denied for a directory
listed in the path prefix of the new process
image file, or the new process image file denies
execution permission, or the new process image
file is not a regular file and the implementation
does not support execution of files of its type.

S. Only regular files are supported by the exec function.

P. For each of the following conditions, if the condition is detected, the exec
functions shall return -1 and return the corresponding value to errno:

POSIX.1 121

122

[ENOMEM] The new process image requires more memory
than is allowed by the hardware or system-
imposed memory management constraints.

S. The exec functions detect the conditions and return the corresponding errno
value for ENOMEM].

3.2.1.2 Wait for Process Termination: Description

wait()

P. An implementation may define additional circumstances under which wait() or
waitpid() reports status. In these cases the interpretation of the reported status is
implementation-defined.

S. A child that is being traced stops because it has reached a break point.
WIFSTOPPED (status) will be true and WSTOPSIG (status) will yield the signal
that caused the process to stop.

If a child that was formerly stopped by Job Control was continued,
WIFCONTINUED (status) will be true.

The above will not be true unless the process is tracing a child. See the
proc(4) man page for more information.

3.2.2.2 Terminate aProcess: Description

exit()
P. Children of a terminated process shall be assigned a new parent process ID,
corresponding to an implementation-defined system process.

S. The child’s parent process ID becomes 1 which is the process ID of the init
process.

P. Any outstanding cancelable asynchronous 1/0 operations may be canceled.
Those asynchronous I/0 operations which are not canceled shall complete as if
the _exit() operation had not yet occurred, but any associated signal
notifications shall be suppressed. The _exit() operation itself may or may not
block awaiting such 1/0 completion. Whether any 1/0 is canceled, and which
/0 may be canceled upon _exit(), is implementation-defined.

S. Any cancelable asynchronous I/0 operations are canceled.

Standards Conformance Guide—November 1995

00
1]

3.3.1.1Signal Names

<signal.h>
P. An implementation may define additional signals that may occur in the system.

S. The additional signals generated are:

SIGILL SIGTRAP
SIGEMT SIGBUS
SIGSYS SIGPWR
SIGWINCH SIGURG
SIGPOLL SIGVTALRM
SIGPROF SIGXCPU
SIGXFSZ SIGIOT
SIGLOST SIGIO
SIGFREEZE SIGTHAW

P. It is implementation-defined whether the real-time signal behavior specified in
this section—specifically, the queueing of signals and the passing of
application defined values—is supported for the signals defined in Table 3-1,
Table 3-2 or Table 3-3 [of the standard].

S. The passing of application-defined values is supported for all signals. The
gueueing of signals is supported for all signals generated via sigqueue() or
requested via a sigevent.sigev_notify value of SIGEV_SIGNAL.

3.3.1.2Signal Generationand Delivery

Signals
P. If a subsequent occurrence of a pending signal is generated, it is
implementation-defined as to whether the signal is delivered more than once.

S. Subsequent occurrences of signals are delivered more than once if the
subsequent signal was generated via sigqueue() or requested via a
sigevent.sigev_notify value of SIGEV_SIGNAL.

P. An implementation shall document any conditions not specified by this
standard under which the implementation generates signals.

S. Conditions under which these additional signals are generated are:

POSIX.1 123

Signal Condition

SIGTRAP Trace/breakpoint Trap
SIGWINCH Window size change
SIGEMT Emulation trap
SIGURG Urgent socket condition
SIGPOLL Pollable event

SIGBUS Bus error

SIGVTALRM Virtual timer expired
SIGILL Illegal instruction
SIGSYS Bad system call
SIGPROF Profiling timer expired
SIGXCPU CPUtime limit exceeded
SIGPWR Power fail/restart
SIGXFSZ File size limit exceeded
SIGIO On asynchronous 170
SIGLOST When a lock is broken. (See lockd(8))
SIGFREEZE Checkpoint freeze
SIGTHAW Checkpoint thaw

P. If sigev_notify_attributes is NULL, the behavior shall be as if the thread were
created with the detachstate attribute set to
PTHREAD_CREATE_DETACHED. Supplying an attributes structure with a
detachstate attribute of PTHREAD_CREATE_JOINABLE results in
undefined behavior. The signal mask of this thread is implementation-defined.

S. The signal mask is indeterminate.

P. Either the implementation shall support the behavior specified above or the
implementation shall treat the SIGEV_THREAD value as an error.

S. timer_create() does not support this value of sigev_notify attributes

3.3.1.3Signal Actions

P. The following values are defined for si_code:

SI_USER The signal was sent by the kill() function. The
implementation may set si_code to SI_USER if
the signal was sent by the raise() or abort()
functions defined in the C Standard {2} or any

124 Standards Conformance Guide—November 1995

similar functions provided as implementation
extensions.

SI_QUEUE The signal was sent by the sigqueue() function.

SI_TIMER The signal was generated by the expiration of a
timer set by timer_settime().

SI_ASYNCIO The signal was generated by the completion of an

asynchronous 1/0 request.

SI_MESGQ The signal was generated by the arrival of a
message on an empty message queue.

If the signal was not generated by one of the functions or events listed above,
the si_code shall be set to an implementation-defined value that is not equal to
any of the values defined above.

S. SunOS defines other values of si_code for particular signals. Symbols for
these values are described in the siginfo (5) manual pages. Due to
compilation namespace requirements, these symbols are not defined in the
POSIX compilation environment, and hence are not available to Strictly
Conforming Applications. Aliases for the values of si_code that begin with “SI”
are not currently available.

3.3.2.2SendaSignal toaProcess: Description

kill()

P. An implementation that provides extended security controls may impose
further implementation-defined restrictions on the sending of signals, including
the null signal.

S. Extended security controls that impose further restrictions on the sending of
signals are not provided.

3.3.3.4 Manipulate Signal Sets: Errors

P. For each of the following conditions, if the condition is detected, the
sigaddset(), sigdelset(), and sigismember() functions shall return -1 and set errno to
the corresponding value:

[EINVAL] The value of the signo argument is an invalid
or unsupported signal number.

POSIX.1 125

S. The sigaddset(), sigdelset(), and sigismember() functions all detect [EINVAL].

3.3.4.2 Examine and Change Signal Action: Description

P. If SA_SIGINFO is not set in sa_flags, then the disposition of subsequent
occurrences of sig when it is already pending is implementation-defined; and the
signal-catching function shall be invoked with a single argument.

S. If SA_SIGINFO is not set in sa_flags, subsequent occurrences of sig, when it
is already pending and queued, are quietly discarded.

3.3.6.4 Examine Pending Signals: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the sigpending() function. Some errors may be
detected under conditions that are unspecified by this part of ISO/IEC 9945.

S. The sigpending() function detects [EFAULT].

3.3.8.2Synchronously Accept a Signal: Description

P. If prior to the call to sigwait() there are multiple pending instances of a single
signal number, it is implementation-defined whether upon successful return there
are any remaining pending signals for that signal number.

S. Clears only the first instance of the signal. Other instances are left pending.

POSIX.1Section4, Process Environment

126

4.2.4.4 GetUser Name: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the getlogin() function. Some errors may be detected
under conditions that are unspecified by this part of ISO/IEC 9945.

S. The system detects no errors for getlogin().

Standards Conformance Guide—November 1995

00
1]

4.4.1.2 Get System Name: Description

<sys/utsname.h >

P. The structure utsname is defined in the header <sys/utsname.h >, and
contains at least the members shown in Table 4-1 of the standard. (Refer to the
standard for the table members.)

Each of these data items is a null-terminated character array. The format of
each member is implementation-defined.

S. The format of the members found in <sys/utsname.h > for utsname is type
char [257].

4.5.1.4Get System Time: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the time() function. Some errors may be detected
under conditions that are unspecified by this part of ISO/IEC 9945.

S. No additional errors are detected for the time() function.

4.6.1.4EnvironmentVariables: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the getenv() function. Some errors may be detected
under conditions that are unspecified by this part of ISO/IEC 9945.

S. No error conditions are detected for the getenv() function.

4.7.1.4 Generate Terminal Pathname: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the ctermid() function. Some errors may be detected
under conditions that are unspecified by this part of ISO/IEC 9945.

S. No error conditions are detected for the ctermid() function.

POSIX.1 127

4.7.2.4 Determine Terminal Device Name: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the t tyname() or isatty() functions. Some errors may
be detected under conditions that are unspecified by this part of ISO/IEC 9945.

S. No error conditions are detected for the ttyname() or isatty() functions.

POSIX.1Section5, Filesand Directories

128

5.1.1 Format of Directory Entries

P. The internal format of directories is unspecified.

S. For each directory a link count is maintained. This is the total number of
directories that are listed in the directory, including “.” and *“..”.

5.1.2.4 Directory Operations: Errors

P. For each of the following conditions, when the condition is detected, the
opendir() function shall return a value of NULL and set errno to the
corresponding value:

[EMFILE] Too many file descriptors are currently open for
the process.

[ENFILE] Too many file descriptors are currently open in
the system.

S. The opendir() function detects the conditions and returns the corresponding
errno values for both [EMFILE] and [ENFILE].

P. For each of the following conditions, when the condition is detected, the
readdir() function shall return a value of NULL and set errno to the
corresponding value:

[EBADF] The dirp argument does not refer to an open
directory system.

S. If the dirp argument passed to readdir() does not point to an open directory
stream, Solaris returns a NULL pointer and set errno to [EBADF].

Standards Conformance Guide—November 1995

8

P. For each of the following conditions, when the condition is detected, the
closedir() function shall return a value of -1 and set errno to the corresponding
value:

[EBADF] The dirp argument does not refer to an open
directory stream.

S. For the closedir() function, Solaris may detect the condition and set errno
value to [EBADF].

5.2.2.4 GetWorking Directory Pathname: Errors

P. For each of the following conditions, if the condition is detected, the getcwd()
function shall return a value of NULL and set errno to the corresponding value:

[EACCES] Read or search permission was denied for a
component of the pathname.

S. For the getcwd() function, Solaris detects the conditions and returns the
corresponding errno value for [EACCES].

5.3.1.20penaFile: Description

O_CREAT
P. The file’s group ID shall be set to the group ID of the directory in which the
file is being created or to the effective group ID of the process.

S. When O_CREAT is set in oflag and bits in mode other than the file
permission bits are set, the files group ID is set to the group ID of the parent
directory if the S_ISGID bit is set in the directory in which the file is being
created. If the S_ISGID bit is set in the parent directory, the group ID of the file
is inherited from the parent directory; otherwise it is set to the group ID of the
calling process.

O_TRUNC

P. If the file exists and is a regular file, and the file is successfully opened
O_RDWR or O_WRONLY, it shall be truncated to zero length and the mode
and owner shall be unchanged by this function call. O_TRUNC shall have no
effect on FIFO special files or directories. Its effect on other file types is
implementation-defined. The result of using O_TRUNC with O_RDONLY is
undefined.

POSIX.1 129

1]l
0]

S. O_TRUNC has no effect on other file types.

5.3.3.2SetFile Creation Mask: Description

umask()

P. The umask() routine sets the process’s file mode creation mask to cmask and
returns the previous value of the mask. Only the file permission bits of cmask
are used; the meaning of the other bits is implementation-defined.

S. The implementation ignores all but the file permission bits.

5.3.4.2LinktoaFile: Description

P. The existing argument shall not name a directory unless the user has
appropriate privileges and the implementation supports using link() on
directories.

S. Linking of directories is supported if the user has appropriate privileges.

P. The implementation may require that the calling process has permission to
access the existing file.

S. Solaris does not require that the calling process have permission to access the
existing file when linking files.

5.4.1.2 MakeaDirectory: Description

mkdir()
P. When bits in mode other than the file permission bits are set, the meaning of
these additional bits is implementation-defined.

S. The implementation ignores all but the file permission bits.

P. The directory’s group ID shall be set to the group ID of the directory in
which the directory is being created or to the effective group ID of the process.

S. A new directory’s group ID is set to the group ID of the parent directory when
the S_ISGID bit is set in the parent directory; otherwise it is set to the group ID
of the calling process. The newly created directory inherits the S_ISGID bit.

130 Standards Conformance Guide—November 1995

00
1]

5.4.2.2 Make aFIFO Special File: Description

mkfifo()
P. When bits in mode other than the file permission bits are set, the meaning of
these additional bits is implementation-defined.

S. The implementation ignores all but the file permission bits.

P. The group ID of the FIFO shall be set to the group ID of the directory in
which the FIFO is being created or to the effective group ID of the process.

S. If the S_ISGID bit is set in the parent directory, the group ID of the FIFO is
inherited from the parent directory; otherwise it is set to the group ID of the
calling process.

5.5.1.2Remove Directory Entries: Description

P. The path argument shall not name a directory unless the process has
appropriate privileges and the implementation supports using unlink() on
directories.

S. unlink() is supported if the user has the appropriate privileges.

5.5.1.4Remove Directory Entries: Errors

P. If any of the following conditions occur, the unlink() function shall return -1
and set errno to the corresponding value:

[EBUSY] The directory named by the path argument cannot
be unlinked because it is being used by the system
or another process and the implementation
considers this to be an error.

S. unlink() supports detection of [EBUSY].

5.5.2.2RemoveaDirectory: Description

rmdir()

P. If the named directory is the root directory or the current working directory
of any process, it is unspecified whether the function succeeds or whether it
fails and sets errno to [EBUSY].

POSIX.1 131

1]l
0]

S. If an attempt is made to rmdir() the current working directory of the process,
the system returns [EBUSY].

5.5.2.4RemoveaDirectory:Errors

P. If any of the following conditions occur, the rmdir() function shall return -1
and set errno to the corresponding value:

[EBUSY] The directory named by the path argument cannot
be removed because it is being used by another
process and the implementation considers this to
be an error.

S. If the directory indicated in the call to rmdir() is a mount point for a mounted
file system, rmdir() sets errno to [EBUSY] and returns -1.

5.5.3.2RenameaFile: Description

P. Write access permission is required for the directory containing old and the
directory containing new. If the old argument points to the pathname of a
directory, write access permission may be required for the directory named by
old, and, if it exists, the directory named by new.

S. In a call to rename(), if the old argument points to the pathname of a directory,
write access permission is not required for the directory named by old and if it
exists, for the directory named by new.

5.5.3.4RenameakFile:Errors

P. If any of the following conditions occur, the rename() function shall return -1
and set errno to the corresponding value:

[EBUSY] The directory named by old or new cannot
be renamed because it is being used by the
system or another process and
the implementation considers this to be an error.

S. [EBUSY] is returned only if the new directory is a mount point for a mounted
file system.

132 Standards Conformance Guide—November 1995

00
1]

5.6.1.2File Characteristics: File Modes

<sys/stat.h >

P. Implementations may ORother implementation-defined bits into S_IRWXU,
S_IRWXG, and S_IRWXO, but they shall not overlap any of the other bits
defined in this standard.

S. The implementation also provides a bit identified by S_ISVTX. For a
directory, this bit determines whether or not an unprivileged user may delete
or rename another user’s files from that directory (refer to chmod(2) for other
files types).

5.6.2.2 GetFile Status: Description

stat(), fstat()

P. An implementation that provides additional or alternate file access control
mechanisms may, under implementation-defined conditions, cause the stat() and
fstat() functions to fail.

S. No other conditions cause these functions to fail.

5.6.3.4 Check File Accessibility: Errors

P. For each of the following conditions, if the condition is detected, the access()
function shall return -1 and set errno to the corresponding value:

[EINVAL] An invalid value was specified for amode.

S. For the access() function, Solaris detects the condition and returns the
corresponding errno value for [EINVAL].

5.6.4.2 Change File Modes: Description

P. Additional implementation-defined restrictions may cause the S_ISUID and
S_ISGID bits in mode to be ignored.

S. If the process has access permissions, there are no implementation-defined
conditions under which this would be denied.

