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Abstract—We consider the problem of allocating a wireless
channel to mobile users moving on a straight road. The objective
is to maximize a given function of the total data transmitted.
We develop a model within the multi-armed bandit framework
and formulate an optimization problem under the constraint
that at most one user can be served at a time. We solve the
relaxed optimization problem, in which one user is served on
the average, and show it to be indexable. A simple and easy-
to-compute expression is given for the Whittle index. We then
propose a heuristic policy for the original optimization problem
using Whittle’s index policy. The proposed heuristic is shown to
perform well compared to some other heuristics in various settings
including dynamic scenarios with arrivals of new users and the
presence of heterogeneous users.

Index Terms—Markov Decision Process, restless multi-armed
bandit problem, Whittle’s index, scheduling, drive-thru internet

I. INTRODUCTION

Drive-thru internet has seen a recent resurgence due to an
increase in demand for high-speed internet access from mobile
users [1], [2]. A typical scenario for drive-thru internet is a
WiFi hotspot or access point (AP) that servers users moving
along a straight line as shown in Figure 1. For example, these
users can be cars or pedestrians moving on (or along) a long
avenue. Various question related to link-layer scheduling and
resource allocation [3], [4], MAC layer retransmissions [5],
message scheduling using network coding [6] have recently been
investigated by taking into account the specific mobility pattern
of the drive-thru internet systems.

In this paper, we revisit the multi-class scheduling problem
for Markovian queues [7], [8], [9] in the context of a drive-
thru internet. Consider users of different classes (i.e, different
mean service requirements) moving along a straight line in the
coverage area of an AP (Fig. 1). Users enter the coverage range
from the left and leave from the right. In each time-slot, the AP
has to determine which user to serve in order to maximize a
given long-term objective. The AP can serve at most one user
in each time-slot. Users receive a rate depending upon their
distance from the AP: users who are closer have a higher rate
(as shown in Fig. 1). The trade-off is between serving users with
a higher rate and users who leave first.

A. Contributions

We model the problem as a Markov Decision Process whose
solution can be computed numerically for small number of users
but becomes computationally intractable for large instances. We
shall rely on the multi-armed bandit approach of Whittle [10],
[11] to obtain a heuristic based on the Whittle index. In order
to compute the index, one needs the technical condition called
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Fig. 1: A drive-thru internet network.

indexability which cannot always be proven. Even when one can
prove indexability, the indices are not easy to compute ([12],
[13] and references therein). Using the special mobility pattern
(users move one spatial-slot to the right in each time-slot), we
show the indexability of a simplified model with no arrivals
and give a simple computational procedure for these indices.
The indices are obtained as a function of the position and the
class of the user. The heuristic then serves the user with the
highest index. It will be shown that this index is not the same
as the greedy algorithm (or the cu-rule [14]) that assigns the
channel to the user with the largest product of channel rate
and mean service requirement. Several numerical experiments
will be presented to show the performance improvements of
the proposed heuristic with respect to the greedy policy. In
particular, the improvements are seen to be more pronounced
when there are more classes of users.

B. Related work

In [6] the authors develop an information-theoretic formula
for the total amount of information that a vehicle can receive
(for only one user) when it passes the broadcast zone of
a BS. Vehicles moving in a road may have blind zones in
which they might not receive signal from the base station. To
circumvent this problem, they propose and analyse the benefits
of cooperative scheme for joint V2V and V2I communications
in order to improve the system capacity.

In [15] the authors investigate a utility maximization problem
for video transmissions for multiple vehicles and one AP. The
setting is similar to ours. They formulate the problem as integer
programming problem when the future arrivals are known in
order to obtain a benchmark. Since the integer programming
problem is intractable for large instances, they propose a heuris-
tic based on the utility potential. For each user this potential is



computed as the maximum amount of utility that a user can get
if it were served continuously for a certain number of slots. The
user with this highest utility potential is served. This algorithm
is similar to the Gittins’ index policy which does not take into
account the change in state of users.

Index policies have long been known in scheduling theory.
In general, the solution to a scheduling problem will be a
complex function of all the input parameters and the number
of competing jobs. In practice such problems can be solved
only for very specific instances. Remarkably, in some cases, a
so-called index policy is optimal. For example, the optimality
of cu and SRPT [16] can be cast in the framework of Multi-
Armed Bandit Problems (MABP), a broad class of resource
allocation problems for which index policies are known to be
optimal. A MABP is a particular case of a Markov Decision
Process: at every decision epoch the scheduler needs to select
one bandit, and an associated reward is accrued. The state of
this selected bandit evolves stochastically, while the state of all
other bandits remains frozen or rested. The scheduler knows the
state of all bandits and aims at maximizing the total average
reward. In a ground-breaking result Gittins showed that the
optimal policy that solves a MABP is an index rule, nowadays
commonly referred to as Gittins’ index policy [11]. Thus, for
each bandit, one calculates Gittins’ index, which depends only
on its own current state and stochastic evolution. The optimal
policy activates in each decision epoch the bandit with highest
current index.

