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Abstract—In this paper, the problem of adversarial learning is
studied for a wireless powered communication network (WPCN)
in which a hybrid access point (HAP) seeks to learn the
transmission power consumption profile of an associated wireless
transmitter. The objective of the HAP is to use the learned
estimate in order to determine the transmission power of the
energy signal to be supplied to its associated device. However,
such a learning scheme is subject to attacks by an adversary who
tries to alter the HAP’s learned estimate of the transmission
power distribution in order to minimize the HAP’s supplied
energy. To build a robust estimate against such attacks, an
unsupervised Bayesian learning method is proposed allowing the
HAP to perform its estimation based only on the advertised
transmisson power computed in each time slot. The proposed
robust learning method relies on the assumption that the device’s
true transmission power is greater than or equal to advertised
value. Then, based on the robust estimate, the problem of power
selection of the energy signal by the HAP is formulated. The
HAP optimal power selection problem is shown to be a discrete
convex optimization problem, and a closed-form solution of
the HAP’s optimal transmission power is obtained. The results
show that the proposed robust Bayesian learning scheme yields
significant performance gains, by reducing the percentage of
dropped transmitter’s packets of about 85% compared to a
conventional Bayesian learning approach. The results also show
that these performance gains are achieved without jeopardizing
the energy consumption of the HAP.

I. INTRODUCTION

Radio frequency (RF) energy harvesting is one of the
most promising technologies to operate massive self-powered
networks, such as the Internet of Things (IoT) [1]. The
reliance on RF signals for energy supply makes RF energy
harvesting favourable since it will be easy to be implemented
and integrated into current wireless systems. Moreover, RF
energy harvesting offers a reliable method to supply energy,
as opposed to traditional energy harvesting techniques that
rely on ambient sources such as solar or wind in which
the amount of energy harvested strongly depends on envi-
ronmental factors. The RF energy source can be a wireless
access point, known as a hybrid access point (HAP), that can
be configured to provide simultaneous communication and
energy supply. Another example of such RF energy sources
could be a power beacon that operates independently from
the HAP. Thus, the reliable energy supply provided by these
dedicated RF energy sources allows the network to better serve
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devices with stringent quality-of-service (QoS) requirements.
However, RF energy supply incurs extra energy expenditure by
the HAP since the HAP must send dedicated signals for energy
transfer to its associated devices. Hence, one of the main
technical challenges in a wireless powered communication
network (WPCN) is to find energy efficient resource allocation
mechanisms that determine the optimal energy that should be
supplied by the HAP to its associated devices in order to meet
their QoS requirements, as pointed out in [2].

There has been considerable interest in designing energy
efficient wireless resource allocation schemes suitable for
WPCNs [3]–[5]. In [3] and [4], a WPCN composed of a HAP
serving multiple mobile users in a time division manner is
considered. A centralized approach for maximizing the total
network throughput in a WPCN is adopted in [3] by finding
the optimal time fraction allocated to each user. The authors
in [4] also propose a centralized approach for maximizing the
proportional fairness sum of users’ rates by finding the opti-
mal transmission power and the harvesting duration for each
user. A distributed noncooperative game theoretic approach is
proposed in [5] which considers a WPCN composed of several
source destination pairs operating in the same frequency band.
Thus, each source finds the minimum transmit power that
meets the QoS and harvesting constraints of its associated
destination.

However, some of these works assume that the HAP
transmits an energy signal with fixed power, and that the
device consumes all of the harvested energy for transmission
in the same slot. Moreover, the existing literature typically
assumes that the HAP knows apriori the QoS and harvesting
requirements of all its associated devices. These assumptions
are not very realistic especially in emerging IoT systems
in which devices have very diverse characteristics and re-
quirements. Further, the transmission power of each wireless
device depends on its adopted power control policy which
is often a function of the device’s QoS requirements and
its traffic characteristics. One promising approach is to use
machine learning techniques [6], [7] in order to form a more
realistic estimate of the distribution of the transmission power
consumed by the wireless device. This enables the HAP to
predict the transmission energy consumed by each associated
wireless device and determine the required energy to be
supplied for the device.

There is still little prior work that considers learning for
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RF energy harvesting [8]–[10], and most of this prior art has
considered learning at the device’s end. In [8], two algorithms
based on supervised machine learning techniques: the linear
regression (LR) and the decision trees (DT) are proposed in
order to predict the RF energy that can be harvested in a certain
frequency band and a given time slot. In [9], the problem of
energy efficient RF energy harvesting for a wireless device
is considered. To this end, an unsupervised Bayesian learn-
ing approach is proposed that allows the energy harvesting
wireless device to predict the ambient RF energy availability
in each time slot. Then, based on the predicted RF energy,
the optimal sleep and harvesting policy are determined to
minimize the consumed energy. An online convex optimization
method is proposed in [10] to allow an energy harvesting
wireless transmitter to predict the energy available in a current
time slot based on measurements from previous time slots.