P. The effect on file descriptors for files open at the time of the chmod() or
fchmod() function is implementation-defined.

POSIX.1 133

134

S. Access permissions for open file descriptors that refer to files on local (UFS)
mounted file systems are not affected by chmod() or fchmod(). Access
permissions for descriptors referring to files on other file systems may change
as a result of a successful chmod() or fchmod() call.

5.6.5.2Change Ownerand Group ofaFile: Description

chown()

P. If the path argument refers to a regular file, the set-user-1D (S_ISUID) and set-
group-1D (S_ISGID) bits of the file mode shall be cleared upon successful
return from chown(), unless the call is made by a process with appropriate
privileges, in which case it is implementation-defined whether those bits are
altered.

S. The S_ISUID and S_ISGID bits of the file mode remain unaltered when a call
is made by a process with the appropriate privilege.

5.6.5.4 Change Ownerand Group ofaFile: Errors

P. For each of the following conditions, if the condition is detected, the chown()
function shall return -1 and set errno to the corresponding value:

[EINVAL] The owner of group ID supplied is invalid and not
supported by the implementation.

S. The chown() function does not detect [EINVAL].

5.7.1.4 Get Configurable Pathname Variables: Errors

P. If any of the following conditions occur, the pathconf() function shall return -
1 and set errno to the corresponding value:

[EINVAL] The value of name is invalid.

S. For the pathconf() function, Solaris does detect the condition and returns the
corresponding errno value for [EINVAL].

P. For each of the following conditions, if the condition is detected, the
pathconf() function shall return -1 and set errno to the corresponding value:

Standards Conformance Guide—November 1995

[EACCES] Search permission is denied for a component of the
path prefix.
[ENAMETOOLONG] The length of the path argument exceeds

{PATH_MAX]}, or a pathname component is longer
than {NAME_MAX} while { POSIX_NO_TRUNC}

is in effect.

[ENOENT] The named file does not exist, or the path
argument points to an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

S. For the pathconf() function, Solaris detects the conditions and returns the
corresponding errno value for [EACCES], [ENAMETOOLONG], [ENOENT]
and [ENOTDIR].

P. For each of the following conditions, if the condition is detected, the
fpathconf() function shall return -1 and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The implementation does not support an
association of the variable name with the specified
file.

S. For the fpathconf() function, Solaris detects the conditions and returns the
corresponding errno value for [EBADF] and [EINVAL].

POSIX.1Section 6, Inputand Output Primitives

6.3.1.2 CloseaFile: Description

P. When there is an outstanding cancelable asynchronous 1/0 operation
against fildes when close() is called, that 1/0 operation may be canceled. An
1/0 operation which is not canceled completes as if the close() operation had
not yet occurred. All operations which are not canceled shall complete as if the
close() blocked until the operations completed. The close() operation itself need
not block awaiting such 1/0 completion. Whether any 1/0 operation is
canceled, and which 170 operation may be canceled upon close(), is
implementation-defined.

S.The Asynchronous Input and Output option is not supported in Solaris 2.5;
hence, there is no implementation-specific behavior.

POSIX.1 135

1]l
0]

6.4.1.2Read fromaFile: Description

read()

P. If a read() is interrupted by a signal after it has successfully read some data,
either it shall return -1 with errno set to [EINTR], or it shall return the number
of bytes read.

S. If a read() is interrupted by a signal after is has successfully read some data, it
returns the number of bytes read.

P. If the file refers to a device special file, the result of subsequent read()
requests after a read() has returned an EOF indication, is implementation-defined.

S. The result of this request is device dependent for standard tty devices. See
Section 4 of the SunOS 5.5 Reference Manual for more information.

P. If the value of nbyte is greater than {SSIZE_MAX}, the result is
implementation-defined.

S. Given a valid buffer, nbyte bytes will be transferred.

6.4.2.2 WritetoaFile: Description

write()

P. If write() is interrupted by a signal after it successfully writes some data,
either it shall return -1 with errno set to [EINTR], or it shall return the number
of bytes written.

S. If write() is interrupted by a signal after it successfully writes some data, it
returns the number of bytes read.

P. If the value of nbyte is greater than {SSIZE_MAX}, the result is
implementation-defined.

S. The write will not succeed; it returns -1 and sets errno to [EINVAL].

6.5.2.2 File Control: Description

P. If the system detects that sleeping until a locked region is unlocked would
cause a deadlock, the fcntl() function shall fail with an [EDEADLK] error.

S. The fentl() function detects [EDEADLK].

136 Standards Conformance Guide—November 1995

00
1]

6.5.3.2 Reposition Read/Write File Offset: Description

Iseek()
P. Some devices are incapable of seeking. The behavior of the Iseek() function on
such devices is implementation-defined.

S. On such devices, Iseek() returns -1 with errno set to [EINVAL].

6.6 File Synchronization

P. The hardware characteristics upon which the implementation relies to assure
that data successfully transferred for synchronized 1/0 operations are
implementation-defined.

S. The data is considered to be successfully transferred when the device driver
operation completes successfully.

6.6.1.2 Synchronize aFile’s State: Description

P. The fsync() function can be used by the application to indicate that all data
for the open file description named by fildes is to be transferred to the storage
device associated with the file described by fildes, in an implementation-defined
manner.

The conformance document shall include sufficient information for the user to
determine whether it is possible to configure an application and installation to
ensure that the data is stored with the degree of required stability for the
intended use.

S. For files in a ufs filesystem, the physical transfer to the underlying device
must successfully complete.

6.7.1.1 Data Definitions for Asynchronous Input and Output:
Asynchronous I/O Control Block
P. Under implementation-defined circumstances, such as operation on a
multiprocessor or when requests of differing priorities are submitted at the

same time, the ordering restriction may be relaxed; the implementation shall
document under what circumstances the ordering restriction may be relaxed.

POSIX.1 137

S. The Asynchronous Input and Output option is not supplied in Solaris;
hence, there is no implementation-specific behavior.

P. The relative priority of asynchronous 1/0 and synchronous 1/0 is
implementation-defined. If POSIX_PRIORITIZED is defined, the implementation
shall define for which files 1/0 prioritization is supported.

S. The Asynchronous Input and Output option is not supplied in Solaris;
hence, there is no implementation-specific behavior.

6.7.7.2 Cancel Asynchronous I/O Request: Description

aio_cancel()
P. It is implementation-defined which operations are cancelable.

S. The Asynchronous Input and Output option is not supplied in Solaris;
hence, there is no implementation-specific behavior.

POSIX.1Section 7, Device- and Class-Specific Functions

138

7.1 General Terminal Interface

terminal interface

P. It is implementation-defined whether this interface supports network
connections or synchronous ports or both. The conformance document shall
describe which device types are supported by these interfaces.

S. SunSoft supports these interfaces for terminal devices, terminal multiplexers,
and terminal pseudo-devices.

7.1.1.3The Controlling Terminal

controlling terminal

P. The controlling terminal for a session is allocated by the session leader in an
implementation-defined manner. If a session leader has no controlling terminal,
and opens a terminal device file that is not already associated with a session
without using the O_NOCTTY option, it is implementation-defined whether the
terminal becomes the controlling terminal of the session leader.

Standards Conformance Guide—November 1995

8

S. If a session leader has no controlling terminal and opens a terminal device
file that is not already associated with a session without using the O_NOCTTY
option, the terminal then becomes the controlling terminal of the session leader.

7.1.1.5 Input Processingand Reading Data

input queue

P. The system may impose a limit, {(MAX_INPUT}, on the number of bytes that
may be stored in the input queue. The behavior of the system when this limit
is exceeded is implementation-defined.

S. If the data in the driver’s input queue exceeds { MAX_INPUT}, all the
characters saved in the stream up to that point are discarded without notice.
However, if IMAXBEL is set and the data in the driver input queue exceeds

{ MAX_INPUT}, the ASCII BEL character is echoed. Further input will not be
stored, and any input already present in the input stream is not disturbed.

7.1.1.6 Canonical Mode Input Processing

{MAX_CANON}

P. If {MAX_CANON} is defined for this terminal device, it is a limit on the
number of bytes in a line. The behavior of the system when this limit is
exceeded is implementation-defined.

S. If the data in the line discipline buffer exceeds {MAX_CANON} in the
canonical mode and IMAXBEL is not set, all the characters saved in the buffer
up to that point are discarded without any notice. However, if IMAXBEL is set
and the data in the line discipline buffer exceeds {MAX_CANON}, the ASCII
BEL character is echoed. Further input will not be stored, and any input
already present in the input stream is not disturbed.

7.1.1.7 Noncanonical Mode Input Processing

MIN
P. If MIN is greater than {MAX_INPUT}, the response to the request is
implementation-defined.

S. The maximum value that can be stored for MIN in ¢_cc [VMIN] is 255,
which is less than {MAX_INPUT} (512). The MIN value can never exceed
{MAX_INPUT}.

POSIX.1 139

1]l
0]

7.1.1.8 Writing Dataand Output Processing

P. The implementation may provide a buffering mechanism; as such, when a call
to write() completes, all of the bytes written have been scheduled for
transmission to the device, but the transmission will not necessarily have
completed.

S. Solaris provides a buffering mechanism for a write() to a terminal device. The
write() system call may complete and return a value to the user program, but
the data sent downstream may flow control on one or more streams modules.

7.1.1.9 Special Characters

START, STOP
P. It is implementation-defined whether the START and STOP characters can be
changed.

S. The START and STOP characters can be changed.

IEXTEN

P. A special character is recognized not only by its value, but also by its context;
for example, an implementation may define multi-byte sequences that have a
meaning different from the meaning of bytes when considered individually.
Implementations may also define additional single-byte functions. These
implementation-defined multibyte or single byte functions are recognized only if
the IEXTEN flag is set; otherwise, data is received without interpretation,
except as required to recognize the special characters defined in the subclass
(7.1.1.9).

S. SunOS 5.5 does not recognize any multibyte input control sequences. The
following single-byte special characters are recognized when IEXTEN is set:

WERASE Erase last word typed

REPRINT Reprint the current input

DISCARD Discard output

LNEXT Ignore any special meaning of the next character typed

140 Standards Conformance Guide—November 1995

00
1]

7.1.2.2 Input Modes

c_iflag
P. In contexts other than asynchronous serial data transmission the definition of
a break condition is implementation-defined.

S. The break condition is not defined for contexts other than asynchronous
serial data.

P. The precise conditions under which STOP and START characters are
transmitted are implementation-defined.

S. A STOP character is transmitted when the input data exceeds the high water
mark of the queue. A START character is transmitted when the input data falls
below the low water mark of the queue. If it is not a STREAMS device, the
results are device-dependent.

P. The initial input control value after open() is implementation-defined.

S. The initial setting of the input mode flag is configurable. For more
information, see the termio(7) man page.

7.1.2.3 Output Modes

P. If OPOST is set, output data is processed in an implementation-defined fashion
so that lines of text are modified to appear appropriately on the terminal
device, otherwise characters are transmitted without change.

S. The SunOS 5.5 operating system supports the following output control mode
masks which are enabled by OPOST:

OLCUC Map lower case to upper case on output.
ONLCR Map NL to CR-NL on output.
OCRNL Map CR to NL on output.
ONOCR No CR output at column 0.
ONLRET NL performs CR function.
OFILL Use fill characters for delay.
OFDEL Fill is DEL, else NUL.
NLDLY Select new line delays:

NLO No new line delay.

NL1
CRDLY Select carriage-return delays:

CRO No carriage return delay.

POSIX.1 141

1]l
0]

CR1
CR2
CR3
TABDLY Select horizontal-tab delays or expansion:
TABO No horizontal tab delay.
TAB1
TAB2
TAB3
XTABS Expand tabs to spaces.
BSDLY Select backspace delays:
BSO No backspace delay.
BS1
VTDLY Select vertical-tab delays:
VTO No vertical tab delay.
VT1
FFDLY Select form-feed delays:
FFO No form feed delay.
FF1
open()

P. The initial output control value after open() is implementation-defined.

S. The initial setting for the output control flag oflag is configurable. For more
information, see the termio(7) man page.

7.1.2.4 Control Modes

open()
P. The initial hardware control value after open() is implementation-defined.

S. The initial hardware control value after open() is configurable. For more
information, see the termio(7) man page.

7.1.2.5Local Modes

IEXTEN
P. If IEXTEN is set, implementation-defined functions shall be recognized from
the input data.

S. If IEXTEN and ICANON are set, the WERASE, REPRINT, DISCARD, and
LNEXT functions are recognized from the input data.

142 Standards Conformance Guide—November 1995

8

P. It is implementation-defined how IEXTEN being set interacts with ICANON,
ISIG,IXON, or IXOFF. If IEXTEN is not set, then implementation-defined
functions shall not be recognized, and the corresponding input characters shall
be processed as described for ICANON, ISIG, IXON, and IXOFF.

S. IXON, ISIG, and IXOFF flags are processed as they are defined in the
standard, when IEXTEN is on or off.

In addition to the local mode masks listed in the standard, the SunOS 5.5
operating system supports the following functions:

XCASE Canonical upper/lower presentation

ECHOCTL Echo control characters as ‘*C’, delete character as ‘?’.
ECHOPRT Echo erase character as character erased.

ECHOKE BSSP_BS erase entire line on line Kill.

FLUSHO Output is being flushed.

PENDIN Retype pending input at next read or input character.

P. The initial control value after open() is implementation-defined.

S. The initial setting for the local mode flag Iflag is configurable. For more
information, see the termio(7) man page.

7.1.2.6 Special Control Characters

P. The initial values of all control characters are implementation-defined.

S. The initial values of control characters are configurable and are set when the
system boots. See the termio(7) man page for more information.

7.1.3.4Baud Rate Functions: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the cfgetispeed(), cfgetospeed(), cfsetispeed() or
cfsetospeed() functions. Some errors may be detected under conditions that are
unspecified by this part of ISO/IEC 9945.

S. The cfgetispeed(), cfgetospeed() cfsetispeed() and cfsetospeed() functions do not
return any additional errors.

POSIX.1 143

7.2.1.2 Get and Set State: Description

P. If the input and output baud rates differ and are a combination that is not
supported, neither baud rate is changed.

S. Differing input and output baud rates are not supported.

7.2.2.2 Line Control Functions: Description

tesendbreak(), tedrain(), teflush(), teflow()

P. If the terminal is not using asynchronous serial data transmission, it is
implementation-defined whether the tcsendbreak() function sends data to generate
a break condition (as defined by the implementation) or returns without taking
any action.

S. On non-asynchronous transmissions, tcsendbreak() does not send a break; it
simply returns.

tcsendbreak()
P. If duration is not zero, it shall send zero-valued bits for an implementation-
defined period of time.

S. For a delay of n # 0, tcsendbreak()is equivalent to tcdrain().

POSIX.1Section 8, Language-Specific Services for the C Programming

Language

144

8.1.1 Referenced C Language Routines, Extensionsto Time Functions

TZ
P. If TZ is of the first format (i.e., if the first character is a colon), the characters
following the colon are handled in an implementation-defined manner.

S. The string following the colon refers to the file
/usr/share/lib/zoneinfo/ <string>. This file contains a timezone
specification.

Standards Conformance Guide—November 1995

00
1]

8.1.2.2 Extensionsto setlocale(): Description

setlocale()
P. In addition to the value for “category” specified in the standard, the
implementation may define additional categories.

S. In addition to the categories (environment variables) described in the
standard, the SunOS 5.5 operating system supports the following:

LC_MESSAGES Allows for display of alternate message texts

P. If no nonnull environment variable ($LC_ALL, $LANG, or the environment
variable corresponding to the category being set) is present to supply a value
for “locale” it is implementation-defined whether setlocale() sets the specified
locale category to a systemwide default value or to “C or to POSIX”.