Despite its generality, in multiple cases of practical interest
the problem cannot be cast as a MABP. For example, mo-
bility of users directly invalidates the requirement that non-
selected bandits remain frozen. In a seminal work [10], Whittle
introduced the so-called Restless Bandit Problem (RBP), a
generalization of the standard MABP in which all bandits might
evolve over time according to a stochastic kernel that depends
on whether the bandit is made active. RBP provides a powerful
modeling framework, but its solution has in general a complex
structure that might depend on the entire state-space description.
In fact, it is known that RBP are PSPACE-hard even in its
deterministic variant [17], and typically suffer from the curse
of dimensionality.

Whittle considered a relaxed version of the problem (where
the restriction on the number of active bandits needs to be
respected on average only, and not in every decision epoch), and
showed that the solution to the relaxed problem is of index type,
referred to as Whittle’s index. Whittle then defined a heuristic
for the original problem, referred to as Whittle’s index policy,
where in every decision epoch the bandit with highest Whittle
index is selected. It has been shown that the Whittle index
policy performs strikingly well, see [18] for a discussion, and is
asymptotically optimal under certain conditions, see [7], [19].

As mentioned earlier, Gittins’ index is optimal for the "rested’
bandit problem, i.e, in which the bandits do not change state
if they are not served. Moving users, on the other hand, are
'restless’, since users change state (or position) even when they
are not served. Thus, a better approach for drive-thru internet is
the Whittle’s relaxation based method for restless bandits which
we shall follow in this paper.

C. Organization

The rest of the paper is organized as follows. Section II
formally describes the general setting and casts the problem
as an MDP. It also proposes the simpler model of no arrivals.
Section III states the main result on the indexability of the
model of no arrivals and gives an easy to compute formula
for the indices. The heuristic Whittle-index policy based upon
the main result is presented in Section IV. This section also
contains numerical comparisons of the proposed policy with
other policies. The conclusions and further research directions
appear in Section V. Some of the proofs have been moved to
the appendix for improved readability, and some other have been
omitted due to lack of space.

II. PROBLEM FORMULATION

Consider an AP with a coverage range of length L (see
Fig. 1). The users enter the coverage range from left, move
at a constant velocity, and leave from the right. Every A time
units the AP has to decide which user to serve. Let v be the
velocity of the users. Then, the coverage range can be divided
into spatial-slots on length vA = o. Let S = {0,1,2,...,N},
where N = L/o — 1, denote the set of spatial-slots with the
convention that slot O is the leftmost slot. The length of the time-
slot is assumed to be much smaller than the coverage range of
the AP (in the order of hundreds of meters). This is a reasonable
assumption since scheduling decisions are made every 10-20 ms
during which a car inside a city would move a distance of less
than a meter.

The data rate received by a user in spatial-slot s depends on
the distance between the AP and s. Users that are closer to the
AP will get a higher rate than the users that are closer to the end
points. We shall assume that the Signal-to-Noise Ratio (SNR)
has a polynomial decay: SN R(s) = C1d(s)~" and that the data
rate in slot s, C(s) can be obtained using Shannon’s law:

C(s) = Calog(l + SNR(s)). (1)

For more information on these formulae, we refer to [6]. The
amount of data that is transmitted in a time-slot, 7(s), to a user
served at rate C(s) will thus be C(s)A.

Assumption 1. The function r(s) is unimodal with maximum
at s = N/2 (assuming N is even). It is non-decreasing on the
left and non-increasing on the right.

The assumption is quite natural and is satisfied by the rate
function derived from (1).

The total volume of data requested by user ¢ is assumed
to be an independent and exponentially distributed random
variable with rate ;. Here b is the class of user 7 and
b € B := {1,2,..B}, where B is the number of classes.
Thus, the probability that a user of class-b who is served in
slot s finishes its data transfer in that slot is 1 — exp(—n7(s)).
The assumption of exponential data volumes ensures that this
probability is independent of past allocations.

In each time-slot, users arrive in spatial-slot 0 according to a
categorical distribution on BU{0}. The outcome 0 corresponds
to no arrival in that time-slot. The probability that a user of
class-b arrives in time-slot will be denoted p, for b € B. If
> v < 1, then there is a non-zero probability of there being
no new arrival in a time-slot.