Despite its benefits, learning can be vulnerable to a man-in-
the-middle (MITM) attack by a malicious user that can alter
the data used by the learning algorithm and, consequently,
degrade the system performance. MITM attacks constitute
serious threat in the emerging IoT systems [11] due to the
fact that many IoT machine type devices have limited com-
putational capabilities and can not implement strong security
mechanisms. Thus, their security can be easily compromised.
In WPCNs, an adversary, through an MITM attack, can modify
the transmission power consumption profile of the wireless
device. Thus, the HAP will be misled into supplying less
energy to the associated wireless device, which will eventually
exhaust the device’s battery. Hence, learning algorithms for
WPCNs must be designed to be robust against such attacks.
Existing works that study security for RF energy harvesting
considered either jamming attacks [12], [13] or eavesdropping
[14], [15]. To the best of our knowledge, there is still no work
that considers attacks on learning within RF energy harvesting
networks.

The main contribution of this paper is to introduce a novel
learning scheme for RF energy harvesting that allows the HAP
to form a reliable estimate of the power consumption profile of
each associated wireless device. The proposed learning scheme
is based on unsupervised Bayesian learning, and it relies only
on the received power from the wireless device in each time
slot and on channel state information (CSI). Thus, it does not
result in extra comunications and energy costs. However, the
dependence of the proposed learning scheme on the device’s
received power makes it subject to attacks by an adversary that
is interested in depleting the battery of the wireless device.
The adversary can achieve this end by altering the formed
estimate of the power consumption profile through performing
MITM attack. To counter such attacks, the estimate is built
by the HAP based on the assumption that the true value of
the transmission power of the wireless transmitter is censored
by a potential malicious user, and that true transmission
power value is greater than or equal to the advertised value.
Then, based on this robust estimate, the HAP determines the
transmission power of the energy signal to be delivered to its
associated device such that the HAP’s payoff is maximized.

We formulate the problem of optimal power selection by
the HAP as discrete convex optimization problem, and we
obtain a closed-form expression for the optimal transmission
power. The results show that the proposed robust Bayesian
learning scheme yields significant performance gains, by re-
ducing the percentage of dropped transmitter’s packets of
about 85% compared to the conventional Bayesian learning
approaches. The results also show that these performance gains
are achieved without jeopardizing the energy consumption of
the HAP.

The paper is organized as follows. Section I presents the
system model. Section II presents the attacker model. Section
III presents the defensive learning strategy of the HAP and the
power selection mechanism of the energy signal. Section IV
presents the simulation results. Finally, conclusions are drawn
in section V.

II. SYSTEM MODEL

Consider a WPCN composed of a HAP [2] serving a set of
wireless devices over orthogonal frequency channels. For each
device i, the HAP can act as both an energy supplying device
that performs wireless power transfer to the device and as an
access point that collects the information from the device. The
HAP is connected to a constant power supply such as a smart
grid whereas the device is not connected to any additional
energy supply, and, hence, it relies on the energy harvested
from the HAP.

Simultaneous uplink and downlink transmissions are as-
sumed [3] where the HAP transmits the energy signal and
receives the uplink transmission from the device over two
separate frequency bands. In each time slot t of duration T
seconds, the HAP transmits an energy signal with power Pat
from a discrete set Pa to device i. In the set Pa, the power
values are multiples of h where 0 ≤ h ≤ 1. During the uplink,
device i uses the harvested energy from the previous time slots
to transmit its data to the HAP with power Pit which takes
value from a discrete set Pi. In the uplink phase, device i
determines the value of Pit based on its QoS requirements,
its traffic characteristics as well as the energy available in its
battery. The uplink and downlink channels between device i
and the HAP are modeled as block Rayleigh fading channels
with coefficients hD,it and hU,it for downlink and uplink,
respectively. These channel gains do not change within time
slot t. Thus, the amount of energy harvested by device i at
time slot t is Eit = η|hD,it|2PatT where 0 < η < 1 is the
energy harvesting efficiency.

In our model, the devices served by the HAP have hetero-
geneous traffic characteristics and QoS requirements. Hence,
it is not practical to assume that the HAP has prior knowledge
of the traffic characteristic and the QoS requirement of each
device and, consequently, its power consumption profile. In-
stead, the HAP uses unsupervised Bayesian learning in order
to estimate the power/energy consumption distribution of each
device. The HAP relies only on the received signal power Pr,it
in the uplink in order to update its estimate in each time period
t. By using such a method, there is no need for the device
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to explicitly send energy requests to the HAP. Such energy
requests would waste the energy stored in the device. Thus,
assuming that the HAP has full channel state information, it
computes the transmission power consumed by the device in
time slot t as: Pit =

Pr,it
|hU,it|2 .

