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Abstract—We propose a model for heterogeneous cellular net-
works assuming a space-time Poisson process of call arrivals,
independently marked by data volumes, and served by different
types of base stations (having different transmission powers)
represented by the superposition of independent Poisson processes
on the plane. Each station applies a processor sharing policy to
serve users arriving in its vicinity, modeled by the Voronoi cell
perturbed by some random signal propagation effects (shadowing).
Users’ peak service rates depend on their signal-to-interference-
and-noise ratios (SINR) with respect to the serving station. The
mutual-dependence of the cells (due to the extra-cell interference)
is captured via some system of cell-load equations impacting the
spatial distribution of the SINR. We use this model to study
in a semi-analytic way (involving only static simulations, with
the temporal evolution handled by the queuing theoretic results)
network performance metrics (cell loads, mean number of users)
and the quality of service perceived by the users (mean throughput)
served by different types of base stations. Our goal is to identify
macroscopic laws regarding these performance metrics, involving
averaging both over time and the network geometry. The reveled
laws are validated against real field measurement in an operational
network.

Index Terms—Het-Nets; traffic demand; user-throughput; cell-
load; processor sharing; Little’s law; Poisson point process; typical-
cell; queuing theory; Palm theory; measurements

I. INTRODUCTION

Wireless cellular networks are constantly evolving to cope
with the accelerating increase of the traffic demand. The tech-
nology progressed from 3G enhancement with HSDPA (High-
Speed Downlink Packet Access) to 4G with LTE (Long Term
Evolution). The networks become also more dense and more
heterogeneous; i.e. new base stations (BS) of different types are
added. In particular, operators introduce micro BS, which trans-
mit with smaller powers than the original ones (called macro
BS) in order to cope with local increase of the traffic demand
(hotspots). The reasons for using smaller transmitting powers is
to avoid a harmful increase of interference and reduce energy
consumption as well as human exposure to the electromagnetic
radiation. The deployment of micro BS is expected to increase
significantly in the nearest future.

Usage of different tiers of BS (as the micro and macro
stations) with variable transmission powers as well as antenna
gains, height etc, makes cellular networks heterogeneous. Be-
sides, even the macro tiers in commercial cellular networks
are never perfectly regular: the locations of BS is usually far
from being perfectly hexagonal, because of various deployment
constraints. Irregularity of the spatial patterns of BS is usually
more pronounced in dense urban environments. Physical irregu-
larity of the urban environment (shadowing) induces additional
variability of radio conditions. Irregularity and heterogeneity
of cellular networks implies a spatial disparity of base station
performance metrics and quality of service (QoS) parameters ob-
served by users in different cells of the network. This represents
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a challenge for the network operators, in particular in the context
of the network dimensioning. How to describe and analyze the
performance of a large, irregular, heterogeneous network? Which
tier in the given network disposes larger capacity margins? Is
it the macro tier since its BS transmit with larger powers or
the micro tier, whose BS serve smaller zones? The goal of
this paper is to propose a model, validated with respect to real
field measurements in an operational network, which can help
answering these questions.

Our objective faces us with the following important aspects of
the modeling problem: (i) capturing the static but irregular and
heterogeneous network geometry, (ii) considering the dynamic
user service process at individual network BS (cells), and last
but not least (iii) taking into account the dependence between
these service processes. This latter dependence is due to the
fact that the extra-cell interference makes the service of a given
cell depend on the “activity” of other cells in the network.
Historically, geometric (i) and dynamic (ii) aspects are usually
addressed separately on the ground of stochastic geometry and
queueing theory, respectively.

Cellular network models based on the planar Poisson point
process have been shown recently to give tractable expressions
for many characteristics built from the powers of different BS
received at one given location, as e.g. the signal-to-interference-
and noise ratio(s) (SINR) of the, so-called, typical user. They
describe potential resources of the network (peak bit-rates,
spectral or energy efficiency etc) but not yet its real performance
when several users have to share these resources. On the other
hand, various classical queueing models can be tailored to
represent the dynamic resource sharing at one or several BS
(as e.g. loss models for constant bit-rates services and processor
sharing queues for variable bit-rates services).

Our model considered in this paper combines the stochastic-
geometric approach with the queueing one to represent the
network in its spacial irregularity and temporal evolution. It
assumes the usual multi-tier Poisson model for BS locations
with shadowing and the space-time Poisson process of call
arrivals independently marked by data volumes. Each station
applies a processor sharing policy to serve users which receive
its signal as the strongest one, with the peak service rates
depending on the respective SINR. The mutual-dependence of
cell performance (iii) is captured via a system of cell-load (fixed
point) equations. By the load we mean the ratio of the actual
traffic demand to its critical value, which can be interpreted,
when it is smaller than one, as the busy probability in the
classical processor sharing queue. The cell load equations make
the load of a given station dependent on the busy probabilities
(hence loads) of other stations, by taking them as weighting
factors of the interference induced by these stations. Given
network realization, this decouples the temporal (processor-
sharing) queueing processes of different cells, allowing us to use
the classical results to evaluate their steady state characteristics
(which depend on the network geometry). We (numerically)
solve the cell-load fixed point problem calculating loads and
other characteristics of the individual cells. Appropriate spatial
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(network) averaging of these characteristics, expressed using
the formalism of the typical cell offered by Palm theory of
point processes, provides useful macroscopic description of the
network performance.

The above approach is validated by estimating the model pa-
rameters from the real field measurements of a given operational
network and comparing the macroscopic network performance
characteristics calculated using this model to the performance
of the real network.

The remaining part of the paper is organized as follows: In
Section I-A we briefly present the related work. Our model is
introduced in Section II and studied in Section III. Numerical
results validating our approach are presented in Section IV.