S. The default locale is “C”.

P. The possible actual values of the environment variables are implementation-
defined and should appear in the system documentation.

S. The supported locales are “C”,“POSIX”, “de”,“fr”,“it”, “ja”, “japanese” and
“sv”. The locale name “iso_8859 1” contains only the LC_CTYPE category, and
is not an appropriate value for LC_ALL or the LANG environment variable.
Other locale names may be available due to the addition of further Sun or
third-party packages.

8.2.2.40OpenaStreamonakFile Descriptor: Errors

P. This part of ISO/IEC does not specify any error conditions that are required
to be detected for the fdopen() function. Some errors may be detected under
conditions that are unspecified by this part of ISO/IEC 9945.

S. The fdopen() function detects no errors.

8.2.3 Interactions of Other File-Type C Functions

P. (5) Implementations shall assure that an application, even one consisting of
several processes, shall yield correct results (no data is lost or duplicated when
writing, all data is written in order, except as requested by seeks) when the

POSIX.1 145

146

rules above are followed, regardless of the sequence of handles used. When
these rules are followed, it is implementation-defined whether, and under what
conditions, all input is seen exactly once.

S. When applications follow the rules specified, all input is seen exactly once.

8.2.7.4 Stdio with Explicit Client Locking: Errors

P. Some errors may be detected under implementation-defined conditions, or as
defined by C Standard {2}.

S. The following four functions do not set any error conditions:

getc_unlocked()
getchar_unlocked()
putc_unlocked()
putchar_unlocked()

8.3.2.2Set Time Zones: Description

tzset()
P. If TZ is absent from the environment, implementation-defined default time

zone information shall be used.

S. If TZ is absent from the environment, then time zone information behaves as
though TZ were set to localtime.

8.3.4.4Find String Token: Errors

P. Some errors may be detected under implementation-defined conditions.

S. Solaris 2.5 does not set any error conditions.

8.3.5.4 ASCII Time Representation: Errors

P. Some errors may be detected under implementation-defined conditions, or as
defined by C Standard {2}.

S. Solaris 2.5 does not set any error conditions.

Standards Conformance Guide—November 1995

00
1]

8.3.6.4 Current Time Representation: Errors

P. Some errors may be detected under implementation-defined conditions, or as
defined by C Standard {2}.

S. Solaris 2.5 does not set any error conditions.

8.3.7.4 Coordinated Universal Time: Errors
P. Some errors may be detected under implementation-defined conditions.

S. Solaris 2.5 does not set any error conditions.

8.3.8.4Local Time: Errors
P. Some errors may be detected under implementation-defined conditions.

S. Solaris 2.5 does not set any error conditions.
POSIX.1Section 9, System Databases

9.1 System Databases

letc/passwd
P. If the initial user program field is null, the system default is used.

S. If the user program field is null, the default program is /usr/bin/sh

P. If the initial working directory field is null, the interpretation of that field is
implementation-defined.

S. If the field is empty, the login fails.

9.2.1.4 Group Database Access: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the getgrgid() or getgrnam() functions. Some errors
may be detected under conditions that are unspecified by this part of ISO/IEC
9945.

S. No error conditions are detected for the getgrgid() or getgrnam() functions.

POSIX.1 147

9.2.2.4User Database Access: Errors

P. This part of ISO/IEC 9945 does not specify any error conditions that are
required to be detected for the getpwuid() or getpwnam() functions. Some errors
may be detected under conditions that are unspecified by this part of ISO/IEC
9945,

S. No errors conditions are detected for the getpwuid() or getpwnam() functions.

POSIX.1Section 10, Data Interchange Format

148

10.1 Archive/Interchange File Format

P. The format-creating utility is used to translate from the file system to the
formats defined in this clause. The format-reading utility is used to translate
from the formats defined in this clause to a file system. The interface to these
utilities, including their name or names, is implementation-defined.

S. The cpio utility, when used with certain options, can be used to create and
read these formats. For more information, see the cpio man page.

10.1.1 Extendedtar Format

P. If an implementation supports the use of characters outside the portable
filename character set in names for files, users, and groups, one or more
implementation-defined encodings of these characters shall be provided for
interchange purposes.

S. The use of all 8-bit characters is supported (except NULL and ‘/’) in names
for files, and all 8-bit characters (except NULL and colon) in hames for users
and/or groups. Characters are used in filenames exactly as they are read from
the archive.

P. If a file name is found on the medium that would create an invalid file name,
the implementation shall define if the data from the file is stored on the file
hierarchy and under what name it is stored.

S. Any name that can be stored in a tar archive is interpreted as a valid file
name.

Standards Conformance Guide—November 1995

00
1]

10.1.2.1 Header

P. c_rdev shall contain implementation-defined information for character or block
special files.

S. The c_rdev field contains devmajor/devminor device numbers. It is a 6- digit
octal number and calculated as the major device number left-shifted by 8 ORed
with the minor device number.

10.1.2.2File Name

P. If a file name is found on the medium that would create an invalid
pathname, the implementation shall define if the data from the file is stored on the
file hierarchy and under what name it is stored.

S. All names will be legal in the file hierarchy.

P. If an implementation supports the use of characters outside the portable
filename character set in names for files, users, and groups, one or more
implementation-defined encodings of these characters shall be provided for
interchange purposes.

S. The use of all 8-bit characters is supported (except NULL and ‘/’) in names
for files, and all 8-bit characters (except NULL and colon) in nhames for users
and/or groups. Characters are used in file names exactly as they are read from
the archive.

10.1.3 Multiple Volumes

archive/interchange file format
P. The format-reading utility shall, in an implementation-defined manner,
determine what file to read as the next file.

S. The format reading utility opens /dev/tty and prompts the user for the
next volume when an EOF is encountered.

POSIX.1 149

8

POSIX.1Section 11, Synchronization

11.2.3.2 Initialize/OpenaNamed Semaphore: Description

P. If name does not begin with the slash character, the effect is implementation-
defined. The interpretation of slash characters other than the leading slash
character in name is implementation-defined.

S. The Semaphore option is not supplied in Solaris 2.5; hence, there is no
implementation-specific behavior.

11.3.1.2 Mutex Initialization Attributes: Description

P. Additional attributes, their default values, and the names of the associated
functions to get and set those attribute values are implementation-defined.

S. There are no additional attributes in Solaris 2.5.

11.4.1.2 Condition Variable Initialization Attributes: Description

P. Additional attributes, their default values, and the names of the associated
functions to get and set those attribute values are implementation-defined.

S. There are no additional attributes in Solaris 2.5.

POSIX.1Section 12, Memory Management

150

P. Memory locking guarantees the residence of portions of the address space. It
is implementation-defined whether locking memory guarantees fixed translation
between virtual addresses (as seen by the process) and physical addresses.

S. Memory-locking does not lock in translation.

Standards Conformance Guide—November 1995

00
1]

12.1.1.2 Lock/Unlock a Process’s Address Space: Description

P. If MCL_FUTURE is specified, and the automatic locking of future mappings
eventually causes the amount of locked memory to exceed the amount of
available physical memory or any other implementation-defined limit, the
behavior is implementation-defined. The manner in which the implementation
informs the application of these situations is implementation-defined.

S. The mmap() function will return an error code of [EAGAIN] when resources
do not permit the memory to be locked. If the mapping is an attempt to grow
the stack, a SIGSEGV signal is sent to the process.

12.1.1.4Lock/Unlock aProcess’s Address Space: Errors

P. For each of the following conditions, if the condition is detected, the
mlockall() function shall return -1 and set errno to the corresponding value:

[ENOMEM] Locking all of the pages currently mapped into
the process’s address space would exceed an
implementation-defined limit on the amount of
memory that the process may lock.

S. There is no per-process limit on how much memory may be locked.

12.1.2.4Lock/Unlock a Range of Process Address Space: Errors

P. For each of the following conditions, if the condition is detected, the
mlock() function shall return -1 and set errno to the corresponding value:

[ENOMEM] Locking the pages currently mapped by
the specified range would exceed an
implementation-defined limit on the amount of
memory that the process may lock.

S. There is no per-process limit on how much memory may be locked.

12.2.1.2 Map Process Addressestoa Memory Object: Description

P. MAP_FIXED informs the system that the value of pa shall be addr exactly. It
is implementation-defined whether MAP_FIXED is supported.

POSIX.1 151

1]l
0]

S. Solaris 2.5 supports MAP_FIXED; however, its use is discouraged.

P. When MAP_FIXED is not set, the system uses addr in an implementation-
defined manner to arrive at pa.

S. The value of addr is ignored. An unmapped part of the address is allocated.

12.3.1.2 OpenaShared Memory Object: Description

P. If name does not begin with the slash character, the effect is implementation-
defined. The interpretation of slash characters other than the leading slash
character in name is implementation-defined.

S. The Shared Memory Obijects option is not supported in Solaris 2.5; hence,
there is no implementation-specific behavior.

12.4.1.1.1Process Memory Locking: Models

P. The page size is implementation-defined and is available to applications as a
compile time symbolic constant or at run-time via sysconf().

S. The page size is dependent on the underlying hardware.

POSIX.1Section 13, Execution Scheduling

13.2 SchedulingPolicies

P. Three scheduling policies are specifically required; others may be
implementation-defined.

S. No other policies are defined by the implementation.

13.2.3SchedulingPolicies: SCHED_OTHER

P. Conforming implementations shall include one scheduling policy identified
as SCHED_OTHER (which may execute identically with either the FIFO or

round robin scheduling policy). Conforming implementations shall document the
behavior of this policy as described in the definition of scheduling policy. The

152 Standards Conformance Guide—November 1995

8

effect of scheduling processes with the SCHED_OTHER policy in a system in
which other processes are executing under SCHED_FIFO or SCHED_RR shall
thus be implementation-defined.

S. The Priority Scheduling Option is not supported in Solaris 2.5, hence, there
is no implementation-specific behavior.

13.3.1.2 Set Scheduling Parameters: Description

P. The conditions under which one process has permission to change another
process’s scheduling parameters are implementation-defined.

S. If the target process has a SCHED_FIFO or SCHED_RR policy, the calling
process must have a SCHED_FIFO or SCHED_RR policy or must have a UID of
zero. If the target process has a SCHED_OTHER policy, the calling process
must have either the same effective and real user ID as the target process’s real
or saved user ID or must have a UID of zero.

P. If the current scheduling policy for the process specified by pid is not
SCHED_FIFO or SCHED_RR, including SCHED_OTHER, the result is
implementation-defined.

S. If the target process has the SCHED_OTHER policy, the time-sharing
scheduling parameters are set for the target process from the sched_param
structure.

13.3.3.2Set Scheduling Policy and Scheduling Parameters:
Description

P. The conditions under which one process has the appropriate privilege to
change another process’s scheduling parameters are implementation-defined.

S. If the target process has a SCHED_FIFO or SCHED_RR policy, the calling
process must have a SCHED_FIFO or SCHED_RR policy or must have a UID of
zero. If the target process has a SCHED_OTHER policy, the calling process
must have either the same effective and real user ID as the target process’s real
or saved user ID or must have a UID of zero.

POSIX.1 153

154

P. Implementations may require that the requesting process have permission to
set its own scheduling parameters or those of another process. Additionally,
implementation-defined restrictions may apply as to the appropriate privileges
required to set a process’s own scheduling policy, or another process’s
scheduling policy, to a particular value.

S. If the target process has the SCHED_OTHER policy, the time-sharing
scheduling parameters are set for the target process from the sched_param
structure.

13.4.1 Thread Scheduling Attributes

P. The default scheduling contention scope value is implementation-defined. The
default values of other scheduling attributes are implementation-defined.

S. The default value of the scheduling contention scope value is
PTHREAD_SCOPE_PROCESS. The default values of other scheduling attributes
are shown in table 7-1.

Table 8-1 Scheduling Attributes Default Values

Attribute Default Default Value
contentionscope Resource competition within PTHREAD_SCOPE_PROCESS
process
detachstate Joinable by other threads PTHREAD_CREATE_JOIN
stackaddr Allocated by system NULL
stacksize 1 megabyte NULL
priority Parent (calling) thread’s NULL
priority
policy Determined by system SCHED_OTHER
inheritsched Explicitly defined PTHREAD_EXPLICIT_SCHED

13.4.2 Scheduling Contention Scope

P. The system scheduling attributes of a thread created with
PTHREAD_SCOPE_PROCESS scheduling contention scope are the
implementation-defined mapping into system attribute speace of the scheduling
attributes with which the thread was created.

Standards Conformance Guide—November 1995

8

S. For Solaris, a thread with the PTHREAD_SCOPE_PROCESS scheduling
contention scope is implemented as a Solaris “unbound” thread. An unbound
thread is multiplexed with other unbound threads to run on top of a lightweight
process (LWP). The LWP is a kernel recognized entity and its default system
scheduling attributes are defined by the “TIME-SHARING CLASS” (see
priocntl(2)). An unbound thread's system scheduling attributes, once it starts
running on an LWP, are identical to the TIME-SHARING CLASS. At this point, a
thread's scheduling attributes specified at thread creation time, or subsequently
via pthread_setschedparam() , are essentially ignored in their mapping to
the system scheduling attributes, which are now completely defined by the
TIME-SHARING CLASS.

However, when the thread is not running on an LWP (i.e., is sleeping or
runnable), the thread's system scheduling behavior is impacted by the priority
specified in the attributes used to create this thread or specified via
pthread_setschedparam()

For runnable unbound threads, the highest priority runnable thread will be
dispatched to run on an LWP. A lower priority thread cannot be dispatched to
run on an LWP, while a higher priority thread is runnable and on the run
gueue.

For sleeping unbound threads, a wake-up issued on a synchronization object
will wake up the highest priority thread sleeping for that synchronization
object. Once a thread is dispatched on an LWP, its system scheduling behavior
is, as specified above, defined by the LWP's scheduling attributes.

13.4.3 Scheduling Allocation Domain

P. The choice of scheduling allocation domain size and the level of application
control over scheduling allocation domains shall be implementation-defined.
Conforming implementations may change the size of scheduling allocation
domains and the binding of threads to scheduling allocation domains at any
time.

S. In Solaris 2.5, by default, a thread can run on any of the processors in the
system. Hence, the default scheduling allocation domain size is the number of
processors online in the system. This value may be obtained via a call to
sysconf(_SC_NPROCESSORS_ONLN) This value may be changed via calls to
p_online(2) by an application with root privileges. This would affect
applications' scheduling allocation domain. An application may also change its

POSIX.1 155

scheduling allocation domain via calls to processor_bind(2) . In future
releases of Solaris, exclusive binding of processors may be available. This implies
that applications with the appropriate privileges may affect other applications’
scheduling allocation domain if they specify exclusive binding of processors.

P. For application threads with scheduling allocation domains of size greater
than one, the rules defined for SCHED_FIFO and SCHED_RR in 13.2 shall be
used in an implementation-defined manner. Each thread with system scheduling
contention scope competes for the processors in its scheduling allocation domain
in an implementation-defined manner according to its priority.

S. The scheduling policies SCHED_FIFO and SCHED_RR are optional policies
under POSIX, i.e., a POSIX conformant implementation need not support these
policies. Solaris 2.5 does not support these two policies and so this section is not
relevant. Of course, the semantics of SCHED_FIFO and SCHED_RR may be
obtained via equivalent Solaris interfaces (see priocntl(2)).

13.5.2.2 Dynamic Thread Scheduling Parameters Access: Description

P. For SCHED_OTHER, the affected scheduling parameters are implementation-
define.

S. For SCHED_OTHER, there is only one affected scheduling parameter: that is
the priority specified in the sched_param structure. See 13.4.2 for information
on the Solaris definition for the impact of this priority on threads in the
PTHREAD_SCOPE_PROCESS contention scope.