In nonparametric Bayesian learning, the Dirichlet distri-
bution [16] is often used to model a parameter with un-
known distribution since it is a conjugate prior of the multi-
nomial distributon. Given that N1, N2, ..., NK independent
observations of events E1, E2,...,EK are made, and under
the assumption that the prior distribution of the probability
vector p = (p1, p2, ..., pK) of the events E1, E2, ..., EK is
Dirichlet distributed with parameter α = (α1, α2, ..., αK)
(α1, α2,...,αK > 0), the posterior probability p given the
observations N = (N1, N2, ..., NK) will follow a Dirichlet
distribution of order K with parameter α+N as follows

f(p|N) =
K∏
i=1

pi
αi+Ni−1 · 1

B(αi +Ni)
, (1)

where Γ(.) is the gamma function and B(.) is a normalizing
factor given by

B(x) =

∏K
i=1 Γ(xi)

Γ(
∑K
i=1 xi)

. (2)

The posterior expected probability E[pi|N ] of observing event
Ei given the observations will then be

E[pi|N ] =
αi +Ni∑K
j=1 αj +Nj

. (3)

In our system, during each slot t, the HAP seeks to estimate
the probability distribution of the power consumption profile
of device i based on the observations in the previous time
slots to determine the suitable energy signal transmission
power Pat. The observation made in each time period t is
the transmission power value Pit that is computed from the
received uplink signal power Pr,it of the device. The HAP
only considers positive transmission power values to form its
estimate. This is because many wireless devices, especially
machine type devices, have very bursty traffic characteristic,
and thus, the number of time slots when the device transmits
will be negligble compared to when the device does not
transmit.

In the considered model, we assume that a malicious adver-
sary seeks to launch a MITM attack on the HAP’s learning
mechanism so as to deplete the battery of the device by altering
the learned power consumption distribution by the HAP. In the
context of learning, this is commonly known as data poisoning.
Next, we explain how the malicious user will interact with the
studied HAP’s learning scheme.

III. ATTACKER MODEL

The malicious user attempts to alter the power consumption
distribution learned by the HAP by performing a wireless
MITM attack [17]. In a wireless MITM, a malicious user
is assumed to be capable of impersonating the HAP to lure

the device to connect to it. After the device connects to the
malicious user, the adversary adverstises a different uplink
frequency band in order for the HAP not to receive the
transmissions directly from the device. Then, the advsersary
obtains the device’s information (such as device ID and se-
curity parameters) and subsequently impersonates the device.
In this attack, the adversary intercepts the uplink packet
transmitted by the device in time slot t and retransmits the
packet to the HAP with the minimum possible power value
Pmt ∈ {Pj ∈ Ot s.t. Pj ≤ Pit} that maintains a low risk of
being detected by the HAP. The set Ot ⊂ Pi is the set of
device’s transmission power values oberved by the malicious
user up to time slot t. Full channel state information is assumed
to be available at the malicious user, and, thus, the malicious
user can perfectly recover the transmission power value Pit of
the device from the received power value Pr,it.

In our model, the adversary has no knowledge of the
HAP’s exact attack detection method or its defensive strategy.
Thus, in order to limit the risk of being detected by the
HAP, the malicious user chooses the minimum transmission
power Pmt at each time slot t such that the Kullback–Leibler
(KL) distance between the estimates that are based on the
real and modified power values respectively do not exceed
a predefined value r. Let Rt and Mt the estimates of the
probability distribution based on the real and modified power
values respectively at time slot t. The malicious user uses
the conventional Bayesian learning method based on Dirichlet
distribution described in Section I to determine the estimates
Rt and Mt. For the attacker, the value of r captures the risk
of being detected by the HAP. Here, the higher the value of
r, the higher the probability that the attacker will be detected
by the HAP. Thus, the attacker selects the transmission power
according to the following optimization problem

min
Pmt

Pmt

s.t. DKL(Rt||Mt) ≤ r, 0 ≤ Pmt ≤ Pit, Pmt ∈ Ot. (4)

In the studied system, the attacker has no prior information
on the power consumption distribution, and, hence, the prior
distribution of the probabilities of transmissions with powers
in Ot is assumed to be uniform, i.e., Dirichlet with parameter
1. For a set of observed transmission power values Ot, let
φi,t be the number of occurrences of transmission power
value Pi ∈ Ot up to time slot t and ωi,t be the number
of times the malicious user transmits with power value Pi
up to time slot t. Define the vectors φt = (φi,t)Pi∈Ot and
ωt = (ωi,t)Pi∈Ot . Thus, the posterior distributions Rt and
Mt follow the Dirichlet distribution with parameters 1 + φt
and 1 + ωt respectively.

Thus, the expected probabilities p̄i,t and q̄i,t of observing
power value Pi based on the estimates Rt and Mt are,
respectively, p̄i,t =

φi,t+1∑
j∈Ot

φj,t+|Ot| =
φi,t+1
t+|Ot| and q̄i,t =

ωi,t+1∑
j∈Ot

ωj,t+|Ot| =
ωi,t+1
t+|Ot| . The KL distance of Rt and Mt

is then given by
DKL(Rt||Mt) =

∑
i∈Ot

p̄i,t log
p̄i,t
q̄i,t

=
∑
i∈Ot

φi,t + 1

t+ |Ot|
log

φi,t + 1

ωi,t + 1
.