A. Objective

In each time-slot, the AP can choose at most one user (or a
spatial-slot) to serve, that is, its set of actions is A = {e; }ics
with e; being the unit vector for the ith coordinate.

For a given policy 7 of the AP, let S™(t) € ({0,1} x B)®
be the stochastic process that indicates whether a spatial-slot is
occupied by a user or not and tells the class of the user if it is
occupied. The objective of the AP is:

T

max lim sup 1 > R(S™(t),a™(S7(t),1)), (OBJEC)
T Tooo 1 i—0

where a™(s,t) € A is the action prescribed by policy 7 in the

state s in time-slot ¢. And R™(s,a) is reward one-step after

choosing action a under 7 for state s which is described in this

below assumption.

Assumption 2. The reward in a time-slot is sum of the rewards
of each user, where the reward of a user is a strictly positive
and increasing function of the rate if it is served and 0 if it is
not served.

In our problem, reward one-step of a user is its departure
probability in that slot, which is a strictly positive and increasing
function of that user’s rate.

From the assumptions on the data volumes and the arrival
process, it can be seen that this problem is a classical average-
cost MDP [20]. There exists an optimal stationary (time-
independent) policy that can be computed numerically. The
drawback of this formulation, however, is that the number of
states in any practical scenario is too large to allow numerical
computation. As mentioned in the Introduction, for time-slots of
10-20 ms and a coverage length of 100-200 m, the number of
spatial-slots, N, is of the order of a thousand. The state space
of S(t) will have ~ B2Vl = B21900 elements making the
problem intractable. Even for 20-30 spatial-slots, the problem
is not computationally tractable in reasonable time.

Instead of treating the problem in its full generality, as a first
step, we shall focus on a simplified instance of the problem in
which there are no arrivals, that is p, = 0, Vb € B. This will
allow us to obtain certain heuristics that will then be used for
the general problem.

B. Finite horizon MDP for problem with no-arrivals

Let there be K users at time 0, and let X;(¢t) € N := S U
{N + 1} be the position of user-k in time-slot ¢. The special
state N +1 indicates that the user has departed the system either
because it has moved out of the coverage range or because its
demand has been satisfied. We shall assume that the parameter
of the exponential distribution for user-k is 7. That is, each
user could potentially be of a different class.

Since there are no arrivals, the process S(t) can be replaced
by the process X(¢) := (X1(t),... Xk (t)). Let ar(t) € {0,1}
denote whether user-k was served in slot ¢ or not.

With these definitions and Assumption 2, it can be seen that
the problem (OBJEC) is equivalent to the following problem
finite-horizon MDP when there are no arrivals:

maxe gy Sy Sl BR(R(Xk (1), ax (1))
subject to
S L ar(t) <1,t=0,1,2,...,N,
ap(t) € {0,1}, Vk,t
(NOARR)

Here X (0) = x is the initial position of the users and Ry (x,a)
is the reward obtained (i.e., data transferred) by the user-k when
action a is taken in state z. The constraints on the actions
indicate that at most one user can be served in a time-slot.
Further, the horizon of the problem can be constrained to N
since all users would have left the coverage range by that time.

In general, optimal policies for finite-horizon problem need
not be stationary. However, (NOARR) is a particular type of
finite-horizon problem known as the stochastic shortest path
problem ([21], e.g.) for which, under certain assumptions,
there exists a stationary optimal policy that is the solution of
Bellman’s equation.

Lemma 1. Problem (NOARR) admits a stationary optimal
policy that satisfies Bellman’s equation.

The proof is based on showing that (NOARR) satisfies the
sufficient conditions (e.g., Assumptions 1 and 2 in [21]) for a
stochastic shortest path problem to have a stationary optimal
policy satisfying Bellman’s equation.

This result will be important later on when we shall derive a
heuristic based on Whittle’s index.

With some abuse of notation, let 7, = r(x). For a user-k,
given ay(t) = a, Xi(t) has the transition probabilities:

y=x+1l,x# N+ 1;
), y=N+1,2# N+1;
1, y=N+1,z=N+1;
0, otherwise.

ae” =M 4+ (1 — a),

a(l —e=T=mw
Py (y|z.a) = (

@)
It now follows that (i) the dynamics of each user is Markovian
and is independent of that of the other users conditioned on the
action. Further, each user can change state whether it is served
or not. (ii) the reward function is decomposable into sum of
rewards of the individual users.

Problem (NOARR) is thus an instance of the RBP framework
considered by Whittle [10], [11]. The bandits in that framework
correspond to users in our problem'. We note that (NOARR)
is a finite-horizon problem whereas most of the work in the
literature on RBPs is on the infinite-horizon setting. The fact that
(NOARR) is also a classical stochastic shortest path problem
allows us to use results of the infinite-horizon setting for the
present problem as well.