POSIX.1Section 14, Clocksand Timers

156

14.2.1.2 Clock and Timer Functions: Description

P. The resolution of any clock can be obtained by calling clock_getres(). Clock
resolutions are implementation-defined and are not settable by a process.

S. The clock resolution depends on the underlying hardware.

P. The effect of setting a clock via clock_settime() on armed pre-process timers
associated with that clock is implementation-defined.

S. The timer expires at the same moment it would have expired had the clock
not been changed.

Standards Conformance Guide—November 1995

8

P. The appropriate privilege to set a particular clock is implementation-defined.

S. Only a process with UID zero can set the clock CLOCK_REALTIME.

14.2.2.2 Create aPer-Process Timer: Description
P. The behavior for any other value of sigev_notify is implementation-defined.
S. No other value of sigev_notify is supported.

P. If clock_id specifies the CLOCK_REALTIME system clock, then the default
signal, when evp is NULL shall be SIGALRM. For any other clock, the default
signal number is implementation-defined.

S. No other clocks are supported.

14.2.4.2 Per-Process Timers: Description

P. The overrun count returned shall contain the number of extra timer
expirations which occurred between the time the signal was generated
(queued) and when it was delivered, up to but not including an implementation-
defined maximum of {DELAYTIMER_MAX}.

S. The maximum overrun count is INT_MAX.

POSIX.1Section 15, Message Passing

15.1.1. Data Definitions for Message Queues: Data Structures

P. The header <mqueue.h > shall define the following implementation-defined
types:

maqd_t Used for message queue descriptors

S. The type mqd_t is declared:

typedef void *mqd_t;
P. The header <mqueue.h > defines the following implementation-defined
structures:
struct sigevent As specified in 3.3.1

POSIX.1 157

158

S. struct sigevent {

int sigev_notify; /*notification mode */
int sigev_signo; /*signal number */
union sigval sigev_value; /* signal value */

15.2.1.2 OpenaMessage Queue: Description

P. The interpretation of slash characters other than the leading slash character
in name is implementation-defined.

S. The Message Passing Option is not supported in Solaris 2.5; hence, there is
no implementation-specific behavior.

O_CREAT
P. The “file permission bits” shall be set to the value of mode. When bits in
mode other than file permission bits are set, the effect is implementation-defined.

S. The Message Passing Option is not supported in Solaris 2.5; hence, there is
no implementation-specific behavior.

P. If attr is NULL, the message queue is created with implementation-defined
default message queue attributes.

S. The Message Passing Option is not supported in Solaris 2.5; hence, there is
no implementation-specific behavior

Standards Conformance Guide—November 1995

POSIX.2 9

Portable Operating System Interface—Part 2: Shell and Utilities (POSIX.2)

Scope

In 1992, IEEE Standard 1003.2-1992 became part of the POSIX series of
standards. Referred to as “POSIX.2,” IEEE Standard 1003.2-1992 defines a
standard interface and environment for applications that require a shell
command language interpreter and a set of common utility programs. POSIX.2
is complimentary to ISO/IEC 9945-1:1990.

IEEE Std 1003.2-1992 also supplements the application portability interfaces to
promote the “portability” of users and programmers between conforming
systems. The User Portability Utilities Option extends the list of utilities, and
features of utilities used primarily for application portability, to provide a
common interactive environment.

This standard, referred to as “POSIX.2,” is based upon documentation and the
knowledge of existing programs that assume an interface and architecture
similar to that described by POSIX.1. Within this chapter the POSIX.2 standard
is referred to in places as “the standard.”

To comply with section 1.3.1.2 (Documentation), this document describes the
behavior of features in the SunOS 5.5 operating system which are described in
the standard as implementation-defined or for which it is stated that
implementations may vary. It does not describe any extensions or
enhancements outside the scope of the standard.

159

1]l
O

Audience

Note — Section 2.2.1.5 of the standard defines the term implementation-defined as
follows: “An indication that the implementation provider shall define and
document the requirements for correct program constructs and correct data of a
value or behavior.”

The information contained within this chapter does not replace the POSIX.2
standard; rather, it serves as an adjunct to the standard for supplying the
technical information needed by application developers to write source code
within the SunOS 5.5 operating system framework.

This explication is for the experienced C programmer who, when writing an
applications program designed to conform to the standard, needs to know the
specific behavior of the implementation-defined features mentioned in the
standard.

Each subsection is prefaced by the appropriate section taken directly from the
standard and has the corresponding section number attached to the title.

Note — For maximum portability, applications should not depend upon any
particular behavior that is implementation-defined.

Notation Used in the Remainder of this Chapter

160

The following format is used to identify which passage of text is quoted from
the standard and which passage of text describes how the SunOS 5.5 operating
system implements that area.

® P, stands for POSIX.
® S, stands for SunOS 5.5.

Section numbers cited in the remainder of this chapter correspond to those of
the standard. When creating an application program, this format will help you
to quickly locate additional information that you need from the standard.

Standards Conformance Guide—November 1995

O
1]

Implementation-defined Areas of POSIX.2
POSIX.2 Section 1, General

1.3.1 Implementation Conformance

1.3.1.1 Requirements

P. The system may provide additional or enhanced utilities, functions, or
facilities not required by this standard. Nonstandard extensions should be
identified as such in the system documentation. Nonstandard extensions, when
used, may change the behavior of utilities, functions, or facilities defined by
this standard.

S. The SunOS 5.5 reference manuals describe the utilities, functions, and
facilities provided by the SunOS 5.5 operating system.

P. The conformance document shall define an execution environment in which
an application can be run with the behavior specified by the standard.

S. When Solaris 2.5 is installed with SPARCompiler 4.0 on a SPARC based
platform, or with ProCompiler™ C 3.0 and patch 102486-02 on an x86 based
platform, and the application searches for standard utilities in the directories
specified by the output of the getconf PATH command in the order specified
from beginning to end, the utilities will behave as specified by POSIX.2.

1.3.1.2 Documentation
P. The conformance document shall contain a statement that indicates the full
name, number, and date of the standard that applies.

S. IEEE Std 1003.2-1992 and IEEE Std 1003.2a-1992 are supported.

P. The conformance document may also list software standards approved by
ISO/IEC or any ISO/IEC member body that are available for use by a
Conforming POSIX.2 Application.

S. The available software depends on which packages have been installed.

POSIX.2 161

9

POSIX.2 Section 2, Terminology and General Requirements

2.2.2 General Terms

2.2.2.8: appropriate privileges

P. An implementation-defined means of associating privileges with a process with
regard to the function calls and function-call options defined in POSIX.1 that
need special privileges. There may be zero or more such means.

S. The following is a list of references to “appropriate privileges” in the POSIX.2
standard:

3.5.3 Variables See section 3.5.3 in this document.

4.7.2 Description {of chmod} See POSIX.1 section 5.6.4.2 Description {of Change
File Modes}.

4.30.2 Description {of id } See section 4.30.2 Description {of id } in this
document.

4.35.2 Description {of localedef } See section 4.35.2 Description {of
localedef }in this document.

4.35.4 Operands {of localedef } See section 4.35.4 Operands {of localedef }
See section 4.35.4 Operands {of localedef} in this document.

5.17.2 Description {of mesg} See section 5.17.2 Description {of mesg} in this
document.

5.20.2 Description {of nice } See section 5.20.2 Description {of nice } in this
document.

5.20.3 Options {of nice } See section 5.20.3 Options {of nice } in this document.

5.24.2 Description {of renice } See section 5.24.2 Description {of renice } in this
document.

5.24.3 Options {of renice } See section 5.24.3 Options {of renice } in this
document.

5.28.2 Description {of talk } See section 5.28.2 Description {of talk } in this
document.

162 Standards Conformance Guide—November 1995

9

5.37.2 Description {of write } See section 5.37.2 Description {of write } in this
document.

2.2.2.27: byte
P. A byte is composed of a contiguous sequence of bits, the number of which is
implementation-defined.

S. On Solaris 2.5, a byte is composed of 8 bits.

2.2.2.61: extended security controls
P. The access control and privilege mechanisms have been defined to allow
implementation-defined extended security controls.

S. Access Control Lists are drfined in SunOS Reference Manual in the getfacl(1)
man page.

2.2.2.65: file

P. A file has certain attributes, including access permissions and type. File
types include regular file, character special file, block special file, FIFO special
file, and directory. Other types of files may be defined by the implementation.

S. Symbolic links are also defined.

2.2.2.68: file group class

P. A process is in the file group class of a file if the process is not in the file
owner class and if the effective group ID or one of the supplementary group
IDs of the process matches the group ID associated with the file. Other
members of the class may be implementation-defined.

S. There are no additional file class members.

2.2.2.93: job control
P. POSIX.1 conforming implementations may optionally support job control
facilities.

S. Job control is supported

2.2.2.120: parent process ID
P. After the lifetime of the creator has ended, the parent process ID is the
process ID of an implementation-defined system process.

S. If a child process continues to exist after its creator process ceases to exist, the
child process is inherited by init . The init process ID is 1.

POSIX.2 163

164

2.2.2.121: pathname
P. A pathname that begins with two successive slashes may be interpreted in
an implementation-defined manner.

S. Same as one slash.

2.2.2.141: read only file system
P. A file system that has implementation-defined characteristics restricting
modifications.

S. A read-only file system does not allow for modification of its files or
directories.

2.4 Character Set

P. Use of a locking-shift encoding with any of the standard utilities or the
optional C-language functions that describe character (versus byte) or text-file
manipulation is implementation-defined.

S. Use of locking-shift encodings is not supported.

2.4.1 Character Set Description File

2.5 Locale

P. It is implementation-defined whether or not users or applications can provide
additional character set description files.

S. Additional character set description files are allowed.

P. Implementations supporting other byte sizes may allow constants to
represent values larger than those that can be represented in 8-bit bytes, and to
allow additional digits in constants. The manner in which these constants are
represented in the character stored in the system is implementation-defined.

S. Bit sizes other than 8 bits are not supported.

P. Locales other than those supplied by the implementation can be created via
the localedef utility provided that the {POSIX2_LOCALEDEF} symbol is
defined on the system. Otherwise only the implementation provided locales(s)
can be used.

Standards Conformance Guide—November 1995

9

S. The localedef utility is provided. Other locales can be created using this
utility.

P. When the value of a locale environment variable begins with a slash (7), it
shall be interpreted as the pathname of the locale definition; the type of file
(regular, directory, etc.) used to store the locale definition is implementation-
defined. If the locale value does not begin with a slash, the mechanism used to
locate the locale is implementation-defined.

S. The mechanism to locate the locale is defined by the implementation of the
setlocale() system call provided by Solaris 2.5. On Solaris 2.5, setlocale()
supports composite locale names.

2.5.2: Locale Definition

P. If the file contains source definitions for more than one category,
implementation-defined categories, if present, shall appear after the categories
defined by this clause.

S. No additional categories or any additional keywords in any locale category
source definition are defined.

P. (2) A character can be represented by the character itself, in which case the
value of the character is implementation-defined.

S. All three supported locales, C, POSIX, and en_US, use the 1SO8859-1
character encoding values.

2.5.2.1LC_CTYPE

P. When the implementation automatically includes a missing character, it shall
have an encoded value dependent on the charmap file in effect; otherwise, it
shall have a value derived from an implementation-defined character mapping.

S. The character mapping used is the 1ISO8859-1 codeset.

2.5.2.5LC_TIME

P. It is implementation-defined whether the following optional keywords shall be
recognized.

POSIX.2 165

166

era
era_year
era_d_fmt
alt_digits

S. These keywords are recognized.

2.5.3 Locale Definition Grammar

P. Any grammars for additional categories and keywords are implementation-
defined.

S. Under the LC_CTYPE category we provide the cswidth keyword that
specifies the size in bytes of the codesets. The Solaris internal prepresentation
uses EUC which has four codesets.

The syntax of cswidth is:

cswidth <nl>:<d1>, <n2>:<d2>, <n3>:<d3>

where <n?> is the number of byt4es for the codeset and <d?> is the number of
display positions for the codeset for codesets 1, 2, and 3 respectively. Codeset 0
is always 1 byte.

LC_TIME recognizes the date_fmt keyword.

The syntax is:

date_fmt “date format”

This value is accessed when a %Cis sent to the date/time code.

2.6 Environment Variables

LANG
LC_COLLATE
LC_TYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

P. Additional semantics of (these) variable(s), if any, are implementation-defined.

Standards Conformance Guide—November 1995

9

S. The POSIX1003.2 Shell and Utility Application Interface defines no additional
semantics of these environment variables.

PATH
P. If PATH is unset or is set to null, the path search is implementation-defined.

S. When PATHis not set, Solaris supplies the default path /usr/bin

P. If the LANG variable is not set or is set to the empty string, the
implementation-defined default locale shall be used.

S. On Solaris 2.5, the implementation-defined default locale is “C”.

P. If LANG (or any of the LC_* environment variables) contains one of a set of
implementation-defined values, the standard utilities shall behave in accordance
with the rules in a corresponding implementation-defined locale description for

the associated category.

S. This is true for all locales that Sun supports.

P. Additional criteria for determining a valid locale name are implementation-
defined.

S. None.

2.9.1.5 File Removal

P. When a directory that is the root directory or current working directory of
any process is removed, the effect is implementation-defined.

S. If the directory indicated in the call to rmdir() is a mount point for a
mounted filesystem, rmdir() sets errno to [EBUSY] and returns -1.

2.11.5.2 Input Files

P. Implementations shall define in the conformance documentation those utilities
that are limited by constraints other than file system space, available memory;,
and other limits specifically cited by this standard; and identify what the
constraint is; and indicate a way of estimating when the constraint would be
reached.

S. The cu, uucp, uux, uuname, uulog , uupick , and uuto configuration files
include:

POSIX.2 167

168

/etc/uucp/Config /etc/uucp/Dialers /etc/uucp/Poll
/etc/uucp/Devconfig/etc/uucp/Grades /etc/uucp/Sysfiles
/etc/uucp/Devices /etc/uucp/Limits /etc/uucp/Systems
/etc/uucp/Dialcodes/etc/uucp/Permissions

These file must be edited or otherwise manipulated in the POSIX locale. The
behavior is undefined if multibyte characters are present in the configuration
files.

P. Similarly, some utilities descend the directory tree (recursively).
Implementations also shall document any limits that they may have in
descending the directory tree that are beyond the limits cited by this standard.

S. Except for du, the POSIX 1003.2 Shell and Utility Application Interface meets
the performance limits of the POSIX.2 standard. The depth of the hierarchy
which can be properly processed by du is limited by the number of files which
a single process may have open at once.

2.14 Terminal Characteristics

P. The implementation shall document which terminal types it supports and
which of these features and utilities are not supported by each terminal. This
implementation-defined list of terminals

-Shall include at least one terminal type that is capable of supporting all of the
standard utilities and all of their features, if the { POSIX2_CHAR_TERM}
option is provided.

-May group terminals in terms of families or equivalences to other
documented terminal types.

-Need not consist of an exhaustive list of terminal models when the
implementor considers that some terminal types are used too infrequently to
be listed.

S. Any terminal for which a user can obtain a TERMINFO description and run
through the tic utility is capable of supporting all POSIX.2 utilities.

Standards Conformance Guide—November 1995

O
1]

POSIX.2 Section 3, Shell Command Language

3.5.3 Variables

PS1
P. For users who have additional implementation-defined privileges, the default
may be another, implementation-defined value.

S. If a user’s effective ID has the value of zero (0), the default value of PS1
changes from “$ ” to “# .

3.7 Redirection

P. In this standard, open files are represented by decimal numbers starting with
zero. It is implementation-defined what the largest value can be; however, all
implementations shall support at least 0 through 9 for use by the application.

S. The largest value that can be used as a file descriptor is 9. This means that the
user can have up to ten files open, including the standard input, standard
output, and standard error files.