(5)
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Thus, the KL distance DKL(Rt||Mt) depends on the power
value Pmt chosen by the malicious user at time slot t.
The following proposition provides a simplified version of
the constraint on the KL distance in (4) in order to avoid
computing the KL distance for each power value Pmt to find
the miminum transmission power P ∗mt.

Proposition 1. Let Pl be the observed device power value
at time slot t. The attacker selects the minimum transmission
power P ∗mt = Pk < Pl at time slot t such that

ωk,t−1 + 1

ωk,t−1 + 2
≤ e

(t+|Ot|)·r−(t−1+|Ot−1|)·r
′+κl,t−1

φk,t−1+1 , (6)

where
κl,t−1 =

(φl,t−1 + 1) log(
φl,t−1+1
ωl,t−1+1 )− (φl,t−1 + 2) log(

φl,t−1+2
ωl,t−1+1 ).

Otherwise, The attacker chooses P ∗mt = Pl.

Proof. First, let ω′k,t−1 = ωk,t−1 +1 and φ′k,t−1 = φk,t−1 +1.
The KL distance at time slot t is given by

DKL(Rt||Mt) =
∑
i∈Ot

p̄i,t log
p̄i,t
q̄i,t

=
(φ′l,t−1 + 1)

t+ |Ot|
log
(φ′l,t−1 + 1

ω′l,t−1

)
+

φ′k,t−1

t+ |Ot|
log(

φ′k,t−1

ω′k,t−1 + 1
)

+
∑

i∈Ot,i6=l,k

φ′i,t−1

t+ |Ot|
log

φ′i,t−1

ω′i,t−1

. (7)

Let F (Rt||Mt) = (t+ |Ot|) ·DKL(Rt||Mt). Then,

F (Rt||Mt)− F (Rt−1||Mt−1)

= (φ′l,t−1 + 1) log(
φ′l,t−1 + 1

ω′l,t−1

)− φ′l,t−1 log(
φ′l,t−1

ω′l,t−1

)

+φ′k,t−1 log(
ω′k,t−1

ω′k,t−1 + 1
). (8)

Given that the value of the divergence at time slot t − 1
is DKL(Rt−1||Mt−1) = r′ ≤ r. The constraint on the
divergence at time slot t translates to
F (Rt||Mt)−F (Rt−1||Mt−1) ≤ (t+|Ot|)r−(t−1+|Ot−1|)r′.

From (8), we get the constraint

log(
ω′k,t−1

ω′k,t−1+1 ) ≤ (t+|Ot|)·r−(t−1+|Ot−1)·r′+κl,t
φ′k,t−1

where κl,t = φ′l,t−1 log(
φ′l,t−1

ω′l,t−1
)−(φ′l,t−1 +1) log(

φ′l,t−1+1

ω′l,t
).

Thus, we get
ω′k,t−1

ω′k,t−1+1 ≤ e
(t+|Ot|)·r−(t−1+|Ot−1|)·r

′+κl,t
φ′
k,t−1 ,

and
ωk,t+1
ωk,t+2 ≤ e

(t+1+|Ot|)·r−(t−1+|Ot−1|)·r
′+κl,t−1

φk,t−1+1 .

Proposition 1 transforms the constraint on the KL distance
given by (5) to a constraint on ωk,t−1 – the number of times
the malicious user transmits with a power value Pk up to
time slot t − 1. Thus, finding the optimal power value for
the optimization problem does not require computing the KL

distance to check the constraint for each power value Pk. It
suffices to check the constraint on ωk,t−1 given by (6).

Thus, by transmitting with a power value less than Pit,
the attacker misleads the HAP into believing that the device
is consuming a lower transmission power. To thwart such
attacks, the HAP, on the other hand, utilizes a defensive/robust
learning mechanism. The details of the learning mechanism
are explained in the following section.

IV. HAP DEFENSIVE STRATEGY

A. HAP Information Censoring Based Learning Mechanism

In order to reduce the effect of a potential MITM on the
updated estimate of probability distribution at each time slot
t, the HAP assumes that the true transmission power of the
device is higher than the transmission power computed from
the received signal at time period t i.e. the true transmission
power belongs to the set {Pj ∈ Ωt s.t. Pj ≥ Pmt} where Ωt
is the set of power values observed by the HAP up to time
slot t. Thus, the HAP constructs an estimate of the power
consumption distribution based on this belief. In this case, the
observation of the true transmission power of the device is
considered to be censored. The general definition of a censored
observation [18] is given next.

Definition 1. An observation is said to be censored when it
is not fully observable but rather it is reported that it belongs
to a subset C of the set of events {E1, E2, ..., EK}.

