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Abstract—Mobile location-based advertising has seen a lot of
progress recently. We study the problem of optimal user targeting
and monetization through advertising, from the point of view
of the owner of a venue such as a shopping mall, an urban
shopping district or an airport. The fundamental distinguishing
characteristic of advertising in this setup is that the probability
that the user will respond to an ad depends on timeliness of ad
projection, hence it is important to target a mobile user with an
appropriate ad or offer at the right time.

A set of mobile users roam around the venue. Each user is
profiled in terms of preferences based on prior visits. The system
knows estimated instantaneous locations of users in the venue, e.g.
through WiFi access point connectivity. A machine-learning model
is used to derive a per-user time-varying probability of response
to an ad, which depends on the relevance of the ad (store) to
the user profile and on the time-varying physical proximity of the
user to the store. Each store has a set of available ads, and each
time the user responds to a projected ad, an amount is paid by
the store to the venue owner. We use a stochastic-optimization
framework based on Lyapunov optimization to address the prob-
lem of advertisement selection and allocation for maximizing the
long-term average revenue of the venue owner subject to: (i) a
constraint on maximum average ad projection rate per user for
preventing user saturation, and (ii) a long-term average budget
constraint for each store. We derive an algorithm that operates
on a time slot basis by solving a simple assignment problem
with instantaneous user locations while being agnostic to user
mobility statistics. We test our algorithm with a real dataset of
check-ins from Foursquare, complemented with data from user
questionnaires. Our approach results in substantial improvement
in revenue compared to approaches that are location- or relevance-
agnostic.

I. INTRODUCTION

In recent years mobile advertising has evolved into a prime
market segment in the advertising ecosystem, and its spend
is forecast to exceed $35 billion in 2017. Along with the
proliferation of mobile apps and social media, novel forms
of mobile advertising have emerged, such as location-based
advertisting [1], advertising within mobile apps [2], and native
advertisements in post feeds in social media [3], [4].

In location-based mobile advertising, the system first detects
the presence of a mobile user close to the location of an adver-
tiser through some localization technology which may involve
GPS or WiFi signal strength, or it may use the WiFi access
point that the user is connected to as a means for localization.

The latter technology seems less restricted and less privacy-
intrusive for users and is widely applied. For instance, Skyhook
Wireless uses WiFi hotspots to determine device locations so
as to offer location-based services, apps and advertising with
accuracy of 20 meters. The situation when a user is detected to
enter a region around the advertiser premises is referred to as
geofencing. When geofencing occurs, user location information
is sent to the central server where advertisements reside, and an
appropriate mobile advertisement or discount coupon is pushed
to the mobile device [1].

The adoption of WiFi hotspots in venues such as shopping
districts, shopping malls or airports has created the need for
their owners to monetize their network through advertising.
Given that users usually connect to the hotspot through their
social media account (e.g. Facebook, Linkedin) or through an
account created with the hotspot, the opportunity for person-
alized advertising arises through user profiling based on prior
user behavior in the venue. For instance, the WiFi platform may
deduce that a user oftentimes visits toy stores in the aiport or
electronics stores in a mall and may project targeted ads to her.

A fundamental distinguishing characteristic of location-based
advertising compared to other forms of advertising is that the
likelihood of user response to the ad or offer depends on the
timeliness of the offer. Since users usually spend a limited
amount of time in the venue or may be busy with preplanned
activities, it is more likely for the user to respond to a store
offer if this is made when the user is close to the store. This ad
selection process raises several questions. How can the platform
effectively target users with ads at certain times while avoiding
user saturation because of showing too many ads? How can
the platform use wisely the limited budget for each store by
targeting ads to users that are more likely to respond to the ad,
without knowledge on statistics or future user mobility patterns?
Is it preferable at a certain time to project an ad to a user that
pays visits to a store more often but is still at some distance
from it, or to a user that visits the store less often but is closer?

The different user profiles and dynamic user mobility patterns
give rise to an advertisement selection and allocation problem
that is fundamentally different from the one in web-search or
native advertising. In both web-search and native advertising,
context relevance is static: in the former, the user keyword
search propels personalized ad selections for users based on
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context relevance to search; in the latter, ads are placed close
to relevant posts in the post feed. In location-based mobile
advertising, relevance still arises in the form of similarity of
a user and a store. However, the ultimate decision of whether
the user will respond to the offer depends also on the relative
proximity of the user and the store at the time when the ad is
shown to the user. This proximity changes with time as users
roam in the venue.