IIT. WHITTLE’S RELAXATION AND INDEXABILITY

One of the difficulties in solving (NOARR) comes from
the constraints that need to be satisfied in each time-slot. To
overcome this, Whittle proposed to relax the constraint that at
most one user is served (or active) per time and to replace it
by the constraint that at most one user is active in average over
time. He then considered the Lagrange relaxation of the problem
with relaxed constraints and arrived at K sub-problems—one
for each of the K users—thus reducing the dimension of the
problem considerably (from NX to N).

Following Whittle’s approach, we obtain the following K
sub-problems:

maxy, iy ETF(Ri(Xk(t), an(t)) — v o Ex* (an(t))
subject to ar(t) € {0,1},V¢
(SUBP-k)

'From now on, we shall use bandits and users interchangeably to mean the
same thing. Similarly activating a bandit will mean serving a user.



where v is the Lagrange multiplier of the relaxation of the
constraint of one active user per slot on an average. Sub-
problem-£, (SUBP-£), can be seen as the problem solved by the
AP when user-k£ is alone in the system and there is a penalty v
on the actions. Note that each (SUBP-k) is again a stochastic
shortest path problem which can be solved independently of the
other users, and to which Lemma 1 can be applied to argue the
existence of a stationary optimal policy.

Intuitively, v can be seen as the penalty for being active (or
being served) because it reduces the reward for taking ax > 0.
If v = —o0, then it is optimal to activate all the bandits while
if v = +o00, then the optimal policy is to inactivate the bandits.

From now on, we concentrate on (SUBP-k), and omit index
k in the variables to simplify the notation. For a given v,
any stationary policy, m, can be characterized by its active set
Q" (v) = {z : a(x) = 1} which is the set of states in which
the bandit is active. Let Q*(v) C NV to be the active set for the
optimal policy of (SUBP-k). It can be seen that Q*(0) = N
is the set of all states. This is because there is no penalty for
taking a = 1 and in each state this action gives at least as much
immediate reward as a = 0. Similarly, Q*(c0) = () since a =1
has too high a penalty.

Definition 1. For v € [0,00), a bandit is said to be indexable
if Q*(v) is monotonically decreasing in v, that is 11 < Vg &
Q*(l/l) 2 Q*<V2).

If a bandit is indexable, we can define the Whittle index of
a state (for more details see [10], [11]).

Definition 2. Given an indexable bandit, the Whittle index v,
of a state x, is the largest value of v such that it is optimal
to activate the bandit in that state. That is, v, = sup{v|x €

From the above definition, we have
v, >veaxeQ(v). 3)

The Fig. 2 illustrates the indexablity of an instance of (SUBP-k)
with N = 200 and n = 1/3. Once a state is in the passive zone
it never comes back into the active zone when the multiplier
v is increased. Later, we shall prove formally that (SUBP-k)
is indeed indexable. The index v, gives us an indication of
how profitable it is to activate the bandit (or serve the user) in
state x. If v, > v, it means that a higher penalty is required
not to serve in state x compared to state y. That is, it is more
profitable to serve in a state with a higher Whittle index.

This motivates the following heuristic policy: given the state,
the data rate, and the class of each user in the coverage, the
AP serves the user with the highest current Whittle index. For
this heuristic to be work, the bandits need to be indexable.
In the next section, we show that this is true for the bandits
defined by (SUBP-k) and give a relatively cheap method for
the computation of the Whittle indices.

A. Indexability

In the rest of the paper, we shall make the following assump-
tions which will simplify the presentation. The results carry over
under the more general conditions mentioned in Assumptions 1
and 2.

Assumption 3. ) The probability of leaving due to service
in a time-slot in state x is approximated by npr.

200 .
Passive

Active

160
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Fig. 2: Illustration of indexability.The darker (resp. lighter)
region indicates the bandit is active (resp. passive). n = 1/3
and N = 200.

2) The reward function is Ry(x,a) = ry - 1 - a. Here, the
factor ny, can be seen as the weight of user-k.

The approximation of probability is justified when the dura-
tion of time-slot is small compared to the average time required
for service completion. Hence, the probability of departure due
to service completion, 1 —e~""= can be approximated by 7,7 .

For indexability, we shall restrict the domain of v to [0, +00).
Denote by V' (z,v) the value function, i.e.