Thus, in the case of censored observations, the estimate of
the probability distribution of the events {E1, E2, ..., EK} will
depend on the received reports about the censored observations
[18]. In our problem, the report at time slot t is that the true
transmission power of the device belongs to the set Ct = {Pj ∈
Ωt s.t. Pj ≥ Pmt}. In this case, the joint distribution of the
probabilities p of the transmission powers in Ωt depends on
λC|k, the conditional probability of getting a report C given
that the actual transmission power is Pk. Denote by Λ the
matrix of λC|k ∀C, k and Ct the set of reports up to time slot
t. Then, the likelihood of the reports given p and Λ will be

f({Ck}tk=1|p,Λ) =
∏
C∈Ct

(
∑

i s.t.Pi∈C
piλC|i)

NC,t . (9)

where NCt = (NC,t)C∈Ct is the vector of counts of observed
reports up to time slot t and NC,t is the number of times
the set C is reported up to time slot t. As seen in (9), the
likelihood f({Ck}tk=1|p,Λ) depends on µC,i = piλC|i the joint
probability of receiving report C when the true transmission
power is Pi. Let µ be the matrix of µC,i ∀C, i. The joint
outcomes (Pit, Ct) at time slot t are then distributed with
parameter µ. Hence, as shown in [18], we can assume that
the prior distribution of µ follows a Dirichlet distribution
with parameter a where each entry aC,i is the parameter
corresponding to µC,i. Consequently, the prior distribution of
the probability vector p at time slot t follows a Dirichlet
distribution with parameter βt = (βi,t)

K
i=1 where βi,t =∑

C∈Ci,t aC,i and Ci,t is the set of all reported sets that include
Pi up to time slot t.
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Under these assumptions, the posterior distribution of the
probability vector p of transmission powers in Ωt at each time
slot t is shown [18], [19] to belong to a class of generalized
Dirichlet distributions and is thus given by f(p|NCt ,Λ) =
D(βt,Λ,NCt). In general, the distribution D(b, Z,d) has a
probability mass function

g(p, b, Z,d) =
f(p, b)

∏
k(
∑
i zkipk)di

R(b, Z,−d)
, (10)

where f(p, b) is the pdf of a Dirichlet distribution with pa-
rameter b and R(b, Z,−d) is a Carlson’s bidimensional hyper-
geometric function which can be expressed as R(b, Z,−d) =
B(Z′b+d)
B(Z′b) where B(.) is the normalizing factor of the Dirichlet

distribution given by (2). The posterior mean of the probability
pi of transmitting with power value Pi given the reports counts
NCt is [18]

E[pi|NCt ] =
a∑

a∑ + t
E[pi]

+
t

a∑ + t

(N{i},t
t

+
∑

C∈Ci,t\{i}

NC,t
t

aC,i∑
i∈C aC,i

)
, (11)

where a∑ is the sum of elements of the Dirichlet hyperparam-
eter a, and E[pi] is the expectation of the prior distribution.
Since the prior distribution is Dirichlet with paramter βt, the
expectation is E[pi] =

βi,t∑
j βj,t

.
Let It be the updated estimate probability distribution by the

HAP by the end of time slot t. Based on the formed estimate
It at the end of time slot t, the HAP selects in the subsequent
time slot t + 1, the transmission power of the energy signal
Pa,t+1 that maximizes its utility while ensuring that the battery
of the device is not depleted, as explained next.

B. Energy Signal Power Selection

During the downlink at slot t, the HAP uses the last updated
estimate It−1 of the power consumption distribution to decide
on the power value Pat of the energy signal. Since in the
first time slot the HAP has not received any observations, it
transmits with the maximum power Pa,max. In the subsequent
time slots, the objective of the HAP is to find the optimal
transmission power value P ∗at that maximizes its utility while
not depleting the device’s battery. To achieve this end, the HAP
selects the transmission power such that the energy supplied
is greater than the expected transmission energy consumed by
the device. In time slot t, It−1 is the most updated estimate
of the power consumption probability distribution at the HAP.
Hence, the HAP assumes that each Pik is distributed according
to It−1. Thus, the constaint is given by

ηT
( t−1∑
k=1

|hD,ik|2P ∗ak + |hD,it|2Pat
)
≥

t∑
k=1

E[Pik] · T, (12)

where P ∗ak is the chosen transmission power value of the
energy signal transmitted by the HAP at time slot k (1 ≤ k ≤
t − 1) and the expectation is with respect to the distribution
It−1. Thus, the expected transmission power value of the de-
vice E[Pik](1 ≤ k ≤ t−1) is given by E[Pik] =

∑
i∈Ωt

p̄i,tPi

where p̄i,t is the posterior expectation E[pi|NCt ,Λ] given by
(11).