A. Our Contribution

A set of ads or offer coupons for stores emerge out of a
bidding and an auction process. We study the problem of per-
sonalized advertisement selection and allocation in a dynamic
setup with users moving around the venue. The contributions
of our work to the literature are as follows.
• We use a machine-learning logistic-regression model that

builds on the assumption that users can be profiled based
on prior visits. The output of the model is a per-user
probability of response to a projected ad, which depends
on the relevance of the ad (store) to the user profile, and
on the (time-varying) physical proximity of the user to the
store.

• We formulate the problem of advertisement selection and
allocation for maximizing the long-term average revenue
for the venue owner, subject to (i) a constraint on maxi-
mum average projection rate per user that prevents user
saturation and disengagement, and (ii) a constraint on
a long-term average budget to be spent for each store.
If the latter constraint is not satisfied, this leads to free
advertising service provided by the platform and therefore
to revenue losses.

• We use a stochastic-optimization framework based on
Lyapunov optimization [6] to derive a dynamic policy
for the problem above. The problem is mapped to a
virtual queue stability one, where virtual queues pertain
to constraints. To the best of the authors’ knowledge, the
problem and formulation, although simple and intuitive,
have not appeared before in the literature.

• We show that the problem reduces to solving a simple
assignment one at each slot, based on instantaneous prox-
imities of users to stores, while being agnostic to mobility
statistics.

• We test our approach using real user trajectories derived
from a Foursquare check-in dataset, complemented with
data we collected through questionnaires. Our approach
results in substantial improvement in revenue compared
to corresponding approaches that are location- or ad
relevance-agnostic.

Most of prior work on location-based advertising is data-
driven e.g. [1]. To the best of our knowledge, our work is
the first to apply a stochastic optimization framework in this
setting. Stochastic optimization has been applied previously
in web-search advertising [5], albeit in a different problem,

Fig. 1. A pictorial view of the setup.

that of advertisement selection and allocation to ad slots by
a web-search service provider given the click-through ratios
and dynamic keyword query arrivals. Our problem differs from
the one faced in web-search advertising. First, user mobility
makes user response probability to ads time-varying, thus the
timeliness of ad allocation to users is important. Second, the
realistic constraint of a maximum projection rate of ads is
included. Third, we also cater explicitly for user profiling using
machine-learning methods, and we use the profiles to compute
user response probability to ads.

The organization of the paper is as follows. In section II
we present the model and problem formulation, and in section
III we present the solution. Numerical results are presented in
section IV. Related work is briefly surveyed in section V, and
the paper is concluded in section VI. We use the terms ad and
advertisement interchangeably.

II. MODEL AND PROBLEM FORMULATION

A. System Model

1) Setup: We consider a venue (e.g. a shopping mall, urban
shopping district or airport) with a set S of m stores/advertisers
in the venue area. There is also a set U of n mobile users in the
area. Users may connect to the platform through a webpage or
app. They either enter credentials of an account they maintain
with the venue, or they log in by using a social media account
e.g. Facebook, LinkedIn or Google+. There exists a set of ads,
offer coupons or discount coupons associated with a product
or a service of each store. A coupon may also be an offer that
expires after a while.

Time is slotted. Fix attention to a specific time t. The location
vector of a user u is denoted as du(t) = (dus(t) : s ∈ S)
where dus(t) is the instantaneous distance of user u from store
s, s = 1, . . . ,m at time t. The ensemble location vector of all
users at time t is denoted as d(t) = (du(t) : u ∈ U). Locations
of all users are assumed to be known at all times e.g. through
WiFi access point connectivity. The trajectory of each user u
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is a sequence of pairs of timestamps and location vectors for
user u, i.e. {t,du(t)}t=1,2,....

2) Relevance of user and store: For each store s ∈ S and
each user u ∈ U , let rus ∈ [0, 1] be the relevance i.e. the
similarity between store s and user u. This similarity emerges
from the collective profile of a user in terms of past purchases,
frequency of visits to the store or other factors that denote
preference. For example, a store that sells athletics products
is more appealing to a user that usually makes sports related
purchases than to one that makes toy purchases. Relevance may
be computed through collection of user-related data about her
past activity in the venue or in social media. Then, cosine
similarity [7, Ch.9] or other metrics on vectors of values of
attributes that are deemed representative of the store and the
user profile may be applied to quantify similarity.