N N
Viz,v) = mngE;“(R(X(t), a(t)) — vy _EZ(a(t)).
t=0 t=0

From Lemma 1, we know that even though (SUBP-£) is a finite-
horizon problem, its value function satisfies Bellman’s equation.
That is, V' is the solution of

V(z,v) = max

ac{0,1} (R(x,a) N V)a+ Z P(y|x7a)v(y7y)

yeN

Replacing R(z, a) and P(y|z, a) with values from Assumption
3, the above equation simplifies to:

V(z,v) = ag%ﬁ}{(mn —v)a+ (1 —rpna)V(z+1,v)} 4)

Recall that state N + 1 is the terminal state in which the user
has left, so V(N + 1,v) = 0 for any v. For 2 = 0,1,...N,
define:

VOx,v) =
Viz,v) =
Eqn. (4) is then V (,v) = maxyq 1y {V'(z,v),VO(z,v)}.

V(z+1,v),
(ran—v)+ A —ren)V(zx+ 1,v).

Remark 1. V!(x,v),VO(x,v),V(x,v) are continuous and
non-increasing in v since each is the maximum of finite number
of continuous and non-increasing functions of v.

From the definition of indexability (see Definition 2), Whit-
tle’s index of state x, is the value of v such that

Viz,v,) = VO (x,v,) with v € [0, +00). Q)

We shall prove that for any z, (5) has exactly one solution, called
v, and thus it is the Whittle index of the state x. The existence



and uniqueness of the solution implies indexability. Indeed, if
(5) has a unique solution, then due to continuity of V'!(z, ) and
VO(x,v) in v it implies that the sign of V!(x,v) — VO(z,v)
changes only once in [0,00) and this change happens at v,.
Since V! (z,00) < VO(x,0), we have V! (z,v) < VO(x,v) for
v € [Vg,0) and Vi(z,v) > VO (x,v) otherwise. This argument
will be made formal in Theorem 1 below.

Assume N is even (the arguments of the proof also work
when N is odd). It will be convenient to divide the state-
space, N, into two subsets: one on the left of the AP, N™ =
{0,1,2,...,N/2—1} and one on the right of the AP (including
in front of the AP), Nt = {N/2,N/2 +1,...,N + 1}. For
convenience, define f(z,A) for x € N7, A € N as follows:

A i—1
rrn(l = i1 Tl Hj:ac—i—l(l - 7”3'77))
A i—1 :
1- Tzn(zz‘:xﬂ Hj:erl(l — ;1))
The following theorem shows the indexability and gives the

formula for the unique solution and characterizes the behavior
of the indices.

[z, A) = (6)

Theorem 1 (Indexability). For each state x, the equation (5) has

a unique solution denoted by v,. (SUBP-k) is thus indexable.

Further, the index is given by:

1.1 For x € N'T, that is, on the right, v, = rzn, and VUNy2 >
VN/2+1 > .- > UN.

1.2 For x € N, that is, on the left, v, = f(x,A(x)) where
A(z) € N such that f(xz, A(x)) € [ra@)+17:Ta()N);
and vg < vy < -+ <vnja_1 < Unj2

The index of the states on the right-hand side (x € N'7T) is
straightforward, and for x € N~ a simple linear search yields
A(x) which can be plugged into (6) to obtain the index.

Consider two symmetric states  and N — x, with one on
the left and the other on the right of the AP. The following
proposition shows that Whittle’s index policy always gives more
priority to the state on the right hand side.

Proposition 1. (Right priority) Suppose r, is symmetric about
x = N/2, that is rn/o—y = TNj24a- If © and y are symmetric
(x+y = N), with x on the left (v < N/2) and y on the right
(y > N/2), then v, < vy,

For symmetric states, the Whittle index gives priority to the
users on the right-hand side because they leave the system
earlier than users on the left who will pass through much more
favorable channel conditions later on. Thus, one can wait to
serve them later and hope to get a better reward.

IV. WHITTLE-INDEX BASED POLICY

We now come back to the original optimization problem

(OBJEC) for which we propose the following heuristic based
on Theorem 1.
Whittle-Index Policy (WIP) (See Algorithm WIP): In each
time-slot, the AP takes as input the current position, the data rate
and the mean service requirement of each user in its coverage
range. Using Theorem 1, it computes the Whittle index for each
user. The channel is allocated to the user that has the highest
current Whittle index. If there are two or more users with the
same index, one is chosen arbitrarily.