Since the transmission power values are positive, the con-
straint (12) becomes

Pat ≥
[∑t

k=1 E[Pik]− η
∑t−1
k=1 |hD,ik|2P ∗ak

η|hD,it|2

]+

. (13)

Further, since Pat ∈ Pa, the lower bound on Pat is redefined
as

Pat,LB = h ·

⌈[∑t
k=1 E[Pik]−η

∑t−1
k=1 |hD,ik|

2P∗ak
η|hD,it|2

]+
h

⌉
. (14)

The payoff of the HAP is expressed in terms ot its utility
which is the energy harvested by the device minus the cost
C(Pat) of transmitting the energy signal. The cost C(Pat) is
typically defined as [20] C(Pat) = aP 2

at + bPat where the
values of a and b (a, b > 0) depends on the characteristics of
the HAP. Hence, the payoff of the HAP is

Uat(Pat) = η|hD,it|2Pat − C(Pat). (15)

Let ξt = η|hD,it|2, the payoff becomes

Uat(Pat) = (ξt − b)Pat − aP 2
at. (16)

Hence to find the optimal power value P ∗at, the HAP solves
the following optimization problem

max
Pat

Uat(Pat) s.t. Pat ≥ Pat,LB , Pat ∈ Pa. (17)

The optimal solution P ∗at is found by first showing that the
payoff function Uat(Pat) is discrete concave in Pat. Then,
the relaxed continuous version of the optimization problem in
(17) is considered and its closed form solution P cat is obtained.
Based on the solution of the continous version of the problem,
the optimal solution of the original problem is obtained.

Proposition 2. The payoff Uat is discrete concave in Pat.

Proof. A univariate discrete function f : Z → R is discrete
concave if f(x− 1) + f(x+ 1) ≤ 2f(x). Thus, the standard
definition of discrete convexity/concavity assumes that a dis-
crete function f is defined over the set Z while the set Pa
is not necessarily Z but it is assumed that in Pa, the power
values are multiples of h where 0 ≤ h ≤ 1. In order to show
that Ua is discrete concave, the variable Pa is transformed into
a variable P ′a defined in a subset in Z by defining P ′a = Pa

h .
By substituting the Pa in terms of P ′a in terms of the utility
function Uat, we get Uat(P ′a) = (ξt − b)hP ′a − ah2P ′2a . The
payoff Uat(P ′a) is discrete concave in P ′a since

Uat(P
′
a − 1) + Uat(P

′
a + 1) = 2(ξt − b)hP ′a − 2ah2(P ′2a + 1)

≤ 2(ξt − b)hP ′a − 2ah2P ′2a = 2Uat(P
′
a).

A consequence of this proposition is that any local maxi-
mum is a global maximum of the optimization problem in (17).
In order to characterize the optimal solution, we consider the
relaxed continuous version of the problem in (17).

Remark 1. The optimal solution for the relaxed optimization
problem is
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P cat =



ξt−b
2a , if Pat,LB ≤ ξt−b

2a ≤ Pa,max,

Pat,LB , if ξt−b
2a < Pat,LB ,

Pa,max, otherwise,

(18)

where Pa,max is the maximum power value in Pa.
Proof. It can be easily shown that the utility function is
continuous strictly concave in P ′a since the second order
partial derivative is −h2a. Also, the value of P ′a at which the
derivative of the utility function is zero is P ′a = ξt−b

2ah . Also,
the only constraints of the optimizations are bound constraints
on P ′a. The results then follows from the concavity of Uat and
the bound constraints.
Proposition 3. The optimal power P ∗at of the HAP is

P ∗at =



h ·max(d (ξt−b)
2ah
e, b (ξt−b)

2ah
c),if Pat,LB

h
≤ (ξt−b)

2ah
≤ Pa,max

h
,

Pat,LB , if d (ξt−b)
2ah
e < Pat,LB

h
,

Pa,max, otherwise.
(19)

Proof. When Pat,LB
h ≤ (ξt−b)

2ah ≤ Pa,max

h , we have Pat,LB
h ≤

d (ξt−b)
2ah e, b

(ξt−b)
2ah c ≤

Pa,max
h since Pat,LB

h and Pa,max
h are

integers. Since Uat() is strictly concave for continuous val-
ues of P ′a, the payoff for any integer power value d will
be less than the payoff of using the power value m =
max(d (ξt−b)

2ah e, b
(ξt−b)

2ah c) i.e. Ua(m) ≤ Ua(d). Hence in this
case, the optimal power value P ′∗a is max(d (ξt−b)

2ah e, b
(ξt−b)

2ah c)
and the corresponding optimal value in Pa is P ∗a = h ·
max(d (ξt−b)

2ah e, b
(ξt−b)

2ah c). For the case when d (ξt−b)
2ah e is less

than the Pat,LB , the optimal power value is P ′∗a =
Pat,LB
h

since the payoff of any other power value greater than Pat,LB
is less than Uat(Pat,LB) due to the discrete concavity of Uat
and the corresponding optimal value in Pa is P ∗a = Pat,LB .
Using the same concavity argument for the last case i.e. when
d (ξt−b)

2ah e ≥
Pamax
h , the optimal value is P ′a =

Pa,max

h and the
corresponding power value in Pa is Pa = Pa,max.