POSIX.2section 4, Execution Environment Utilities

4.1.7.3 Variables and Special Variables

ENVIRON

P. In all cases where the behavior of awk is affected by environment
variables...the environment used shall be the environment at the time awk
began executing; it is implementation-defined whether any modification of
ENVIRONaffects this environment.

S. Changing ENVIRONhas no effect.

SUBSEP
P. The subscript separator string for multidimensional arrays; the default value
is implementation-defined.

S. The awk utility uses the value \034 (the ASCII FS control character).

POSIX.2 169

170

4.1.7.6.2.3 Input/Output and General Functions

close
P. The limit on the number of open expression arguments is implementation-
defined.

S. The awk utility defines this limit as the value {OPEN_MAX}-4. The
minimum value for this limit is 12 and by default, this value is 60.

4.1.7.8 awk Lexical Conventions

Table 4-2 \ddd
P. If the size of a byte on the system is greater than nine bits, the valid escape
sequence used to represent a byte is implementation-defined.

S. The awk utility supports 8 bit bytes.

4.2.2 basename — Return Nondirectory Portion of Pathname: Description

P. If string is // , it is implementation-defined whether steps (2) through (5) are
skipped or processed.

S. “/” is returned.

4.5.2 cd — Change Working Directory: Description

P. If HOME is empty or is undefined, the default behavior is implementation-
defined.

S. In both cases the cd utility gives the following error message:
ksh:cd. bad directory

4.5.4 Operands

directory
P. If directory is —, the results are implementation-defined.

S. The cd utility handles this case by performing the equivalent of the
command “cd “$OLDPWD” && pwd”

Standards Conformance Guide—November 1995

O
1]

4.7.2 chmod - Change File Modes: Description

P. It is implementation-defined whether and how the chmod utility affects any
alternate or additional file access control mechanism being used for the
specified file.

S. The chmod utility does not effect access control lists.

4.7.7 chmod - Extended Description

P. When using the symbolic mode form on a regular file, it is implementation-
defined whether or not:

(1) Requests to set the set-user-ID-on-execution or set-group-1D-on-execution
bit when all execute bits are currently clear and none are being set are ignored,

(2) Requests to clear all execute bits also clear the set-user-1D-on-execution and
set-group-ID-on-execution bits, or

(3) Requests to clear the set-user-ID-on-execution or set-group-ID-on-execution
bit when all execute bits are currently clear are ignored.

S. (1) {ulgla}{+|=}s are ignored. {u|g|o|a{+|=}I are allowed. The
letter | is the file-lock bit (equivalent to the S_GID bit).

(2) ID bits are also cleared.

(3) Requests are not ignored. Note: The S_GID bit must be referred to as the
letter | .

P. When using the symbolic mode form on other file types, it is implementation-
defined whether or not requests to set or clear the set-user-ID-on-execution or
set-group-ID-on-execution bit are honored.

S. In the case of set, the requests are honored when the execution bits are set or
being set. In the case of clear, the requests are honored. Note: The S_GID bit
must be referred to as the letter | .

P. For each bit set in the octal number, the corresponding file permission bit
shall be set; all other file permission bits shall be cleared. For regular files, each
bit set in the octal number corresponding to the set-user-1D-on-execution or
set-group-ID-on-execution bits shall be set; if these bits are not set in the octal

POSIX.2 171

172

number, they shall be cleared. For other file types, it is implementation-defined
whether or not request to set or clear the set-user-ID-on-execution or set-
group-ID-on-execution bits are honored.

S. The requests are honored.

4.13.2 cp — Copy Files: Description

(2) (c)
P. If dest_file exists and it is a file type not specified by POSIX.1, the behavior is
implementation-defined.

S. The behavior in this case depends upon the underlying behavior of the
stat() system function when applied with the dest_file name. For instance, if
dest_file was a symbolic link to a directory, stat() returns information
indicating that dest_file was a directory and the behavior will be as if dest_file
was a directory. For all other non-directory types, the behavior would be the
same as (2)(d).

(4) (a)

P. If the -r option was specified, the behavior is implementation-defined.

S. The cp utility defines the behavior of the -r option as being similar to the
behavior of the -R option except when copying SPECIAL files. The -r option
actually tries to read SPECIAL files, while -R recreates them. For example, if
the -R option is specified and the source file is of type FIFO, then the
destination will be another file of type FIFO. If the -r option is specified
instead, then the destination file will be a regular file consisting of the contents
of the FIFO source file.

(4)(b)(2)

P. If source_file is a file of type FIFO, the file permission bits shall be the same as
those of source_file, modified by the file creation mask of the user if the -p
option was not specified. Otherwise, the permissions, owner ID, and group ID
of dest_file are implementation-defined.

S. The cp utility sets the dest_file privileges to those of the source_file and the
owner ID and group ID to the current effective user and group IDs.

P. If the implementation provides additional or alternate access control
mechanisms, their effect on copies of files is implementation-defined.

Standards Conformance Guide—November 1995

O
1]

S. The cp utility defines no alternate or additional file access control
mechanisms.

4.13.3 Options

-p
P. (3) Other implementation-defined bits may be duplicated as well.
S. The cp utility duplicates all of the bits of st_mode member from the stat()

function. In particular, on systems supporting the UNIX variable S_ISVTX, cp
duplicates the “sticky bit”.

-r
P. The treatment of special files is implementation-defined.

S. With -r the cp utility attempts to open the special file, and copy its
contents. For example, if the -R option is specified, and the source file is of
type FIFO, the destination is another file of type FIFO. If, instead, the -r option
is specified, the destination file will be a regular file, consisting of the contents
of the FIFO.

4.18.2 dirname - Return Directory Portion of Pathname: Description

P. (6) If the remaining string is // , it is implementation-defined whether steps (7)
and (8) are skipped or processed.

S. The dirname utility processes steps (7) and (8) when converting a string of
// to a filename; that is, dirname // converts to /.

4.19.4 Operands

string
P. If the first operand is “-n ” or if any of the operands contain a backslash (\)
character, the results are implementation-defined.

S. The echo utility takes no special action for “-n ”’; the operand is echoed
directly.

The historical SVID functionality as an extension to the standard is supported
and includes the following escape sequences in the echo operands:

POSIX.2 173

174

\a Write an <alert> character.
\b Write a <backspace> character.
\c Suppress the <newline> character that otherwise

follows the final argument in the output, with
everything after \c in input being ignored.

\f Write a <form-feed> character.

\n Write a <newline> character.

\r Write a <carriage-return> character.

\t Write a <tab> character.

\v Write a <vertical tab> character.

\\ Write a backslash character.

\Onum Write an 8 bit value that is the 0-, 1-, 2-, or 3 digit
octal number num.

\X When X is not one of the preceding characters, the

echo utility simply echoes the two-character
sequence \X.

4.20.7.3.14 List Command

P. If the size of a byte on the system is greater than nine bits, the format used
for nonprintable characters is implementation-defined.

S. The ed utility does not support byte sizes other than 8 bits.

4.24.4 Operands

exec

P. If a utility_name or argument string contains the two characters {} , but not
just the two characters {} , it is implementation-defined whether find replaces
those two characters with the current pathname or uses the string without
change.

S. The find utility uses the string without change.

4.30.2 id - Return User Identity: Description

P. If a user operand is provided and the process has the appropriate privileges,
the user and group IDs of the selected user shall be written.

S. In this case, all processes are considered to have “appropriate privileges.”

Standards Conformance Guide—November 1995

O
1]

4.33.2 In — Link Files: Description

P. If the last operand specifies an existing file of a type not specified by
POSIX.1 {8}, the behavior is implementation-defined.

S. If the file type is not specified by POSIX.1, it is treated as a non-directory file.

4.33.4 Operands

source_file
P. A pathname of a file to be linked. This can be a regular or special file;
whether a directory can be linked is implementation-defined.

S. Links to directories are not supported. Symbolic links, however, to
directories are supported.

4.34.3 Options

-a
P. The manner in which the implementation determines what other locales are
available is implementation-defined.

S. The locale utility lists each directory in /ust/lib/locale when the -a
option is specified.

4.34.4 Operands

name
P. It is implementation-defined whether any keyword values are written for the
categories LC_CTYPE and LC_COLLATE.

S. Keyword values are written for LC_CTYPE, but not for LC_COLLATE.

4.35.2 localedef — Define Locale Environment: Description

P. It is implementation-defined whether users shall have the capability to create
new locales, in addition to those supplied by the implementation. If the
symbolic constant {POSIX2_LOCALEDEF} is defined, then the system supports
the creation of new locales.

S. Users are permitted to create locales using localedef

POSIX.2 175

176

4.36.2 logger — Log Messages: Description

-name
P. It is implementation-defined whether messages written in locales other than the
POSIX Locale are effective.

S. Messages written in other locales are permitted. The logger utility always
executes in the POSIX locale and treats the message operand as a sequence of
bytes.

4.39.3 Options

-a
P. Entries beginning with a period (.) shall not be written out unless they are
explicitly referenced, the -a option is supplied, or an implementation-defined
condition causes them to be written.

S. The Is utility provides other options, namely -f and -A, which also enable
the listing of entries beginning with a period(.). There are no other conditions
that would allow entries beginning with a period (.) to be listed.

4.39.5.3 Environment Variables

COLUMNS

P. If COLUMNS is not set or is invalid, an implementation-defined number of
column positions shall be assumed, based on the knowledge of the output
device by the implementation.

S. The Is utility obtains the numbers of columns. The approach used to
determine the numbers of columns is as follows:

* |If the COLUMNS environment variable is a valid integer number, then it is
used;

* |f the COLUMNS variable is not a valid integer, use the information
returned by the ioctl(STDOUT_FILENO, TIOCGWINSZ, $wininfo)
system function.

® |f the values remain invalid, the value of 80 is used for columns.

Standards Conformance Guide—November 1995

O
1]

4.39.6.1 Standard Output

P. The default format shall be to list one entry per line to standard output. If
the output is to a terminal, the format is implementation-defined.

S. The Is utility uses a multi-column format, as if the user specified -C.

P. If the file is a character special or block special file, the size of the file may be
replaced with implementation-defined information associated with the device in
guestion.

S. The Is utility replaces the file size with the numeric values of the major and
minor device numbers displayed with the format “%u, %u”. The major and
minor device numbers are obtained by taking the st_rdev structure member
returned from the stat() system function and passing it to the major() and
minor() system functions. See stat(2) and mkdev(3) manpages for further
explanations.

P. Implementations may add other characters to this list [of entry type
characters] to represent other, implementation-defined, file types.

S. The Is utility also uses the character x to indicate “none of the above” file
types.

The character s is used to indicate “sockets”.
The character | is used to indicate symbolic “links”.
The character L is used to indicate mandatory locking.

P. Implementations may add other characters to this list for the third character
position.

S. The Is utility uses the characters T or t to indicate the “sticky bit” file
attribute. This bit is defined as the S_ISVTX bit mask defined in <stat.h>

4.40.6.3 Output Files

P. When a message from the system mailbox or entered by the user is not a text
file, it is implementation-defined how such a message is stored in files written by
mailx .

S. The mailx utility attempts to process the file and therefore produces
inappropriate results.

POSIX.2 177

178

4.40.7.1 mailx Internal Variables

crt =number

P. Pipe messages having more than number lines through the command
specified by the value of the PAGER variable. The default shall be nocrt . If it
is set to null, the value used is implementation-defined.

S. If it is set to null, the value is whatever the screen size is minus 2.

4.40.7.3 mailx Command Escapes

~h

P. If standard input is a terminal, prompt for a Subject line and the To, Cc, and
Bcc lists. Other implementation-defined headers may also be presented for
editing.

S. None.

4.43.2 mv— Move Files: Description

P. If any operand specifies an existing file of a type not specified by POSIX.1
{8}, the behavior is implementation-defined.

S. For symbolic link file types, the behavior of mvis to reference the symbolic
link file itself when validating the existence of the source file arguments (e.g.
uses Istat()) and to reference the file to which the symbolic link points when
validating and referencing the target argument (e.g. uses stat()).

4.45.7 Extended Description

P. The default number of bytes transformed by output type specifiers d, f , 0, u,
and x shall correspond to the various C-language types as follows. If the c89
compiler is present on the system, these specifiers shall correspond to the sizes
used by default in that compiler. Otherwise, these sizes are implementation-
defined. The POSIX.2 standards expands on this with the explanation that “For
the type specifier characters d, o, u, and x, the default number of bytes shall
correspond to the size of the underlying implementation’s basic integral data

type...”

S. The default number of bytes transformed by the type specifier characters d, o,
u, and x is 4 bytes (e.g. based on the C-language type int).

Standards Conformance Guide—November 1995

O
1]

P. For these specifier characters [d, 0, u and x], the implementation shall
support values of the optional number of bytes to be converted corresponding
to the number of bytes in the c-language types char , short , int , and long .

S. The optional humber of bytes to be converted by the characters C, S, I, and
L are 1, 2, 4, and 4 respectively on both SPARC and Intel.

P. For the type specifier character f, the default number of bytes shall
correspond to the number of bytes in the underlying implementation’s basic
double precision floating point date type.

S. The default number of bytes used for the type specifier f is 8 bytes (e.g.
based on the C-language type double).

P. The implementation shall support values of the optional number of bytes to
be converted corresponding to the number of bytes in the C-language types
float , double and long double

S. The optional number of bytes to be converted for the characters F, D, and L
are 4, 8, and 8 respectively on both SPARC and Intel.

P. The byte order used when interpreting numeric values is implementation-
defined, but shall correspond to the order in which a constant of the
corresponding type is stored in memory on the system.

S. For SPARC, the most significant byte is stored in the lower memory address.
For Intel, the least significant byte is stored in the lower memory address.

P. If the size of a byte on the system is greater than nine bits, the format used
for nonprintable characters is implementation-defined.

S. On Solaris 2.5, the size of a byte is 8 bits.

P. When either the -j skip or -N count option is specified along with the c type
specifier, and this results in an attempt to start or finish in the middle of a
multibyte character, the result is implementation-defined.

S. When the output starts or finishes in the middle of a multibyte character, the
partial multibyte character is displayed as single-byte characters.

POSIX.2 179

180

4.48.2 pax — Portable Archive Interchange: Description

copy
P. If the destination directory is a file of a type not defined by POSIX.1 {8}, the

results are implementation-defined.

S. Copying will cause an error.

P. The default output archive format shall be implementation-defined.
S. ustar is the default archive format.

P. The pax utility shall determine, in an implementation-defined manner, what
file to read or write as the next file.

S. Gois prompted to continue and Quit is prompted to exit while reading the
same archive file.

4.48.3 Options

-a
P. It is implementation-defined which devices on the system support appending.

S. Regular disk files and 4 mm tape drives support appending.

-p string
P. The string shall consist of the specification characters a, e, m o, and p,
and/or other implementation-defined characters.

S. There are no other file characteristics.

Specification character e
P. Preserve the user ID, group ID, file mode bits, access time, modification
time, and any other implementation-defined file characteristics.

S. There are no other characters.

Specification character p
P. Preserve the file mode bits. Other, implementation-defined file-mode attributes
may be preserved.

Standards Conformance Guide—November 1995

O
1]

S. The implementation also provides a bit identified by S_ISVTX. For a
directory, this bit determines whether or not an unprivileged user may delete
or rename another user’s files from that directory (refer to chmod(2) for other
files types).

-x format
P. Implementation-defined formats shall specify a default block size as well as
any other block sizes supported for character special archive files.

S. There are no implementation-defined formats.

4.48.5.2 Input Files

P. The input file named by the archive option-argument, or standard input
when the archive is read from there, shall be a file formatted according to one
of the specifications in section 10.1 of POSIX.1 {8}, or some other
implementation-defined format.

S. No other formats are defined.

4.48.6.1 Standard Output

P. In write mode, if -f is not specified, the standard output shall be the archive
formatted according to one of the specifications in section 10.1 of POSIX.1 {8},
or some other implementation-defined format.