3) Probability of user response to an ad: Prior to ad projec-
tion to users, it is important to quantify the probability of user
response to an ad. User response probability to an ad depends
on three types of attributes: (i) Attributes that are inherent to
the ad/store, e.g. ad or store quality. These are reflected onto ad
design format, nature of the advertised product, accompanying
text, and store reputation. (ii) Attributes that are related to
user profile and activity. Thus, relevance of the ad to the user
profile captures the similarity of an ad to user preferences, past
purchase activity, past trajectories, store visits, and so on. For
example an ad about a restaurant seems more appealing to a
user that usually visits a restaurant in an airport than it is to
a user that never visits one. (iii) Attributes that are related
to the spatio-temporal placement of the ad within the user
trajectory. These concern the projection of ads to the user at
certain locations and times. Evidence from real data on online
platforms [1] seems to suggest that user response probability
depends on all the factors above. For instance, an offer about a
discount in a certain store may be better received by a user if
it is projected when she is close to the store than when she is
further way; in the latter case, she may not have time or may
simply forget about it by the time she passes from the store.

In our model, user response events to ads are represented
through Bernoulli random variables. We consider two main
determinants for the probability of user response to an ad: (i)
relevance of the store to the user, and (ii) distance (in multiples
of some distance unit) of the user from the store. We assume
that we can learn from historical data the probability pu(r, d)
that a user u responds to an ad from a store, if the store is
at distance d from the user, and if it is of relevance r to her.
Logistic or softmax regression or other machine-learning tools
may be used to train a model based on past responses (or
non-responses) of users to ads and to learn these probabilities
for each user u and store s. User response to an ad may
depend on other attributes stated above, such as ad quality or its
temporal appearance (early/late) in the user trajectory. However,
we choose not to include them here for clarity and because
we wish to focus on attributes that are peculiar to location-
based advertising where dynamic decisions on ad selection and

allocation need to be taken.
The way each user u weighs the attributes associated with

an ad of store s (namely, relevance rus to her profile and
distance dus to be traversed to the store) so as to reach a
decision to respond or not is modeled through a soft-max
regression model [8, Ch.11.3]. Each user u and store s is
characterized by a vector of weights wus = (wr

us, w
d
us) that

capture the significance that user u places on ad relevance and
distance when deciding about store s; this vector is learned
from historical data. Let xus = (rus, dus) be the vector of
attribute values for user u and store s. Given the ensemble
attribute vector xu = (xus : s = 1, . . . ,m), the probability that
a user responds to an ad from store s is

Pr(user u visits s |xu) =
exp(wT

us · xus)
m∑
j=1

exp(wT
uj · xuj)

. (1)

4) User visits and mobility dynamics: We consider the pay-
per-visit model, which is similar to the prevalent pay-per-click
one in web-search advertising. Each time a user responds to the
ad and visits the store, a given amount is paid by the store to
the platform. Through localization technologies, the platform
may detect whether a user visits a store after an ad of the store
is shown to her. Each time a user responds to an ad of store
s, for example when she visits the store, a given amount bs is
paid by the store to the platform. This amount is the outcome
of some auction process which we assume has already taken
place. The product of user response probability and revenue
incurred per user visit to the store is the expected revenue that
comes from the ad.

Each store has a total budget that may be spent on having
its ads displayed to users. The budget of each store is renewed
after a certain time interval, and we define Bs as its long-
term average value. Without loss of generality, we assume that
B̃s = Bs

bs
is integer.

When an ad about store s is projected to user u at time
slot t′ with a distance vector du(t′), the user may or may not
respond to the ad. If the user does not respond to the ad, there
is no impact on the user mobility pattern. If the user responds
to the ad and goes to store s, the assumption is that at the
end of the time slot she returns to her location with distance
vector du(t′). The rest of her mobility pattern {du(t)}t>t′ is
assumed to be the same as the one if the ad were not projected
to her. This assumption is important so that mobility processes
{du(t)}t=1,2,... for each user u are either i.i.d. or Markovian
across time slots and are not affected by ad projection decisions.