Proposition 3 shows that when ξt, the product of the device
battery efficiency and the channel gain, is considerably greater
than the energy cost parameters a and b, the utility of the
HAP becomes higher than the cost and thus the HAP transmits
with maximum power. Also, if ξt is considerable smaller than
the energy cost parameters a and b, the HAP’s cost becomes
higher than its utility and the HAP transmits with the lowest
feasible power. Otherwise, the HAP transmits with the optimal
power that maximizes its payoff.

V. SIMULATION RESULTS

For our simulations, we set W = 10 kHz, T = 2 msec,
N0 = −137 dBm , η = 0.8, Pa,max = 2W , h = 0.1, and Pi =
{0.1, 0.2, 0.3, 0.4} W. The wireless transmitter is considered
to be a video surveillance device [21] which generates UDP
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packets of size M = 1000 bits. The packets are generated
according to a Poisson distribution of rate 30 packets/sec. The
video surveillance device chooses its transmission power in
each time slot such that the received SNR is greater than or
equal to the required threshold γR to decode the packet at the
HAP. Assuming that the achieved rate and SNR are related
by Shannon’s capacity formula, the threshold is thus chosen
such that M

T = W log(1 + γR). The values considered for
the energy cost parameters (a, b) of the HAP are (1, 1) and
(1.5, 1.5) respectively [20]. In each time slot, the device drops
the packet if it does not have enough energy to transmit it.

Each simulation run simulates the network for 100000
time slots, i.e., 100 seconds. In each run, the percentage of
packets dropped by the surveillance device and the energy
consumed by the HAP are computed when the HAP uses
the robust and conventional learning strategies respectively
for the considered values of the energy cost parameters.
Then, the average percentage of packets dropped and the
average energy consumed by the HAP is computed from
1000 simulation runs. The simulation is performed for two
scenarios. The first is when the malicious user’s risk value
takes values 0, 10−4, 10−3, 10−2, 10−1, 1 respectively while
the fading variance of the channel between the HAP and the
device for both uplink and downlink is set to 0.3. The second
scenario is when the fading variance is varied between 0.3 and
0.9 in steps of 0.1 while the risk value is set to be r = 0.01.

Fig. 1 shows the percentage of dropped packets for both the
conventional and robust learning approaches versus the risk
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value when the values of the HAP’s energy cost paramters
(a, b) are (1, 1) and (1.5, 1.5) respectively. First, for the con-
ventional learning approach, and when the energy cost param-
eters values (a, b) are (1, 1), the percentage of dropped packets
with no attack (r = 0) is 33%. This percentage increases with
the risk and reaches 72% for risk values greater than or equal
to 0.01. When the cost parameters (a, b) increases to (1.5, 1.5),
the percentage of dropped packets increases for all considered
risk values reaching up to 97% when the risk value greater
than or equal to 0.01. In contrast, for the proposed approach,
when (a, b) are set to (1, 1), the percentage of dropped packets
10.25% when no attack occurs, and it remains around 10%
when the attacker’s risk increases to 0.1. A more pronounced
increase occurs when the risk value is 1 as the percentage of
dropped packets attains 37%. For such a high risk value, the
optimal strategy of the attacker is to transmit with minimum
power, which affects the effectiveness of the robust approach.
However, in practice, the attacker will only choose low risk
values in order not to be detected, and hence, the percentage
of dropped packets when r = 1 will not be attained. When the
energy cost parameters increase to (1.5, 1.5), the percentage
of dropped packets is around 15% for a risk value less than or
equal to 0.1 and increases to 44% when the risk value is one.
Thus, Fig. 1 shows that the proposed robust learning strategy
constitutes a better learning approach than the conventional
learning approach even when no attack happens. Further, the
proposed robust learning approach is more robust to changes
in the risk values unlike the conventional learning approach
that is sensitive to slight variations in the risk value. From

Fig. 1, we can also see that, the proposed aproach can achieve
a performance gain, in terms of the percentage of dropped
packets, which can reach up to 85% at r = 0.1 compared to
the conventional learning approach.

Fig. 2 shows the energy consumed for the conventional and
robust learning approaches versus the risk value for different
energy cost parameters. As shown in Fig. 2, the conventional
learning approach maintains low energy consumption. When
the energy cost paramteres are (1, 1), the energy consumed
is 2.59 J when no attack happens and drops to 0.467 J for a
risk value greater than or equal to 0.01. When (a, b) increases
to (1.5, 1.5), the energy consumed decreases to 1.9 J when
no attack happens and drop to 0.03 for a risk value higher
than 0.3. On the other hand, the proposed robust strategy
exhibits higher energy consumption. This is because the robust
approach overestimates the transmission power consumed by
device, which results in increasing the energy delivered to the
device in each time slot. When the value of the energy cost
paramteres (a, b) is (1, 1), the energy consumed is around 62 J
for a risk value lower than or equal to 0.1 and drops to 10 J for
a risk value equal to one. When (a, b) increases to (1.5, 1.5),
the consumed energy decreases to 45 J for a risk value less
than 0.1 and drops to 8 J for a risk value equal to one. Thus,
the results in Fig. 2 show the tradeoff between maintaining
a good performance in terms of the percentage of dropped
packets and the energy consumed. Yet, the energy consumed
by the robust learning is lower than the energy consumed when
the HAP transmits with fixed maximum power in each time
time slot. For the considered simulation values of the system
parameters, the energy consumed by the fixed power policy is
200 J. Hence, the robust learning strategy can reach a gain in
terms of energy efficiency up to 77% while maintaining a low
percentage of dropped packets.