The WIP shall be compared with the following policies.

o Optimal: obtained by solving (OBJEC) (or (SUBP-k) de-

pending upon the scenario). The optimal policy can only

Algorithm WIP: Heuristic based on Whittle indices

1 for every time step t do
Input : Vectors X(t), rx(, and 7
Output: a*

a* 0
3 1 = arg MaXge(¢) Vi, X () /* choose one
arbitrarily, if more than one */
4 a; <1
5 end
nt=2 nt=6
0.2 0.07
0.18 — Whitlle — Whitlle
; — - Greedy 0.06 4 A |~ Greedy
0.16 1 i - Gittins / - Gittins

0.051
0.04
0.031
0.02 1

=
0.01

0 20 40 60 80 100
spatial-slot

spatial-slot

Fig. 3: Comparison of the one-step reward curve (Greedy),
Gittins’ index and the Whittle’s index for two different values
of n.

be computed for small number of time-slots so will not be
shown when this number is large.

e Greedy: chooses the user with the best one-step reward,
that is, the user with the largest 7.

o Gittins: serves the user with the best Gittins’ index, which
is defined as follows. Let 7, = min(s, 7) with 7 = inf{t >
0: X (t) = N + 1}. Then, for state z,

Gi(a) = sup Zis Ba(R(X(®),a(t) = 1)

s>1 Ts

(N

e RMS: gives priority to the right-most user.
e LMS: gives priority to the left-most user.

Fig. 3 illustrates the Whittle index, and compares it with the
one-step reward (which is also the departure probability), and
Gittins’ index. The one-step reward can be seen as the index of
the greedy algorithm which chooses the user with the highest
one-step reward. To the right of the AP, all the three indices
coincide. On the left, however, Whittle index is below the index
for greedy (Prop. 1) and Gittins’ index is above greedy.

In the first setting, there are no arrivals and all users belong
to the same class. The number of time-slots is N = 100, the
mean service requirement is 77_1 = 1, and the rate curve, 7,
is given in Fig. 3. There are K cars at time 0 and their initial
position is chosen randomly. Several runs were performed, each
with a different initial condition.

For various values of K, Table I gives the average total reward
obtained after averaging over 1000 experiments for different
policies. The optimal policy is not evaluated because of the
large size of the state-space. The last column of the table gives
the percentage improvement of WIP with respect to the greedy
policy. WIP outperforms all the other policies, except for RMS



TABLE I: Comparison of policies in case of no arrivals

# users | Whittle | Greedy | Gittins | RMS LMS % gain
K W) (&) W vs G
2 0.0195 0.0188 | 0.0187 | 0.0197 | 0.0186 3.7
5 0.043 0.039 0.039 0.045 0.037 10.3
10 0.082 0.070 0.069 0.077 0.061 17.1
20 0.129 0.114 0.113 0.080 0.086 13.2
40 0.195 0.190 0.189 0.080 0.109 2.6
60 0.226 0.224 0.224 0.080 0.122 0.9

for low values of K. At the two extreme values of K, both
WIP and Greedy have the same performance but for moderate
number of users one can gain up to 17% with WIP.

Numerical results when there are new arrivals: We now
move to setting with new arrivals to the systems. Recall that in
each time-slot a new user of class-b arrives with a probability
pp in the left-most spatial-slot. We first compare the policies
for a small number of spatial-slots, N = 11, and one class
of users. This allows us to compute the average reward of
the optimal policy. In Fig. 4, the average total reward is
plotted for the policies as a function of the probability of new
arrival. We observe that Whittle policy almost overlaps with the
optimal policy, and outperforms all the others. The closeness to
optimality is a coincidence and need not always happen.
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Fig. 4: Comparison of policies when there are new arrivals,
number of spatial-slots is small (N = 11) and one class of
users.

As a final comparison, for N = 100 and three classes of users,
we show in Fig. 5 the average total reward of different policies
as a function of the probability of new arrival denoted by p, after
averaging over 1000 experiments for different policies. Here
py = 1/3p, Vb, that is, a new arrival belongs to one of the three
classes with equal probability. The mean service requirements
of the three classes are: ;' = 0.8, ;' = 1.4, and 75 " = 4.2,
The optimal policy cannot be computed for this N. This time
the optimal policy is not shown because the state-space is too
big to allow for its computation.

It is observed that the Whittle policy performs much better
than the greedy policy when there are more number of classes.
The improvement is visible for a larger range of the probability
of new arrivals compared to when there is only one class of
users.
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Fig. 5: Policy comparison when there are new arrivals, number
of spatial-slots is large (/N = 100) and three user classes.

V. CONCLUSIONS AND FUTURE WORK

Whittle’s restless multi-armed bandit provides an elegant
framework for computing scheduling decisions in a drive-thru
internet scenario. The mobility model of this scenario makes the
problem indexable and allows for an easy computation of the
Whittle index. This index has the property that, between two
users who have the same rate but who are on the opposite sides
on the access point, it gives priority to the user on the right
because the user on the left can be served later on. It was seen
from numerical experiments that the heuristic policy based on
Whittle index (WIP) outperforms the greedy policy in various
settings including dynamic arrivals and heterogeneous users.