5) User saturation: In order to avoid user saturation and
fatigue from ad and offer projection, we define a minimum
average elapsed interval β between consecutive projection of
ads to a user. Typical values for β are of the order 5 − 20
minutes. Then 1/β is the maximum average ad projection rate
in the sense that no more than 1/β ads per unit of time should
be pushed to each user on average, or equivalently, ads may
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be pushed to a user less often than once every β time units on
average.

B. Problem Statement and Formulation

In the presence of roaming mobile users around the venue
area, it is important to target the appropriate users at appropriate
times with ads of stores. Users differ from each other in the
way they respond to offers, depending on the relevance of the
offer to their profile and on the distance they have to traverse to
go to the store. This heterogeneity is reflected on the different
trained softmax regression models for users that generate the
probability of response for each user. These probabilities of user
response to ads of different stores are time-varying because of
user mobility.

The budget constraints for each store suggest that each ad
can be pushed to users for a certain maximum amount of times.
Thus, judicious targeting of users is needed, so that each ad
is projected to those users at times when they have higher
chances to visit the store. On the other hand, the constraints on
maximum ad projection rate to each user to avoid saturation
dictate that a limited number of stores may be advertised to
each user within a time window, and again, at times when user
locations lead to maximum probability of visit to the stores.

In the presence of user mobility and in the absence of
information about future user locations, various dilemmas arise.
Should an ad for a store be pushed now to a user that is in
certain proximity to the store, or should it be withheld for some
time later when another user location would arise with a possi-
bly larger probability of response? Which ads to show to a user
and when, given the maximum ad projection rate constraints?
The long-run perspective we adopt offers valuable insights, it
circumvents these types of questions and demonstrates that they
actually do not affect long-term performance.

We are interested in a dynamic policy for ad selection
and allocation to users that maximizes the long-term average
revenue for the venue owner. For user u, store s and time t, we
define the decision variable yus(t), which is 1 if an ad from
store s is pushed to user u at time t, and 0 if it is not. Let y(t)
denote the 0 − 1 n ×m matrix whose entries are yus(t); this
matrix denotes the global advertisement selection and allocation
at time t. A policy y is a sequence of ad selections and
allocations, {y(t)}t=1,2,.... Let T denote the length of a time
horizon. The problem above can be formulated as follows:

max
y

lim sup
T→∞

1

T

T∑
t=1

n∑
u=1

m∑
s=1

bspu(rus, dus(t)) yus(t) (2)

subject to the constraints:

lim sup
T→∞

1

T

T∑
t=1

m∑
s=1

yus(t) ≤
1

β
, ∀u ∈ U , (3)

lim sup
T→∞

1

T

T∑
t=1

n∑
u=1

yus(t) ≤ B̃s ∀s ∈ S (4)

and
m∑
s=1

yus(t) ≤ 1,∀t = 1, . . . , T, ∀u ∈ U . (5)

The objective in (2) is the long-term average revenue for
the platform. Constraint (3) says that the long-term average
projection rate of ads to each user should not exceed a threshold
that signifies user saturation, while constraint (4) stems from
the budget constraint for each store and implies that each store
can display on average a limited number of ads to users. Finally,
constraint (5) means that at most one offer should be made to
each user at any given time.

III. SOLUTION

A. Virtual Queues and Lyapunov optimization

We use Lyapunov optimization to tackle the problem. We
start by mapping constraints (3) and (4) to queue stability prob-
lems, so that the problem is mapped to one of optimal control
of a dynamic queueing system. For each of the n constraints
in (3), we define a virtual queue Qu(t), u = 1, . . . , n. In order
to make the size of the queue take integer values, we multiply
both sides of (4) with β, so that Qu(t) evolves as follows:

Qu(t+ 1) = max{Qu(t) + β

m∑
s=1

yus(t)− 1, 0} . (6)

This queue builds up when an ad is pushed to user u. Clearly
the assignment of an ad to user u at time t is equivalent to
increase of the size of the queue. Due to constraint (5), the
size of the queue at each time slot may increase at most by β.
On the other hand, if no ad is assigned to user u, the queue
size decreases by 1. The queue empties when no ad is assigned
to the user for some time. Let Q(t) = (Q1(t), . . . , Qn(t)) be
the vector of sizes of virtual queues for all users.