Fig. 3 shows the percentage of dropped packets for both
the conventional and robust learning approaches versus the
channel variance value for the considered values of the HAP’s
energy cost paramters. First, for the conventional learning
appoach and when the values of the energy cost parameters
(a, b) are (1, 1), the percentage of dropped packets decreases
significantly from 72% to 1.35% when the value of the channel
variance increases from 0.3 to 0.4. Then, the percentage of
dropped packets tend to zero as the variance increases further.
This is due to the fact that, when the channel quality improves,
the received energy by the device increases, and the transmit
power required by the device to deliver the packet successfully
decreases which allows for more successfull transmissions.
Moreover, for energy cost parameters (1, 1), the probability
that the HAP’s energy cost becomes lower than its utility
increases. Thus in this case, the HAP is more likely to transmit
with maximum power Pa,max. Next when the HAP’s energy
cost parameters (a, b) are increased from (1, 1) to (1.5, 1.5),
the percentage of dropped packets using the conventional
learning approach increases considerably when the channel
variance value is less than or equal to 0.5. This is due
to the fact that, for higher values of the cost parameters,
the energy cost increases, and the HAP is more likely to
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supply less energy to the device. Thus, the HAP’s conservative
strategy combined with the altered estimate by the attacker
will yield a significant increase in packet loss. On the other
hand, the robust learning strategy maintains a low to negligible
percentage of packet loss for both considered values of energy
cost parameters. The increase in the percentage of packet loss
due to the increase in the cost parameters is slightly obervable
when the value of the channel variance is 0.3 where the
increase is from 10% to 15%. However, the percentage of
dropped packets is negligible for higher values of the channel
variance. Clearly, from Fig. 3, we can see that the proposed
approach is more robust to more conservative energy policies
by the HAP under different channel conditions.

Fig. 4 shows the energy consumed for both the conventional
and robust learning approaches as a function of the channel
variance. For the conventional learning approach and for cost
parameters (1, 1), the energy consumed is only 0.46 J when
the value of channel variance is 0.3 due to the high packet loss
as shown in Fig. 3. Then, the energy consumed increases with
the channel variance. This is because the percentage of packets
lost decreases with the channel variance, as shown in Fig.
3, which implies that the device is transmitting successfully
more packets and requires the HAP to transmit more energy.
When the cost parameters increases to (1.5, 1.5), the energy
consumed by the HAP decreases since the HAP adopts a more
conservative energy policy. For the robust learning approach,
for cost parameters (1, 1), the energy consumed decreases
first with the channel variance when the value of the channel
variance is less than or equal to 0.6. This is because when
the channel quality is low, the channel gain takes low values
with high probability. Thus, the HAP must spend more energy
to meet each device’s energy requirements. However, for
values of channel variance higher or equal to 0.6, the energy
consumed starts to increase due to the increase in the number
of successfully transmitted packets by the device. Also, the
energy consumed using the robust strategy becomes almost
equal to the energy consumed using the conventional learning
approach. This is because, when the channel quality becomes
high, the HAP can meet the energy requirements of the device
with minimal transmission power, which makes the attacks
by the malicious user ineffective. The energy consumed by
the robust learning strategy exhibits a similar pattern with the
channel variance value when the values of the cost paramters
are (1.5, 1.5) yet it is lower than the energy consumed when
the value of the costs parameters are (1, 1).

VI. CONCLUSION

In this paper, we have introduced a robust Bayesian learning
scheme for RF energy harvesting which allows the HAP
to form an estimate of the transmission power consumption
profile of each associated device based on the device’s received
power at each time slot. The proposed scheme takes into
account potential man-in-the-middle-attacks by a malicious
user that tries to alter the learned estimate of the HAP in
order to deplete the battery of the device. Based on the learned
estimate, we have considered the problem of optimal power

selection by the HAP in each time slot that maximizes the
HAP’s payoff while meeting device’s energy requirements
are met. Further, we have shown that the payoff function is
discrete concave and obtained a closed-form expression of
the optimal power of the supplied energy signal. Our results
have shown that our proposed robust Bayesian learning scheme
can achieve performance gains in terms of the percentage of
dropped packets by the HAP compared to the conventional
Bayesian learning approaches. Also, the proposed learning
scheme exhibits gains in terms of energy efficiency compared
to the fixed power transmission policy .
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