This framework opens several interesting questions related
to the optimality-gap of the proposed heuristic as well as
generalizations of indexability to models with users moving
on larger networks and with varying speeds. A formal proof
showing that WIP is better than greedy is also open.
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APPENDIX

We divide the proof of Theorem 1 into three steps:

« Proof of the existence of the solution of (5), which is given
in Proposition 2.

e Proof of Theorem 1.1 for the states on the right. The
statement is given in Proposition 3.

e Proof of Theorem 1.2 for the states on the left. This is
presented in Proposition 4.

Proposition 2. For each x, the (5) has at least one solution
v e (0,+00).

For the proof of Prop. 2, we need the following two lemmas.
Lemma 2. If v =0, V1(z,0) > V%(x,0), for  =0,1,... N.

The proof of this lemma has been omitted due to space
restrictions.

Lemma 3. For any v > max,—o1, n{r.n} Vi(z,v) <
VO (z,v), x =0,1,...N.

Proof: We prove by induction in reverse direction from
state IV to state 0. For x = IV,
VYN,0) =ryn—v < 0=V°N,0),

since 7,m < v. So, V(N,0) = V}(N,0).

Suppose the claim is true until state =, ie, V(y,0) <
VO(y,0) so that, for any y > z, V(y,0) = V°(y,0). Then,
by value interaction we have:

V(y,0)=0
for any y > x. Thus, for state x — 1, we have
Viz—1,0)=r,_n—v<0=V"x—1,0).

|

Proof of Prop. 2: Using these two above lemmas and

the continuity V(x,-) and V°(z,-) in the second variable, we
conclude that (5) each has at least one solution. [ |

For the other two parts of the proof of Theorem 1, we need
the following lemmas. The proofs have been omitted due to lack
of space.

Lemma 4. If Ay, By, Az, By, ..., Ay, Bi. > 0,k > 2 and 5+ <
% < < % then
2 k

A Aty At Apd et Ay
By  Bi+ B, By + By +---+ By,
Lemma 5. I[f Ay > Ao+ A3 +---+ A >0,B; > B+ B3+
---+Bk>0,k22and%>%;>-~->g—:then
A _ A=Ay A=A Ay
B = By - B, Bi—By— -~ By
For every A > z, define:
A i—1
a(w,A)=1- % v [ (1 =rm),
i=a+1l  j=a41
A -l

bz, A) := Z H (1 —r;m).

i=z+1 j=x+1

Then we can rewrite f as:

~ rena(z, A)
A S TENN)

We now state the result on the uniqueness of the solution of
(5) on the right hand side, and give its properties. We also
characterize the behaviour of the value function in this region
which will be used later for the proof of Theorem 1.

Proposition 3. (For Theorem 1.1) For any x > N/2, Egn. (5)
has a unique solution v,. Moreover, we have:
1) vy =71y Thus, vnyo > Unja41 > -0 > UN.
2) The value function takes the following form:
*x If v > ryn, then V(z,v) =0,
* If 0 < v <rym, then

V) =3 (TI0-rm | G-, @

where y € {x,x+1,..., N} is such that ryp1n < v < ryn,
with the convention rn11 = 0.

The proof of this proposition has been omitted due to space
restrictions. Next, we move to the proof of Theorem 1.2.

Proposition 4. (For Theorem 1.2) For every state on LHS x <
N/2—1, Egn. (5) has a unique solution v,. Moreover, we have:
1)
vy = f(x, A%(x)),

where A*(x) > N/2 is chosen such that f(x,A*(x)) €

[ A% (@) 417 T A= (2)7)-
2) v, increases in x on LHS, i.e,

Vo <vp <vp < <Vnj—1 <TnNy2l = VN/2-

3) The value function has the following form:
* If v > vy, then V(z,v) =V(x+ 1,v).
* If 0 < v < vy, then

V(zg,v)=(ran—v)+ (1 —ryn)V(z+ 1,v).



Before proving Prop. 4, we need to characterize properties of
function f(z, A) which are described in the following lemma.

Lemma 6. For a fixed x € N~ define D, = {A|A >
N/2, f(z,A) > 0}. Recall from (6) that f is defined only
on integers. Let A*(x) € D, be the smallest value for which
ra@+nn < f(@, A%(@)) <7rax@n. Then,

A*(z) = arg min f(z,A).

Moreover, for fixed x and considering f(x,A) as a function of
A in D, then f decreases from N/2 to A*(x) and increases
from A*(z) to b. Outside of D, f(x,A) is either negative or
infinity.

The existence of A*(x) will be proved in Lemma 7 for x =
N/2 — 1 while, for other values of z, existence will be shown
in the proof of Prop. 3.