S.No other formats are defined.

4.48.6.3 Output Files

P. In write mode, the output file named by the -f option argument shall be a
file formatted according to one of the specifications in section 10.1 of POSIX.1
{8}, or some other implementation-defined format.

S. No other formats are defined.

4.55.7.3 sed Editing Commands

[2addr]l
P. If the size of a byte on the system is greater than nine bits, the format used
for non-printable characters is implementation-defined.

POSIX.2 181

182

S. The sed utility does not support byte sizes greater than 8 bits.

4.56.5.3 Environment Variables

4.59.2 stty

PS1
P. For users who have specific additional implementation-defined privileges, the
default may be another implementation-defined value.

S. If a user’s effective user ID has the value zero (0), the default value of PS1
changes from “$” to “#”.

— Set the Options for a Terminal: Description

P. The stty utility shall set or report on terminal 1/0 characteristics for the
device that is its standard output. Without options or operands specified, it
shall report the settings of certain characteristics, usually those that differ from
implementation-defined defaults.

S. Certain settings are reported when no options or operands have been
specified. The following settings are reported when the characteristic is enabled:
markp , spacep , oddp, evenp, cs5, cs6, cs7, cs8, cstopb , hupcl , clocal
loblk ,line , rows, columns , ypixels , xpixels , min, time ,ignbrk |,

brkint ,ignpar , parmrk ,inlcr ,igncr ,icrnl ,iuclc ,ixoff ,imaxbel |,
olcuc , onlcr , ocrnl , onocr , onlret , del-fill , nul-fill ,cr,nl, tab , bs,
vt , ff , xcase , echonl , noflsh | tostop , echoctl , echoprt , echoke ,
defecho , flusho , pendin , iexten

The following settings are reported when the characteristic is disabled:
-parity , -cread , -inpck , -istrip , -ixon , -ixany ,-opost , -isig
-icanon , -echo , -echoe , -echok .

In addition:

intr is reported if it is set to something other than “c,
quit is reported if it is set to something other than I ,
erase is reported if it is set to something other than "?,
kill is reported if it is set to something other than *u,
eof is reported if it is set to something other than ~d,
eol is reported if it is defined,

eol2 is reported if it is defined,

swtch is reported if it is set to something other than "~z ,

Standards Conformance Guide—November 1995

O
1]

start is reported if it is set to something other than q,

stop is reported if it is set to something other than s,

susp is reported if it is set to something other than "z,

dsusp is reported if it is set to something other than My,

rprnt is reported if it is set to something other than *r,

flush is reported if it is set to something other than "o,

werase is reported if it is set to something other than "w,

Inext is reported if it is set to something other than *v,

speed is reported when ispeed and ospeed are identical, otherwise ispeed
and ospeed are reported.

4.59.4.4 Local Modes

iexten (-iexten)
P. Enable (disable) any implementation-defined special control characters not
currently controlled by icanon , isig , ixon , or ixoff

S. Special control characters not controlled by icanon , isig , ixon , or ixoff
are veolz , vswtch , vreprint , vdiscard , vdsusp , vwerase , vinext

4.59.4.6 Combination Modes

sane
P. Reset all modes to some reasonable, unspecified values.

S. stty sane is equivalent to:

stty cs7 parenb cread -csize -parodd -clocal brkint ignpar \
istrip icrnl ixon imaxbel -ignbrk -parmrk -inpck -inlcr -igncr \
-iuclc -ixoff -ixany isig icanon iexten echo echok echoe echoke\
echoctl -xcase -echonl -noflsh opost onlcr -olcuc -ocrnl -onocr \
-onlret -ofill -ofdel -nldly -crdly -tabdly -bsdly -vtdly -ffdly \

erase ? kill ~u quit 7l intr ~c eof ~d eol undef

4.62.4 Operands

P. Additional implementation-defined operators and primary-operators may be
provided by implementations. The additional implementation-defined
operators “(* and “)” may also be provided by implementations.

POSIX.2 183

1]l
O

S. The test utility provides the following additional primaries:

-a True if both expressionl and expression2 are true,

-0 True if either expressionl or expression2 are true,

() Allow primaries to be grouped as single expressions,
for use with -a and -0 primaries.

-k True if the “sticky bit” is on

-nt True if filel is newer than file2

-ot True if filel is older than file2

-ef True if filel has the same device and inode as file2;
that is, same file

-L True if file is a symbolic link

-h True if file is a symbolic link

4.63.3 Options

P. The range of valid times past the Epoch is implementation-defined...

S. The range of valid times past the Epoch depends on the size of the ANSI C
arithmetic type time_t and the behavior of the ANSI C mktime() routine.
time_t is a signed long, 32 bits. The maximum positive integer is 2147483647,
which represents 68 years, 18 days, 3 hours, 14 minutes, and 7 seconds.

From the Epoch (12:00:00 a.m. January 1, 1970), 2147483647 represents the date:
Tue Jan 19 03:14:07 GMT 2038.

For the behavior of mktime() wee the mktime(3C) man page.

4.64.7 Extended Description

\ octal
P. If the size of a byte on the system is greater than nine bits, the valid escape
sequence used to represent a byte is implementation-defined.

S. The tr utility does not support byte sizes greater than 8 bits.

4.68.2 uname- Return System Name: Description

P. When options are specified, symbols representing one or more system
characteristics shall be written to the standard output. The format and contents
of the symbols are implementation-defined.

184 Standards Conformance Guide—November 1995

9

S. The uname utility supports seven symbols, including the five specified by
POSIX.1, section 4.4.1.2 and displays the additional symbols at the end of the
output line.

4.68.6.1 Standard Output

P. Additional implementation-defined symbols may be written.

S. The additional symbols are machine class and machine processor type.
“machine” symbol is called “platform” in uname man page.

POSIX.2 Section 5, User Portability Utilities Option

5.2.2 Execute Commands at a Later Time: Description

P. The at-job shall be executed in a separate invocation of the shell, running in
a separate process group with no controlling terminal, except that the
environment variables, current working directory, file creation mask, and other
implementation-defined execution-time attributes in effect when the at utility is
executed shall be retained and used when the at-job is executed.

S. The limits controlled by the unlimit facility are also retained, but only
applies to ksh, sh, and /usr/xpg4/bin/sh

5.2.3 Options

-m

P. If -m is not used, the standard output and standard error of the job shall be
provided to the user via an implementation-defined mechanism, unless they are
redirected elsewhere;

S. stdout and stderr are sent via /bin/mail

-q queuename

P. By default, at-jobs shall be scheduled in queue “a”. In contrast, queue “b”
shall be reserved for batch jobs. The meanings of all other queuenames are
implementation-defined.

POSIX.2 185

186

S. The at utility can use any single-byte character except NULL,"\b’, “\n’, ‘\t’,
and ‘#' characters as a queuename. All queues have the same functionality as
gueue ‘a’, except queue limits and priorities may be set in the queuedefs file.
See POSIX.2 queuedefs(4)man page for more information. ‘a’ through ‘z’ are
valid queuenames.

5.2.4 Operands

timespec: time
P. The acceptable time-zone names are implementation-defined.

S. ZULU, UTC, and GMT (case insensitive)

%token timezone_name
P. The name of an optional time-zone suffix to the time field, in an
implementation-defined manner.

S. ZULU, UTC, and GMT (case insensitive)

5.5.2 crontab — Schedule Periodic Background Work: Description

P. If standard output and standard error are not redirected by commands
executed from the crontab entry, any generated output or errors shall be
mailed, via an implementation-defined method, to the user.

S. stdout and stderr are sent via /bin/mail

5.7.4 Extended Description

P. The handling of other files is implementation-defined.

S. The ctags utility handles C, C++, Pascal, FORTRAN, YACC, and LEX
sources.

5.7.7 Operands

P. It is implementation-defined what other objects (including duplicate identifiers)
produce output.

S. Duplicate identifiers and too many entries produce output.

Standards Conformance Guide—November 1995

O
1]

5.8.6.1 Standard Output

-P <total space>

P. The total size of the file system in 512 B units. The exact meaning of this
figure is implementation-defined, but should include <space used>, <space free>,
and any space reserved by the system not normally available to a user.

S. The value of <total space> comes from the f_blocks member of the struct
statvfs(2) function. The df utility uses this f_blocks member to represent the
total number of data blocks in the file system.

-P < space free>

P. When this figure is less than or equal to zero, it shall not be possible to create
any new files on the file system without first deleting others, unless the process
has appropriate privileges.

S. “Appropriate privileges” means processes with the effective id of ‘0’ (e.g. root
authority).

5.10.7.2.5 chdir

P. If HOME is empty or is undefined, the default behavior is implementation-
defined.

S. The ex utility prints the following error: No such file or directory.

5.10.7.2.13 list

P. Write the addressed lines in a way that should be unambiguous:
nonprintable characters shall be written as implementation-defined
multicharacter sequences...

S. The ex utility displays nonprintable characters in the current locale as a
circumflex () followed by a single character or two uppercase hexadecimal
digits. If the nonprintable character is a control character defined in Table 2-20 of
the POSIX.2 standard, the corresponding alphabetic character in the table is
displayed after the circumflex. Otherwise, the two uppercase hexadecimal digits
displayed are those that represent the actual value of the nonprintable character.

POSIX.2 187

188

5.10.7.2.14 map

P. Implementations may restrict the set of commands accepted within rhs; the
list of restrictions is implementation-defined.

S. There are no restrictions on rhs.

5.10.7.2.21 print

P. Nonprintable characters, except for <tab >, shall be written as
implementation-defined multicharacter sequences.

S. Nonprintable characters are written in octal.

5.10.7.2.29 source

P. The maximum supported nesting depth is implementation-defined, but shall be
at least one.

S. The ex utility nesting is limited by the number of dup(2) system calls that a
single process can have. dup(2) is limited via getrlimit(2)

5.10.7.2.37 write

P. If file is specified and is not the current file, and the file named by file exists,
then the write shall fail. If the current file has been changed by the file
command, and that files exist, the write shall fail. In either case, the write can
be forced by appending the character ! to the command name. An existing file
can be appended to by appending >> to the command name. If the file does
not exist, the result is implementation-defined.

S. The write succeeds if one has write permission in the directory.

5.10.7.5.8 list

P. If list s set, write the addressed lines in a way that should be
unambiguous: non printable characters shall be written as implementation-
defined multicharacter sequences; the end of the line shall be marked with a $.

S. Nonprintable characters are written in octal.

Standards Conformance Guide—November 1995

O
1]

5.10.7.5.12 paragraphs, para

P. The sections option can be set to a character string consisting of zero or
more character pairs. The default value is implementation-defined.

S. The default values are JP, LP, PP, OP, P, LI, pp, Ip, ip, np, and bp.

5.10.7.5.18 sections

P. The default value is implementation-defined.

S. The default values are NH, SH, H , HU, uh, sh, and +c.

5.10.7.5.24 tags

P. By default, filenames of tags shall be searched for in the current directory
and in other implementation-defined directories.

S. Filenames of tags are also searched for in /usr/lib/tags

5.10.7.5.28 window

P. The baud rate of the terminal line may reduce the default in an
implementation-defined manner.

S. For baud rate less than 1200, terminal lines equal 8. For baud rates greater
than or equal to 1200 but less than 2400, terminal lines equal 16.

5.12.2 fc —Process Command History List: Description

P. When the number reaches an implementation-defined upper limit, which shall
be no smaller than the value in HISTSIZE or 32767 (whichever is greater), the
shell may wrap the numbers, starting the next command with a lower number
(usually 1).

S. The upper limit is the maximum positive integer or 2147483647.

POSIX.2 189

190

5.12.5.3 Environment Variables

5.14.2 file

HISTFILE

P. An implementation may choose to access this variable only when initializing
the history file; this initialization shall occur when fc or sh first attempts to
retrieve entries from, or add entries to, the file as the result of commands
issued by the user, the file named by the ENV variable, or implementation-
defined startup files. Therefore, it is implementation-defined whether changes
made to HISTFILE after the history file has been initialized are effective.

S. The HISTFILE environment variable is examined when the history file is
opened for the first time. If the HISTFILE environment variable is changed, then
the current history file is closed and a new history file is opened according to the
new value of the HISTFILE environment variable.

P. Implementations may choose to disable the history list mechanism for users
with appropriate privileges who do not set HISTFILE; the specific
circumstances under which this will occur are implementation-defined.

S. There are no circumstances under which the history list mechanisms are
disabled.

P. An implementation may choose to access this variable only when initializing
the history file, as described under HISTFILE. Therefore, it is implementation-
defined whether changes made to HISTFILE after the history file has been
initialized are effective.

S. The HISTFILE environment variable is examined when the history file is
opened for the first time. If the HISTFILE environment variable is changed, then
the current history file is closed and a new history file is opened according to the
new value of the HISTFILE environment variable.

— Determine File Type: Description

P. If the file is not a regular file, its file type shall be identified. The file types
directory, FIFO, block special, and character special shall be identified as such.
Other implementation-defined file types may also be identified.

S. The file utility uses the information contained in the file named
/etc/magic to identify the file types stated in the POSIX.2 standard.

Standards Conformance Guide—November 1995

O
1]

5.16.2 man - Display System Documentation: Description

P. If more information is available, the man utility shall provide it in an
implementation-defined manner.

S. All the information that man provides is displayed in the same manner; as a
sequence of text characters obtained from a file found in the directories specified
by the user’s MANPATH environment variable.

5.16.6.1 Standard Output

P. The man utility writes text describing the syntax of the utility name, its
options, and it operands or, when -k is specified, lines from the summary
database. The format of this text is implementation-defined.

S. The man utility displays the contents of a file (as described in section 5.16.2
above) after being processed by the command “nroff -mansun

5.17.2 mesg — Permit or Deny Messages: Description

P. Processes with appropriate privileges may be able to send messages to the
terminal independent of the current state.

S. The POSIX 1003.2 Shell and Utility Application Interface does not allow
messages to be sent to a terminal if its state does not permit it.

5.18.3 Options

-u
P. Treat <backspace > as a printable control character, displayed as an
implementation-defined character sequence suppressing backspacing and the
special handling that produces underlined or standout-mode text on some
terminal types.

S. The more utility displays the <backspace> as the two character string ~H.

5.18.7 Extended Description

P. It is implementation-defined how other nonprintable characters are written.

S. Other nonprintable characters are written as Ctrl-letter and ESC-letter.

POSIX.2 191

192

P. In the case that text is being taken from a nonrewinding stream, such as a
pipe, it is implementation-defined how much backwards motion is supported.

S. The more utility sets no limit to the amount of backward motion supported,
other than the amount of free space in the /tmp directory (or the TMPDIR
directory, if defined.)

5.18.7.1 Help

P. Write a summary of these command and other implementation-defined
commands.

S. The more utility implements an additional command called ! which is
included in this summary.

5.18.7.24 Invoke Editor

P. It is implementation-defined whether line-setting options are passed to editors
other than vi and ex.

S. The more utility does not pass line-setting option to any other editors.
P. The file types that can be edited are implementation-defined.

S. Only files which are acceptable to the editor being invoked may be edited
successfully.

5.19.2 newgrp - Change toa New Group: Description

P. If no password is required for the specified group, it is implementation-defined
whether users not listed as members of that group can change to that group.
Whether or not a password is required, implementation-defined system
accounting or security mechanisms may impose additional authorization
restrictions.

S. Access to the group is denied if a group has no password assigned to it and
the user is not a member of the group.

Standards Conformance Guide—November 1995

9

5.20.2 nice
Description

— Invoke a Utility with an Altered System Scheduling Priority:

P. With no options and only if the user has appropriate privileges, the executed
utility shall be run with a system scheduling priority that is some
implementation-defined quantity less than or equal to the system scheduling
priority of the current process.