Further, for each of the m constraints in (4), we define a
virtual queue Zs(t), s = 1, . . . ,m, which evolves as follows:

Zs(t+ 1) = max{Zs(t) +

n∑
u=1

yus(t)− B̃s, 0} . (7)

Here, the queue builds up when an ad from store s is pushed
to users. The assignment of an ad from store s to user u at
time t is equivalent to increase of the size of the queue. An ad
may be pushed to more than one users at the same time, and
the queue size at each time increases according to the number
of users to which the ad is pushed. If no ad from store s is
pushed to a user, the queue size decreases by B̃s. The queue
empties when an ad from store s is not assigned to any user
for some time. Let Z(t) = (Z1(t), . . . , Zm(t)) be the vector of
sizes of virtual queues for all stores. Let Θ(t) = (Q(t),Z(t)).

The assignment variables y(t) control the admission pro-
cesses in the virtual queues. We define the Lyapunov function

L(Θ(t)) =
1

2

n∑
u=1

Q2
u(t) +

1

2

m∑
s=1

Z2
s (t) . (8)
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Then, define the one-slot conditional Lyapunov drift, ∆(Θ(t)),

∆(Θ(t)) = E[L(Θ(t+ 1))− L(Θ(t)) |Θ(t)] , (9)

which denotes the expected change in the Lyapunov function
in one slot, conditioned on the current state, and where the
expectation is with respect to the statistics of queue evolution.
By using standard techniques for bounding the Lyapunov drift
[6, Chap.3-4] and [6, p.33-34], we have that

∆(Θ(t)) ≤ B + E[
n∑

u=1

Qu(t)(β
m∑
s=1

yus(t)− 1) |Θ(t)]]

+E[
m∑
s=1

Zs(t)(
n∑

u=1

yus(t)− B̃s) |Θ(t)] , (10)

where B is a positive constant that satisfies

B ≥ 1

2
n(1 + β2) +

1

2
(mn2 +

m∑
s=1

B̃2
s ) . (11)

Since we aim at maximizing the objective function in (2),
we employ the drift-plus-penalty function,

∆(Θ(t)) + V E[Y (t) |Θ(t)] (12)

where V ≥ 0 is a fixed parameter that quantifies the signifi-
cance we place at the objective function, and

Y (t) = −
n∑

u=1

m∑
s=1

bspu(dus(t))yus(t) , (13)

for which we have

∆(Θ(t)) + V E[Y (t) |Θ(t)] ≤ B

−V E[
n∑

u=1

m∑
s=1

bspu(dus(t))yus(t) |Θ(t)]

+E[

n∑
u=1

Qu(t)(β

m∑
s=1

yus(t)− 1) |Θ(t)]]

+E[
m∑
s=1

Zs(t)(
n∑

u=1

yus(t)− B̃s) |Θ(t)] . (14)

The drift-plus-penalty method aims to employ at each time
slot the appropriate control so as to minimize the right-hand-
size of the inequality above. In our case, this control pertains
to the selection and assignment of ads subject to constraint
(5) which needs to hold at each slot t. With a slight abuse of
notation, let pus(t) = pu(rus, dus(t)). Then the optimization
problem to be solved at each time t is

max
y(t)

n∑
u=1

m∑
s=1

(V bspus(t)− βQu(t)− Zs(t)) yus(t) (15)

subject to:
m∑
s=1

yus(t) ≤ 1,∀t = 1, . . . , T, ∀u ∈ U . (16)

with yus(t) ∈ {0, 1}, for all t. At each time slot, the policy
observes the vectors of instantaneous sizes of virtual queues
Q(t) and Z(t) and instantaneous ensemble location vector
of users d(t) at time t and decides on the policy y(t) that
maximizes (15) at that slot.

The solution to the problem above is found if we observe
that (15) can be decomposed in separate maximization prob-
lems, one for each user u, subject to constraint (16). Let
γus(t) = (V bspus(t)− βQu(t)− Zs(t)). Then, the solution
is as follows. To each user u, we assign ad

s∗u(t) = arg max
s=1,...,m

γus(t), if γus(t) > 0 . (17)

Otherwise, if for all s it is γus(t) ≤ 0, then we do not assign
any ad to user u at time t.