Lemma 7. A*(N/2 — 1) > N/2 exists. Further, the equation
VY(N/2—-1,v) = VO(N/2—1,v) has a unique solution which
is: VN/2—1 = f(N/2 — I,A*(N/Q — 1))

Moreover,
1. If v <vnja—1, then V(N/2 = 1,v) = (rnjo—1m—v) + (1=
TN/27177)V(N/27V),
2, Ifv>vnjo_q, then V(N/2 —1,v) = V(N/2,v),
with V(N/2,v) given in Prop. 3.

We will prove Prop. 4 by induction on states x < N/2 — 1.
That is, we will show that (5) has a unique solution, v, and that,
on the left-hand side, v, increases in z,ieif x <y < N/2—1
then v, < vy,

Proof of Prop. 4: We shall prove the claim by induction in
the reverse direction. For state N/2 — 1, the claim follows from
Lemma 7. Suppose the claim is true until state © < N/2 — 1.
We now prove for state  — 1. Consider the equation:

Te—1M —V =1e_1nV(z,v).

By Lemma 2, we know that it has at least one solution. Suppose
v is a solution of this equation.

o If > ’/‘N/QT], then
Te1N —V =1y 1V (z,v) = =71,V (N +1) =0,

which follows by the induction hypothesis for all states in
{z,z +1,..,N/2 — 1} and by Prop. 3, for all states in
{N/2,N/2+1, ..., N}. This implies that v = r,_11 < 727,
which leads to a contradiction with v > 7x/27.

o If v, < v < wpy; then there exist y1,y2 such that:

S [Vylv’/y1+1) N [T’y2+17777“y277)~

So, by induction hypothesis and Prop. 3, we can develop
V(z,v) to get:

Vix,v) Vie+1lLv)=---=V(y1+1,v)

(ryye1n —v) + (1 =7y, 1)V (y1 +2,v)

Y2 i—1
= > | II a=rm | @m—w).
i=y1+1 \Jj=y1+1

Now, the equation r,_1n—v = r,_1nV (z, ) becomes linear
in v, which can be solved to get:

re—1na(y1, y2)

1 —remb(yr,y2) o
We have:
- re—1na(y1,y2) ry 1a(ys, o) = f(y1,92)
1L=reanb(yr,y2) 1 =7y, nb(y1,y2) | (171)

and we remark that yo < A*(y;). Now, there are two sub-

cases:

- Ifyo = A*(y1) then vy, = f(y1, A"(y1)) = f(y1,92) > v,
where the last inequality is due to (11). This contradicts
v 2> vy, in (9).

— Suppose y2 < A*(y1). From (9), we have v €
[Tyot17, Tyom), and by (11) we have v < f(y1,y2).
Therefore, f(y1,y2) > ry,+17. Note that the statement
f(y1,y2) < ry,n cannot be true because this will imply that
A*(y1) = y2. On the other hand, by induction hypothesis,
A*(yy) is the unique state that satisfies f(y1, A*(y1)) €
[TA*(y1)+17: Tax(y)1) and we have assumed that yo <
A*(yp). Thus,

fy1,92) > 1y,m. (12)

Define Ay =1y, n-a(y1,y2), B1 = 1—7ry,n-b(y1,42), and
for k = 27,A*(y1> —y2+1,
y2+k—2
Bk’ =Ty N H (1 - Tjn)7Ak = Tys+k—1" Bk'
Jj=y1+1
From the above definitions and (12),
Ay
B

4

= f(ylayQ) Z Tys T > 32 = Ty,+17 > ..

AA*(yl)*szrl

>
BA*(yl)—yg—H

=Tax(y)-

Applying Lemma 5 on A and By, we get:

Ay
f(y17y2) = E

AL — Ay — - Ane )yt

Ty, <

<

By =By =+ = Bas(y1)—ya 41
f(ylvA*(yl)) < TA*(y1) s

which is in contradiction to N/2 < yy < A*(y1).

« Finally, suppose 0 < v < v,. Then, following similar
arguments as in the proof of Lemma 7 and by existence of
the solution of (5), there exists a unique A*(x —1) > A*(x)
such that

V= f(x - 17A*(1‘ - 1)) € [TA*(w—l)-i-l?%TA*(m)n)'

We have proved the first two claims of Proposition 4.

Now, we prove the third claim. From Lemma 2, we have
Vi(z,0) > VO=x,0) and from Lemma 3, we know that
Vi(z,00) < V9@, 00). Since v, is the unique solution of
Vi(z,0) = V°(z,0) and V!(z,v) and VO(z,v) are continuous
in v, we can infer that V!(z,v) > V°(z,v) in [0,v,] and
Vi(z,v) < VO(z,v) in [v,,00). This implies the claimed form
of the value function for state x. ]