S. With no options, the nice utility increments the system scheduling priority
by a value of 10.

P. If the user lacks appropriate privileges to affect the system scheduling
priority in the requested manner, the nice utility shall not affect the system
scheduling priority; in this case, a warning message may be written to the
standard error, but this shall not prevent the invocation of utility or affect the
exit status.

S. The user’s ability to alter the system scheduling priority depends on
whether or not the process is a “time-sharing” (TS) process and depends on the

appropriate privileges required by the priocntliset(2) and priocntl(2)
functions. The nice utility only operates on processes that are in the “time-
sharing” class and uses the priocntl(2) function to get the process current
nice value, and then uses priocntlset() to increment/decrement this nice
value.

5.20.3 Options
-n increment

P. If the increment option argument shall be a positive or negative decimal
integer that shall be used to modify the system scheduling priority of the
executed utility in an implementation-defined manner.

S. SunOSs has a notion of “nice”-ness and this value shall increment or decrement
the processes “nice” value. This “nice” value is used to determine the system
scheduling priority. This is done using the priocntlset(2) function.

5.21.5.2 Input Files

P. The nmutility may accept additional implementation-defined object library
formats for the input file.

POSIX.2 193

194

S. The nmutility does not accept any additional object library formats.

5.21.6.1 Standard Output

5.23.2ps -

P. Symbol type, which shall either be one of the following single characters or
an implementation-defined type represented by a single character:

Global absolute symbol
Local absolute symbol
Global bss symbol
Local bss symbol
Global data symbol
Local data symbol
Global text symbol
Local text symbol
Undefined symbol

. The nmutility uses the following types:

Global bss symbol

Local bss symbol

Global data symbol
Local data symbol
Global text symbol

Local text symbol
Undefined symbol
Locally no defined type
Globally no defined type

Z-SCTHQUow 0w CcCTHoOoOoTwo >

Report Process Status: Description

P. When the -0 option is not specified, information about processes selected
shall be written in an implementation-defined manner.

S. When the -f option is used, process information shall be displayed as if the
following was specified on the command line:

-0 pid,ppid, ¢
-0 stime,tty=TTY
-0 time=TIME
-0 args=CMD

Standards Conformance Guide—November 1995

9

When the -j option is used, process information shall be displayed as if the
following was specified on the command line:

-0 pid,ppid,sid
-0 time=TIME
-0 fname=CMD

When the -l option is used, process information shall be displayed as if the
following was specified on the command line:

-0 pid,tty=TTY
-0 time=TIME
-0 fname=CMD

5.23.3 Options

-t termlist
P. Terminal identifiers shall be given in an implementation-defined format.

S. Terminal identifiers shall be accepted and displayed in the same format as is
stored in the system /etc/utmp file which is the same format as is displayed by
the who utility.

5.23.61 Standard Output

P. When the -0 option is not specified, the standard output is implementation-
defined.

S. Without options, ps prints information about processes associated with the
controlling terminal. The output contains only the process ID, terminal identifier,
cumulative execution time, and the command name.

args
P. The implementation may truncate this value to the field width; it is
implementation-defined whether any further truncation occurs.

S. The maximum number of characters displayed is limited to 80.

P. Any implementation-defined variables shall specify in the conformance
document if the field may contain <blank >s as well as the default header.

S. No implementation-defined variables contain <blank >s.

POSIX.2 195

196

5.24.2 renice

Description

Table 8-1 lists the Solaris implementation format specifiers and the default
header used with each.

Table 9-1 Solaris Implementation Format Specifiers and their Default Header

Format Specifier Default Header Format Specifier Default Header

addr ADDR pri PRI

c C rgid RGID

class CLS rss RSS

f F ruid RUID

fname COMMAND S S

gid GID sid SID

opri PRI stime STIME

0sz Sz uid uiD

pmem %MEM whan WCHAN

— Set System Scheduling Priorities of Running Processes:

P. The system scheduling priority shall be bounded in an implementation-defined
manner. If the requested increment...would raise or lower the system
scheduling priority of the executed utility beyond implementation-defined limits,
then the limit whose value was exceeded shall be used.

S. See section 5.20.3 Options {of nice } in this document.

P. Regardless of which options are supplied or any other factor, renice shall
not alter the system scheduling priorities of any process unless the user
requesting such a change has appropriate privileges to do so for the specified
process. If the user lacks appropriate privileges to perform the requested
action, the utility shall return an error status.

S. See section 5.20.2 Description {of nice } in this document.

Standards Conformance Guide—November 1995

O
1]

5.24.3 Options

-n increment
P. Negative increment values may require appropriate privileges and shall
cause a higher system scheduling priority.

S. See section 5.20.3 Options {of nice } in this document.

5.26.2 strings - Find Printable Strings in Files: Description

P. Additional implementation-defined strings may be written.

S. No other strings are written.

5.26.3 Options

5.28.2 talk

-a
P. If -a is not specified, it is implementation-defined what portion of each file is
scanned for strings.

S. The strings utility ignores the portion of an executable file containing
executable instructions.

— Talk to Another User: Description

P. When and only when the stty iexten local mode is enabled, additional
special control characters and multibyte or single-byte functions shall be
processed in an implementation-defined manner.

S. The talk utility does not support additional special control characters and
multibyte or single-byte functions.

P. Typing other nonprintable characters shall cause implementation-defined
sequences of printable characters to be sent to the terminal of the recipient.

S. Other nonprintable characters are displayed on recipient’s terminal as “?”
character.

P. However a user’s privilege may further constrain the domain of accessibility
of other user’s terminals. The talk utility shall fail when the user lacks the
appropriate privileges to perform the requested action.

POSIX.2 197

1]l
O

S. The talk utility does not further constrain the domain of accessibility of other
users terminals beyond that imposed by the mesg utility.

5.30.4 Operands

init
P. Display the sequence that will initialize the terminal of the user in an
implementation-defined manner.

S. The tput utility, the TERMINFO database defines this sequence for each
terminal.

reset
P. Display the sequence that will reset the terminal of the user in an
implementation-defined manner.

S. The tput utility, the TERMINFO database defines this sequence for each
terminal.

5.36.2 who — Display Who is on the System: Description

P. The who utility shall list various pieces of info about accessible users. The
domain of accessibility is implementation-defined.

S. The who utility shows information for all users.

5.36.6.1 Standard Output

P. The who utility writes its default information to the standard output in an
implementation-defined format, subject only to the requirement of containing the
information [in the standard].

S. The who utility writes its default information to the standard output in the
following format:

%s %s %s %s, <user name>,<terminal name> <time of login>

198 Standards Conformance Guide—November 1995

O
1]

5.37.2 write. — Write to Another User: Description

P. When and only when the stty iexten local mode is enabled, additional
special control characters and multibyte or single-byte functions shall be
processed in an implementation-defined manner.

S. The write utility does not support any additional special control characters
or multiple or single-byte functions.

P. Typing other nonprintable characters shall cause implementation-defined
sequences of printable characters to be written to the terminal of the recipient.

S. Other nonprintable characters are displayed on recipient’s terminal as “?”
character.

P. To write to a user who is logged in more than once, the terminal argument
can be used to indicate which terminal to write to; otherwise, the recipient’s
terminal is selected in an implementation-defined manner and an informational
message shall be written to the sender’s standard output, indicating which
terminal was chosen.

S. The terminal selected is taken from the first entry in the /etc/utmp file that
contains the user id that matches the recipients user id.

P. However, a privilege of a user may further constrain the domain of
accessibility of the terminals of other users. The write utility shall fail when
the user lacks the appropriate privileges to perform the requested action.

S. The write utility does not further constrain the domain of accessibility of
other users terminals beyond that imposed by the mesg utility.

POSIX.2 Section 6, Software Development Utilities Option

6.2.7.1 Makefile Syntax

P. If ./makefile is not found, the file ./Makefile shall be tried. If neither
Jmakefile nor ./Makefile are found, other implementation-defined
pathnames may also be tried.

S. The following pathnames are tried in the order given:

POSIX.2 199

200

./makefile
./Makefile
s.makefile
s.Makefile
SCCS/s.makefile
SCCS/s.Makefile

6.2.7.2 Makefile Execution

P. The macros from the command line to make shall be added to the
environment of make. Other implementation-defined variables may also be added
to the environment of make.

S. The MAKEFLAGS variable is added if it did not already exist.

P. If the MAKEFLAGS variable is not set in the environment in which make
was invoked, in the makefile, or on the command line, it shall be created by
make and shall contain all options specified on the command line except for
the -f and -p options. It may also contain implementation-defined options.

S. The make utility, MADEFLAGS may also contain the -E , -V, -v, and -x
options, if they appeared on the original make command line. See the man page
for make, in the SUNWp2man package, for a description of these options.

6.2.7.3 Target Rules

P. The interpretation of targets containing the characters “%” and “ " " is
implementation-defined.

S. The make utility treats targets containing “%” as meta-rules unless the user
specifies the .POSIX special target, in which case, it ignores meta-rules. The
make utility uses the “ " ” character in pairs for quoting. It treats a # character
contained within a “ ™ ” pair as though it has no special meaning.

6.2.7.4 Macros

P. If SHELL is defined in the makefile or is specified on the command line, it
shall replace the original value of the SHELL macro, but shall not affect the
SHELL environment variable. Other effects of defining SHELL in the makefile
or on the command line are implementation-defined.

Standards Conformance Guide—November 1995

9

S. If the user specifies the .POSIX special target, the effect of defining SHELL is
as specified in the POSIX.2 standard. If the user does not specify .POSIX and
defines SHELL as a macro in the makefile, make uses the shell specified by
SHELL but does not change the value of the SHELL environment variable in the
environment passed to child processes unless the user specified the -x option. If
the user does not specify .POSIX and includes SHELL=shell_path on the
command line, make uses shell_path as its shell and also assigns it as the value of
the SHELL environment variable in the environment passed to child processes.

POSIX.2 Annex A: C Language Development Utilities Option

A.1.3 Options

-D
P. Additional implementation-defined names may be provided by the compiler.

S. The following additional names are provided by the C compiler:

unix

sparc (SPARC only)
1386 (x86 only)

sun

The above are not pre-defined in -Xc mode.
The following predefinitions are valid in all modes:

_sparc (SPARC only)

_i386 (x86 only)

_unix

_sun
_BUILTIN_VA_ARC_INCR
_SUNPRO_C=0x301
_SVR4

A.1.4 Operands

file.a
P. Implementations may recognize implementation-defined suffixes other than .a
as denoting object file libraries.

POSIX.2 201

202

S. None

file.o
P. Implementations may recognize implementation-defined suffixes other than .o
as denoting object file libraries.

S. None

-L library
P. Implementation may recognize implementation-defined suffixes other than .a
as denoting libraries.

S. None

A.1.5.2 Input Files

P. Additional input file formats are implementation-defined.

S. The C compiler recognizes the additional input file format: .il ~ files (inline
template files.)

A.1.7.2 External Symbols

P. The C compiler and link editor shall support the significance of external
symbols up to a length of at least 31 bytes; the action taken upon encountering
symbols exceeding the implementation-defined maximum symbol length is
unspecified.

S. The C compiler supports up to 1023 characters.

P. The compiler and link editor shall support a minimum of 511 external
symbols per source or object file, and a minimum of 4095 external symbols
total. A diagnostic message shall be written to the standard output if the
implementation-defined limit is exceeded; other actions are unspecified.

S. The number of symbols allowed by the C compiler per source file is dynamic
and only limited to the memory and disk space available on the system.

Standards Conformance Guide—November 1995

O
1]

A.2.6.1 Standard Output

P. If the -t option is not specified: (1) implementation-defined informational,
error, and warning messages concerning the contents of lex source code input
shall be written to either the standard output or standard error.

S. The lex utility writes all information, error and warning messages to the
standard error. For details of the text of those messages, see section A.2.6.2
Standard Error.

P. If the -v option is specified and the -n option is not specified, lex statistics
also shall be written to either the standard output or standard error, in an
implementation-defined format.

S. The lex utility writes these statistics to the standard error. For details of the
format of those statistics, see section A.2.6.2 Standard Error.

A.2.6.2 Standard Error

P. If the -t option is specified, implementation-defined informational, error, and
warning messages concerning the contents of lex source code input shall be
written to standard error.

S. The lex utility writes all information, error and warning messages to the
standard error. The following list shows these messages:

“Error: EOF in string or character constant”

“Error: EOF inside comment”

“Error: Non-terminated string or character constant”
“Error: Unexpected EOF inside comment”

“Error: Action does not terminate”

“Error: Can’'t open %s”

“Error: Cannot open file -- %s”

“Error: Cannot read from -- %s”

“Error: Character %o used twice”

“Error: Character range specified between different codesets.”
“Error: Character value %d out of range”

“Error: Definitions too long”

“Error: EOF before %%%%"

“Error: EOF inside comment”

“Error: lllegal definition”

“Error: lllegal rule”

“Error: Invalid request %s”

“Error: Non-ASCII characters in start condition.”

POSIX.2 203

204

“Error:
“Error:
“Error:
“Error:
“Error:
“Error:

“Error

“Error

“Error

None-ASCII characters in start condition.”

Parse error”

Parse tree too big %s”

Premature EOF”

Start conditions too long”

Too complex rules -- requires too many char groups.”

: Too late for %array”
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:

Too late for %pointer”

Too late for language specifier”

Too many (>%d) pattern-action rules.”
Too many characters pushed”

Too many definitions”

Too many large character classes”

: Too many packed character classes”
“Error:
“Error:
“Error:
: Too many states %s”
“Error:
“Error:

Too many positions %s”
Too many start conditions used”
Too many start conditions”

Too many transitions %s”
\Character table (%t) is supported only in ASCII

compatibility mode.\n"

“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:
“Error:

bad translation format

can'‘t have negative iteration”

ch table needs redeclaration”
definition %ws not found”

definition too long”

definitions too long”

executable statements should occur right after %%%%"
illegal extra \"\"”

illegal extra slash”

illegal number of packed character class”
illegal number of parse tree nodes”
illegal operator -- %c”

illegal position number”

illegal size of output array”

illegal state number”

illegal translation number”
incomplete translation format”
iteration range must be positive”
missing translation value”

output table overflow”

string name too long”
unacceptable statement”
undefined action string”

undefined start condition %ws”
unexpected EOF before %%%%"

Standards Conformance Guide—November 1995

O
1]

“Error: unmatched hyphen”

“Warning: Character ‘%wc’ used twice”

“Warning: No translation given - null string assumed”
“Warning: Non-portable Character Class”

“Warning: Non-terminated string”

“Warning: String too long”

“Warning: Substitution strings may not begin with digits”
“Warning: \"%c\” redefined inside brackets”
“Warning: \\a is ANSI C \"alert\" character”

“Warning: \\x is ANSI C hex escape”

“Warning: bad state %d %0”

“Warning: bad transition %d %d”

“Warning: invalid string following %%%% be ignored”
“Warning: string too long”

“Warning: the values between braces are reversed”
“Warning: undefined string”

P. If the -t option is not specified:

(1) implementation-defined informational, error, and warning messages
concerning the contents of lex source code input shall be written to either the
standard output or standard error.

S. The lex utility writes all information, error and warning messages to the
standard error. See section A.2.6.2 for a list of these messages.

P. (2) If the -v option is specified and the -n option is not specified, lex
statistics also shall be written to either the standard output or standard error,
in an implementation-defined format.

S. The lex utility writes these statistics to the standard error. The following list
shows these errors:
“%d/%d nodes(%%e), %d/%d positions(%%p), %d/%d (%%n),
%lId transitions, \n”
“%d/%d packed char classes(%%k),”
“%d/%d packed transitions(%%a),”
%d/%d output slots(%%o0) \n”

POSIX.2 205

206

A.2.7 Extended Description

A.2.7.1 lex

P. The input string that was matched is left in yytext as a null-terminated

string; yytext is either an external character array or a pointer to a character
string. As explained in A.2.7.1, the type can be explicitly selected using the
%array or %pointer declarations, but the default is implementation-defined.