IV. DATASET EXPERIMENTS AND EVALUATION

A. Dataset and preprocessing

1) Dataset: We use a Foursquare dataset that is available
online to evaluate our approach [9]. The dataset consists of
check-ins in New York City from 12 April 2012 to 16 February
2013, and it contains 227,428 check-ins. Each check-in is
associated with a user, a time stamp, GPS coordinates and
its semantic meaning i.e. fine-grained venue categories. Each
check-in contains also user id, venue id, venue category id
and name, and the date and time of check-in. The dataset was
originally used for studying the spatiotemporal regularity of
user activity in Location Based Social Networks, but we found
it relevant and applicable in our case as well.

2) Dataset preprocessing: First, we plotted the data and then
we chose an area that contained many shopping-related check-
ins. The area we choose extends to a radius of 500 meters from
Soho in New York City. It contains a large number of stores of
various types, e.g. about clothing, cosmetics, athletic apparel,
books, electronics, restaurants and other food related venues.
The area and types of stores were suitable for our experiments
as they could imitate the size and stores that one encounters in
a mall or an airport.

Since each check-in contains a user id and a time stamp,
we are able to extract the trajectories for each user. The only
assumption we make is that, if the temporal distance between
two check-ins is larger than 24 hours, a new trajectory begins.
Each user has a number of trajectories, and each trajectory is
formed by a sequence of pairs {t,du(t)}t=1,2,... , where t is
the timestamp and du(t) = (dus(t) : s ∈ S) is the vector of
distances of user u from venues at time t.

Suppose there are K venue categories. We assign each user
a vector ru = (ruk : k = 1, . . . ,K). These may be interpreted
as relevance factors between user u and venue category k. If
they are normalized in interval [0, 1] they may be interpreted
as probabilities of visit. Thus, ruk can be calculated as the
number of times user u visited a venue of category k over
the total number of visits she paid. We say that a user has
visited a venue if there is a check-in in that particular venue
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from this user. Note that relevance of a venue category to a
user is not time-dependent, i.e. preferences of a user do not
change in such short time interval. Still, with additional data,
our model might capture possible changes in user preferences
over a longer period.

3) User Clustering to reduce data sparseness: An important
issue is data sparseness, since some users have very few tra-
jectories and visit a small number of venues. To deal with this,
we create clusters of users when users are associated with few
trajectories. Each cluster of users is then treated as a single user
whose trajectories are all trajectories of users in that cluster. We
measure the similarity between two users u, u′ using cosine
similarity on vectors ru and ru′ , as cs(ru, ru′) =

∑
k rukru′k.

Finally, we use the affinity propagation (AP) clustering algo-
rithm [10] to determine the number of the clusters and to group
users in clusters. With AP, the number of clusters does not need
to be predefined.

B. User Profiling Survey and user matching

1) Survey: The softmax regression model in (1) uses two
features that affect user response to a store ad: relevance of
user and store profiles, and distance from the store. Distance
can be directly derived from the Foursquare dataset. One could
argue that relevance ruk of user u to store category k could
also be derived through the percentage of visits to stores, as
discussed in IV-A above. However, this makes the two features
correlated as they are computed from the same part of the
dataset. The idea is that relevance should denote the background
preference profile of each user, regardless of visits. Thus, we
decided to disengage the two features by deriving relevance
through a questionnaire survey.

We distributed a questionnaire to 50 students and faculty of
the university. For each major venue category in the dataset,
users from the questonnaire were asked about their interests
in a scale from 1 to 5. We calibrated the values that users
gave in [0, 1] so that they correspond to the scale of ruk in
the Foursquare dataset, e.g. 1, 2, 3, 4, 5 would correspond to
0, 0.2, 0.4, 0.7, 0.9 respectively. Let r̃v = (r̃vk : k = 1, . . . ,K)
be the vector of preferences of user v in the questionnaire.

2) Matching surveyed and Foursquare users: After profiling
the users of the survey, we attempt an one-to-one matching of
these users and the user clusters from the Foursqure dataset.
We use cosine similarity of vectors ru and r̃v , i.e. cs(ru, r̃v)
to measure the similarity between Foursquare user cluster u
and survey user v. We create a bipartite graph G = (U ,V, E)
consisting of two disjoint node sets U ,V . Set U has one node
for each user cluster u, while V has one node for each survey
user v. The weight of an edge from u ∈ U to v ∈ V is wuv =
cs(ru, r̃v).

To match users between sets U and V , we find a maximum
weighted bipartite matching of graph G, i.e. a matching with
maximum sum of edge weights. The method we use to solve the
problem has complexity O(|U|3) and uses the blossom method

for finding augmenting paths and the primal-dual method for
finding a matching of maximum weight [11].

C. Soft-max Regression

Given that for each user we have a sequence of pairs
{(ru,du(t))}, equal to the number of timestamps of each user
trajectory, we use a machine- learning model to calculate the
probability of a user visiting a venue, given the user preferences
and the distance from venues. We approach user venue response
behavior as a K-class probabilistic classification problem,
where the K classes are venue categories. We use the softmax
regression model in (1).

The training dataset for calculating the probability of a user
u visiting a store s consists of triads of the form (ru,du, s) ,
where ru is the vector of relevances between user u and each
store s, du is the vector of distances of user u from all the
venues at any timestamp of her trajectories, and s is the venue
visited by the user.

D. Results

We simulate user mobility of 50 randomly selected users
from the pool of users in the area for 500 time-slots of 10
minutes each, using the random waypoint mobility model.
First, we place users in the simulation area. Then, each user
moves with a uniformly randomly selected speed from current
point to a uniformly randomly selected point within a radius
that depends on walking speed and time-slot duration. The
procedure is repeated for each time-slot.

In our experiments, we use the pay-per-impression model
where the advertiser pays a given amount per ad display. This
choice was used since user actual visits to a venue cannot be
monitored unless we run a real field experiment. We assume
that the budget for each venue/advertiser is 10 and the bids are
1 money units. Finally, V = 1.

We run the experiment for three different policies: one that
uses only the distance attribute, one that uses only the relevance
attribute, and one that uses both to describe the probabilties of
visit. The policies are referred to as ”Only Distance”, ”Only
Relevance” and ”Relevance and Distance”, respectively. All
these policies rely on our machine-learning model and aim
at predicting the user visit probability at a venue. Clearly,
other classes of heuristics exist. For example, we can choose
randomly T/β timeslots to display ads for each user among
T timeslots. At these time slots, we give to each user the
ad that corresponds to the venue he is closer at. Likewise,
yet another policy is to choose in a similar fashion the ad
that is most relevant to a user. These classes of heuristics,
although practically relevant, do not lead to a computation
of the probability of visit. Thus, they would not be directly
comparable to the approaches above, unless we run a real field
experiment.

In Figure 2, we present the long-term average revenue as
a function of average elapsed interval between consecutive
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Fig. 2. Long-term avg. revenue as function of avg. elapsed interval between
consecutive projected ads, β, for different policies.

Fig. 3. Long-term avg. revenue as function of long-term average number of
possible ad projections of each store/advertiser B̃ for different policies.

projected ads, β, for β = {1, 2, 5, 10, 12, 15, 17, 20}. Long-
term average revenue, for all policies, is seen to be a non-
increasing function of β, and for β ≥ 10 it does not change
significantly and seems to stabilize. We observe that using both
the distance and the ad relevance attributes in predicting user
visit probabilities gives the highest value of long-term average
revenue. We also see that, as the time that elapses between
successive ad projections gets bigger, fewer ads are shown to
users and as a result long-term average revenue decreases.

In Figure 3, we depict the long-term average revenue as
function of B̃. Since in our experiments B̃s is the same for all
s, we denote as B̃ the long-term average number of possible
ad projections to users of each store/advertiser, and we show
how the long-term average revenue varies for different values
of B̃ = {1, 2, 5, 10, 20, 50, 100}. As expected, for all three
policies, as the long-term average ad projections decreases,
long-term average revenue decreases as well.

V. RELATED WORK

Web and native advertising. In all forms of advertising,
advertisers compete to have their ads displayed to users.
Advertisers set a budget they are willing to spend within a
certain period of time, and an auction process determines the
ads to project and the relevant charges. Chronologically, the
first form of advertising was web-search advertising with its
celebrated Generalized Second-Price (GSP) auction [12]. The
most common payment models are the pay-per-impression one
and the pay-per-click one. The latter model, where a fee is paid
to the platform after an ad click, resembles the pay-per-visit
model we assume here.