S. By default, the lex utility behaves as if the user had explicitly selected the
%array declaration.

Definitions
P. The default type of yytest is implementation-defined.
S. The default type of yytext is char]]

P. In [Table A-1], n represents a positive decimal integer, preceded by one or
more <blank >s. The exact meaning of these table size numbers is
implementation-defined. The implementation shall document how these numbers
affect the lex utility and how they are related to any output that may be
generated by the implementation should space limitations be encountered
during the execution of lex .

S. The following table size declarations represent settable limits: %p %n %a %e,
%k and %a The lex statistics can be used to show the table sizes, which are set
by default using the values shown in table

Table 9-2

Declaration Description Default
%p n number of positions 2500
%n n number of states 500

%a n number of transitions 2000
%e n number of parse tree nodes 1000
%Kk n number of packed character classes 10000
%0 n size of the output array 3000

Depending on the system configuration and the available resources, limits may
affect what input lex can successfully compile.

Standards Conformance Guide—November 1995

O
1]

A.2.7.4 lex Regular Expressions

Table A-2 \digits
P. If the size of a byte on the system is greater than nine bits, the valid escape

sequence used to represent a byte is implementation-defined.

S. The lex utility does not support byte sizes greater than 8 bits.

A.3.6.3.3 yacc Description File

P. Limits for internal tables also shall be reported in an implementation-defined
manner.

S. The yacc expands the internal tables as needed. The only limitation is
system memory.

A.3.7.9 Limits

P. The exact meaning of these values is implementation-defined. The
implementation shall define the relationship between these values and between
them and any error messages that the implementation may generate should it
run out of space for any internal structure.

S. The internal tables are allocated dynamically. When system memory gets short
and allocation of memory fails, one of the following error messages is issued:

“Couldn’t allocate initial table”
“Could not allocate lookset array”
“Cannot allocate tables in mktbls”

POSIX.2 207

208

Standards Conformance Guide—November 1995

Other Standards 10=

This chapter discusses the conformance of Solaris to prevailing standards.

ANSI C Programming Language

The need for a single clearly defined C standard arose as use of the C
programming language expanded rapidly and a variety of differing translator
implementations were being developed. The American National Standard
Programming Language C addressed the problems this need posed to the
developer and the implementor by specifying the C language precisely.

The ANSI C standard specifies the syntax and semantics of programs written
in the C programming language. It specifies the C program’s interaction with
the execution environment through input and output data. It also specifies
restrictions and limits imposed upon conforming implementations of C
language translators.

The standard was developed by the X3J11 Technical Committee on the C
Programming Language under project 381-D by the American National
Standards Committee on Computers and Information Processing (X3). The
work of X3J11 began in the summer of 1983, based on several documents that
were made available to the Committee. The Committee divided the effort into
three pieces: the environment, the language and the library, and each of these
areas is addressed in the standard.

Note — The use of American National Standards is completely voluntary.

209

10

Compliance With the ANSI C Standard

Sun ANSI C is fully compliant with the ANSI C standard.

ANSI C Specification and Related Publications

ANSI/IEEE 754

The first manual listed below is the ANSI C standard specification. The second
and third manuals listed are part of the Solaris documentation set. The
SPARCompiler C Transition Guide describes techniques for writing new and
upgrading existing C code to comply with the ANSI C language specification.

® American National Standard for Information Systems Programming Language C,
American National Standards Institute

® SPARCompiler C 4.0 Transition Guide for SPARC Systems—-Sun Microsystems
® SPARCompiler C 4.0 User’s Guide-Sun Microsystems

The ANSI/IEEE 754-1985 Standard for Binary Floating-Point Arithmetic is a
product of the Floating-Point Working Group of the Microprocessor Standards
Subcommittee of the IEEE Computer Society. The standard defines a family of
commercially feasible ways for systems to perform binary floating-point
arithmetic. The issues of retrofitting were not considered when the standard
was defined; instead, the interests of the user community were placed above
the goal of industrial continuity at that time.

There are three major aspects to the standard: the format of data types, the
arithmetic and the exception handling. The objective of the standard is that an
implementation of a floating-point system conforming to it could be realized
entirely in software, entirely in hardware, or in any combination of hardware
and software.

Compliance With ANSI/IEEE 754

210

Sun FORTRAN 2.0.1 conforms to ANSI/IEEE Std. 754-1985.

Standards Conformance Guide—November 1995

10=

ANSI/IEEE 754-1985 Specification and Related Publications

The first document listed below is the IEEE 754 Standard. It is followed by a
Sun publication that discusses the standard.

® |EEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985.
® Numerical Computation Guide, Sun Microsystems, Inc., 1991

® A Proposed Standard for Binary Floating-Point Arithmetic, IEEE COMPUTER,
March 1981

International Standards Organization (1SO) 8859-1

ISO 8859 consists of several parts, each of which specifies a set of up to 191
graphic characters and the coded representation of each of these characters by
means of a single 8-bit byte. Each set is intended for use for a group of
languages.

ISO 8859, Part 1 specifies a set of 191 graphic characters identified as Latin
alphabet No. 1. The set of graphic characters comprising Latin alphabet No. 1
is intended for use in data processing and text applications and may also be
used for information interchange.

A set of graphic characters is considered in conformance with 1SO 8859 if it
comprises all graphic characters declared in the specification to the exclusion
of any other, and if their coded representations are those specified by ISO 8859.

Compliance With ISO 8859-1

Solaris is entirely compliant with the 1SO 8859-1 standard.

ISO 8859 Standard
® |International Standard 1SO 8859-1

Other Standards 211

10

Federal Information Processing Standard (FIPS) 151

Federal Information Processing Standards Publications (FIPS PUBS) are issued
by the National Institute of Standards and Technology (NIST) after approval by
the Secretary of Commerce.

The FIPS 151 standard is called the Kernel Operations Component of the
Applications Portability Profile (APP). FIPS 151 is part of a series of FIPS for
the APP.

FIPS 151-2, which corresponds to IEEE Std. 1003.1 - 1990 was ratified by NIST
on October 15, 1993. It supersedes FIPS 151-1 (which corresponded to
IEEE Std. 1003.1 - 1988) in its entirety as the POSIX.1 reference standard.

Compliance With FIPS 151

Solaris 2.5 conforms to FIPS 151-2 on several SPARC and x86 platforms.

FIPS 151 Specification

® The Federal Information Processing Standards Publication, National Institute of
Standards and Technology

Federal Information Processing Standard (FIPS) 158

212

The FIPS 158 standard is called the User Interface Component of the
Applications Portability Profile (APP).

The functional components of FIPS 158 constitute a toolbox of standard
elements that can be used to develop and maintain portable applications. FIPS
158 is the first step in responding to a need within the federal community for a
set of tools to develop standard user interfaces. FIPS 158 is based upon the X
Window System developed by the X Consortium. The X Window System
assumes a client/server model of distributed computing and user interface
applications based upon bit-mapped graphic displays.

The FIPS 158 standard adopts the specifications for X Version 11, Release 3
(X11R3). These specifications consist of the documents for the X Window
System Protocol, X Version 11: the Xlib-C language X Interface (Xlib), the X

Standards Conformance Guide—November 1995

10=

Toolkit Intrinsics-C Language Interface (Xt) and the Bitmap Distribution
Format 2.1. The interfaces specified in FIPS 158 represent the consensus of the
industry for lower-level X Window System interfaces.

Compliance With FIPS 158

OpenWindows, the Solaris windowing environment, conforms to FIPS 158 by
fully implementing X11 (Xlib) and the X11 protocol.

The OpenWindows OPEN LOOK Intrinsics Toolkit (OLIT) APl is an
implementation of MIT’s Xt toolkit (Xt intrinsics, Version R5) with an OPEN
LOOK widget set. OLIT is composed of prebuilt components that fit into
intrinsics applications. OLIT conforms with the Xt intrinsics toolkit; because
X11, Release 5 is backwardly compatible with X11, Release 4, OLIT conforms to
X11, Release 4.

OpenWindows fully supports ICCCM, which provides basic policy on rules for
transferring data between applications, transfer of keyboard focus, layout
schemes and colormap installation.

FIPS 158 Specification and Related Publications

® The Federal Information Processing Standards Publication; The User Interface
Component of the Applications Portability Profile, issued by the National
Institute of Standards and Technology, October, 1992.

® Solaris OpenWindows User’s Guide, SunSoft Press

The Application Binary Interface (ABI)

The Application Binary Interface (ABI) defines the binary system interface
between compiled applications and the operating system on which they run.
The ABI provides binary portability across UNIX System V Release 4 platforms
sharing the same CPU architecture.

The System V Application Binary Interface continues to evolve to address new
technology and market requirements and is reissued at intervals of
approximately three years. Each new edition of the specification is likely to
contain extensions and additions that will increase the potential capabilities of
applications that are written to conform with the ABI.

Other Standards 213

10

Compliance With the ABI

It is the intention of SunSoft to comply with the ABI as it evolves.

ABI Publication

® AT&T System V Application Binary Interface: Generic ABI and Application
Binary Interface SPARC Processor Supplement - Prentice-Hall.

® AT&T System V Application Binary Interface Intel 386 Processor Supplement

SPARC Compliance Definition (SCD)

The SPARC Compliance Definition (SCD) is a formal specification of the
system hardware and software to be met by manufacturers of SPARC systems
to ensure that those systems run compliant applications. The SCD also details
specific interfaces that can be safely used by an application with assurance that
the application binary will run on all compliant SPARC hardware platforms.

The SCD specification was developed by members of SPARC International (SI).
Sl is now responsible for administering usage of the SPARC trademark to
compliant systems.

Sun Microsystems and SunSoft worked with Sl to develop SCD 2.1 which is
closely connected to SVR4 and the SPARC ABI specification.

Compliance With the SCD

Systems produced by Sun Microsystems and SunSoft are fully compliant with
SCD 2.1.

SPARC Compliance Definition Specification
® SPARC Compliance Definition 2.1 - SPARC International

214 Standards Conformance Guide—November 1995

Index

Symbols
/Jusr/group, 1,4,9, 109

A

American National Standards Institute
(ANSI), 4,110, 209
ANSI/IEEE 754-1985, 210 to 211
Floating-Point Working Group, 210
three major aspects of, 210
Application Binary Interface (ABI), 7,8to
9,213

C

CDE Motif, 27
Common Applications Environment
(CAE), 2,29
BASE level/label, 30
OPTIONS level/label, 30
PLUS level/label, 30
Common Desktop Environment
(CDE), 21to 28
development history, 21
Session Manager
Window Manager
desktop server, 26

desktop utilities, 21

standardization of, 22

D

Data Link Provider Interface (DLPI), 11
DeskSet tools, 18

Device Driver Interface/Driver-Kernel
Interface, 10
AT&T DKI, 10
Sun DDI, 10

F

Federal Information Processing Standard
(FIPS), 212 t0 213

IEEE Standard 1003.1-1988, 1, 29

IEEE Standard 1003.1-1990
see POSIX.1

Inter-Client Communications Conventions
(ICCCM) 1.1 Session
Management protocol, 26

Inter-Client Communications Conventions
Manual (ICCCM), 19

International Electrotechnical Commission
(IEC), 2,3

215

216

International Standards Organization
(1s0), 2,3,211
I1SO 8859, 211
ISO/IEX C Language Standard, 30

N

National Bureau of Standards
see National Institute of Standards
and Technology

National Institute of Standards and
Technology (NIST), 3

O
OPEN LOOK Graphical User Interface
(GUI), 13to0 17, 18, 30, 66
applications, 14
certification levels, 14
environments, 14
trademark licensing, 14
OPEN LOOK Intrinsics Toolkit
(OLIT), 15,18, 213
OPEN LOOK window manager
(olwm), 18
OpenWindows, 15, 16, 18, 21, 30
OSF/Motif, 22 to 25
CDE compliance with, 22 to 25
OSF/Motif Style Guide, 23 to 25

P

POSIX.1, 1,9, ?? to 158
PostScript, 18, 19, 26 to 27

S

SPARC Compliance Definition, 214
and the SVR4/SPARC ABI
specification, 214
SPARC International (SI), 214
STREAMS, 11,12
Sun FORTRAN, 210

System V Interface Definition (SVID), 8to
10

Standards Conformance Guide—November 1995

and SunOS 5.x compliance with, 10
Base System Definition, 10
Extension Definitions, 10

System V Release 4 (SVR4), 7,11

T

toolkits, 14
Transport Level Interface (TLI), 12
Transport Provider Interface (TPI), 12

U

UniForum Technical Committee, 4

X
X Window Intrinsics C Language Interface
(Xt), 17,25
X Window System Version 11 (X11), 9, 17
to 18, 22, 25 to 26
CDE compliance with, 25 to 27
X.400 Application Programming Interface
Association (XAPIA), 28
X/0Open, 2to ??,29to 63
X/0pen Calendaring and Scheduling
API, 28
X/0Open CDE specifications, 27 to 28
X/0pen Conformance Statement
(XPG3), 30to 63
X/0pen Conformance Statement
(XPG4), 65,67t091
X/0Open Portability Guide, 2,9
X/0pen Portability Guide, Issue 3
(XPG3), 29 to 64, 65
X/0Open Portability Guide, Issue 4
(XPG4), 30, 65to 103
X3J11 Technical Committee on the C
Programming Language, 209
Xerox PARC, 13
XPG3 branding
Commands and Utilities, 31
Inter-Process Communication, 31
OpenWindows, 30

Source Code Transfer, 31
SPARCompiler C 2.0.1, 31
Sun FORTRAN, 31
Sun Pascal, 31
SunPro Compiler C, 31
XSI Curses Interface, 31
XPG4 branding
Commands and Utilities, 66
Inter-Process Communication, 67
OpenWindows, 66
Source Code Transfer, 67
SPARCompiler C, 66
SPARCompiler C 2.0.1, 66
Sun FORTRAN, 66
Sun Pascal, 66
XSI Curses Interface, 67
Xt toolkit, 18
XView toolkit, 15, 18, 19

Index 217

Copyright 1995 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
I'utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Etre
reproduits sous aucune forme, par quelque moyen que ce soit sans I’autorisation préalable et écrite de Sun et de ses bailleurs
de licence, s’il en a.

Des parties de ce produit pourront etre derivees du systéme UNIX®, licencié par UNIX System Laboratories, Inc., filiale
entierement detenue par Novell, Inc., ainsi que par le systeme 4.3. de Berkeley, licencié par I’'Université de Californie. Le
logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caracteres, est protégé par un copyright
et licencié par des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: I'utilisation, la duplication ou la divulgation par I’administration
americaine sont soumises aux restrictions visées a I’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et
aux logiciels informatiques du DFARS 252.227-7013 et FAR 52.227-19. Le produit décrit dans ce manuel peut Etre protege par
un ou plusieurs brevet(s) americain(s), etranger(s) ou par des demandes en cours d’enregistrement.

MARQUES

Sun, Sun Microsystems, le logo Sun, SunSoft, le logo SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+ et NFS
sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. UNIX est une
marque enregistrée aux Etats- Unis et dans d’autres pays, et exclusivement licenciée par X/Open Company Ltd. OPEN LOOK
est une marque enregistrée de Novell, Inc. PostScript et Display PostScript sont des marques d’Adobe Systems, Inc. OSF est
une marque enregistrée de Open Software Foundation, Inc. Zusr/group® est une marque enregistrée de UniForum.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour I'industrie de I'informatique. Sun détient une licence non exclusive de
Xerox sur I'interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN
LOOK GUIs et qui en outre se conforment aux licences écrites de Sun.

Le systeme X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/0U DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/0U LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