In native advertising, ads are promoted or sponsored posts
that are allocated inside the user post feeds. In [13], the problem
of ad placement in a post stream is addressed. The model
captures the cumulative effect of previously projected ads on
user click probability which is decreasing in the number of
previously shown ads. Given a set of ads, a reward and a set
of candidate positions, the objective is to find an ad placement
that maximizes total reward. In [4], click probability of an ad
depends on the distance from the previously shown ad and on
context relevance between the ad and the previous post in the
feed. The goal is to find the ad selection and allocation policy
that maximizes revenue for the platform, while minimizing
revenue uncertainty captured by variance of consumed budget
of ads.

Stochastic optimization approaches. Stochastic optimization
has been used in web-search ad allocation. In [14], the optimal-
auction framework is used for single-slot revenue maximiza-
tion. The optimal policy is to allocate the slot to users in
decreasing order of qiνi where qi, νi are the selling probability
and valuation of user i. In [5], the authors use Lyapunov
optimization for maximizing long-term average revenue for
a web-search service provider by dynamically allocating ads
to webpage slots in the presence of dynamic keyword query
arrivals, subject to a long-term average budget constraint. The
work [15] studies allocation of budget-constrained advertisers
in each keyword auction round so as to maximize the likelihood
of ad click or to reduce advertiser cost per click. Dynamic
actions under limited budget over the entire horizon are studied
in [16] through the lens of multi-armed bandit theory.

Location-based advertising (LBA). LBA leverages localiza-
tion technologies to perform targeted advertising, and it has
impact in the society and economy [17]. In [18], the timeliness
of projecting mobile coupons is identified as a major factor
that influences redemption rate. The work [1] applies a data-
driven approach and a real field experiment in studying the
likelihood of coupon redemption. Consumer preferences are
inferred through machine-learning techniques on trajectory data
and on relevant spatiotemporal and semantic information. The
work [19] studies the ad broadcast scheduling problem, i.e. that
of deciding which ads to send to which customers at what time,
given a limited capacity of broadcast time slots, while maxi-
mizing customer response and the revenue of the marketing
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company with the aid of precomputed priority weights for each
ad. A challenge in location-based advertising or services is to
mine user activity and mobility data for pattern discovery [20].
In [21], the authors cluster similar users based on venues they
have visited, while in [22] the authors use techniques based on
spatial specificity, temporal correlation and context similarity
to derive and predict user activity profiles.

Finally, the work [23] proposes a WiFi monetization model
for public hotspots provided by venue owners (VOs). Revenue
can be generated through a premium or an ad-sponsored access.
In the former, users pay venue owners for Wi-Fi usage, while in
the latter users watch ads in return for free Wi-Fi. The strategic
interactions among the ad platform, multiple VOs, users, and
competing advertisers are studied in a three-stage Stackelberg
game, whereby the ad platform computes a revenue sharing
policy among VOs, VOs decide on the prices of premium access
and advertising, users choose between the access modes above,
and advertisers decide on the number of ad spaces to purchase
from the VO.

VI. CONCLUSION

We studied the problem of ad selection and allocation and we
derived the policy that maximizes long-term average revenue
for the platform. To achieve that, we exploit user profiling and
instantaneous user locations to come up with stores that are
likely to be visited by each user. We included in the formulation
a maximum ad projection rate to each user and a maximum total
average budget to be spent by each store. The extent to which
these constraints are satisfied or violated is mapped into virtual
queues whose lengths guide ad assignment to users.

There exist several directions for future study. In this work,
we assumed that the user population does not vary with time
in order to expose our solution principle. However, in reality
the user set varies with time since users arrive and depart
from the area frequently. It would be interesting to explore
new arising issues in this case. Another interesting direction
is to incorporate short-term constraints in the ad projection
algorithm. For example, if the user has received an ad and
visited a store, it would not make sense to show the same or
similar ads to that user in the near future.

The ad assignment to a user used some form of similarity
of the store and the user profile. In the future we plan to
use methods from recommender systems such as collaborative
filtering and matrix factorization to guess which ad is likely to
be preferred by a user. Another interesting direction is to mine
user trajectories and derive insights that can be used in our
model in order to make it more efficient through conserving
advertising opportunities. For example, if a user follows a
trajectory every day and almost surely visits some stores, then
we may do not want to advertise these stores to her since they
will be visited anyway, and instead we should try to produce
revenue through other users or venues. We are also interested in
applying our approach in some tens of users through a mobile
app in a real field experiment.
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