A. Related work

There are several “pure” simulation tools developed for the
performance evaluation of cellular networks such as those de-
veloped by the industrial contributors to 3GPP (3rd Generation
Partnership Project) [1], TelematicsLab LTE-Sim [2], University
of Vien LTE simulator [3, 4] and LENA tool [5, 6] of CTTC.
They do not unnecessarily allow to identify the macroscopic
laws regarding network performance metrics.

A possible analytical approach to this problem is based on the
information theoretic characterization of the individual link per-
formance; cf e.g. [7, 8], in conjunction with a queueing theoretic
modeling and analysis of the user traffic cf. e.g. [9–14]. These
works are usually focused on some particular aspects of the
network and do not consider a large, irregular, heterogeneous,
multi-cell scenario.

Stochastic geometric approach [15] to wireless communi-
cation networks consist in taking spatial averages over node
(emitter, receiver) locations. It was first shown in [16] to give
analytically tractable expressions for the typical-user character-
istics in Poisson models of cellular networks, with the Poisson
assumption being justified by representing highly irregular base
station deployments in urban areas [17] or mimicking strong log-
normal shadowing [18, 19], or both. Expressions for the SINR
coverage in multi-tier network models were developed in [20–
23]. Several extensions of this initial model are reported in [24].
The concept of equivalence of heterogeneous networks (from the
point of view of its typical user), which we use in the present
paper, was recently formulated in [25], but previously used in
several works e.g. in [23, 26–28].

The fixed-point cell-load equation was postulated indepen-
dently in [14] and [29] to capture the dependence of processor
sharing queues modeling performance of individual BS, in the
context of regular hexagonal and fixed deterministic network
models, respectively. Our present paper, combining stochastic
geometry with queueing theory complements [30], where a
homogeneous network is considered, and [31] where the distri-
bution of the QoS metrics in the heterogeneous network has been
studied by simulation. A network dimensioning methodology
based on this approach was recently proposed in [32].

II. MODEL DESCRIPTION

In this section we describe the components of our model.

A. Network geometry

1) Multi-tier network of BS: We consider a multi-tier cellular
network consisting of J types (tiers) of BS characterized by
different transmitting powers Pj , j = 1, . . . , J . Locations of
BS are modeled by independent homogeneous Poisson point

processes Φj on the plane, of intensity λj stations per km2. Let
Φ = {Xn} be the superposition of Φ1, . . . ,ΦJ (capturing the
locations of all BS of the network). Denote by Zn ∈ {1, . . . , J}
the type of BS Xn ∈ Φ (i.e., the index of the tier it belongs
to). It is known that Φ is a Poisson point process of intensity
parameter λ =

∑J
j=1 λj and Zn form independent, identically

distributed (i.i.d) marks of Φ with P(Zn = j) = λj/λ.
2) Propagation effects: The propagation loss is modeled

by a deterministic path-loss function l(x) = (K |x|)β , where
K > 0 and β > 2 are given constants, and some random
propagation effects. We split these effects into two categories
conventionally called (fast) fading and shadowing. The former
will be accounted in the model at the link-layer (in the peak
bit-rate function cf. (34)). The latter impacts the choice of the
serving BS and thus needs to be considered together with the
network geometry. To this regard we assume that the shadowing
between a given station Xn ∈ Φ and all locations y on the
plane is modeled by some positive valued stochastic process
Sn (y −Xn). We assume that the processes Sn (·) are i.i.d.
marks of Φ. 1 Moreover we assume that S1(y) are identically
distributed across y, but do not make any assumption regarding
the dependence of Sn(y) across y.

Thus the inverse of the power averaged over fast fading,
received at y from BS Xn, denoted by LXn (y) = Ln (y) which
we call (slightly abusing the terminology) the propagation-loss
from this station is given by

LXn (y) =
l (|y −Xn|)

PZnSn (y −Xn)
. (1)

In what follows, we will often simplify the notation writing
LX(·) for the propagation-loss of BS X ∈ Φ.

3) Service zones, SINR and peak bit-rates: We assume that
each (potential) user located at y on the plane is served by the
BS offering the strongest received power among all the BS in
the network. Thus, the zone served by BS X ∈ Φ, denoted
by V (X), which we keep calling cell of X (even if random
shadowing makes it need not to be a polygon or even a connected
set) is given by

V (X) =
{
y ∈ R2 : LX (y) ≤ LY (y) for allY ∈ Φ

}
(2)

We define the (downlink) SINR at location y ∈ V (X) (with
respect to the serving BS X ∈ Φ) as follows

SINR (y,Φ) :=
1/LX (y)

N +
∑
Y ∈Φ\{X} ϕY /LY (y)

, (3)

where N is the noise power and the activity factors ϕY ∈ [0, 1]
account (in a way that will be made specific in Section II-D) for
the activity of stations Y ∈ Φ. In general, we assume that ϕY
are additional (not necessarily independent) marks of the point
process Φ, possibly dependent on tiers and shadowing of all BS.

We assume that the (peak) bit-rate at location y, defined as the
number of bits per second a user located at y can download when
served alone by its BS, is some function R(SINR) of the SINR.
Our general analysis presented in Section III does not depend
on any particular form of this function. A specific expression
will be assumed for the numerical results in Section IV.

B. Network users

1) User-arrival process: We consider variable bit-rate (VBR)
traffic; i.e., users arrive to the network and require to transmit
some volumes of data at bit-rates induced by the network. We

1The assumption that all types of base stations have the same distribution of
the shadowing can be easily relaxed.
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assume a homogeneous time-space Poisson point process of user
arrivals of intensity γ arrivals per second per km2. This means
that the time between two successive arrivals in a given zone of
surface S is exponentially distributed with parameter γ×S, and
all users arriving to this zone take their locations independently
and uniformly. The time-space process of user arrivals is inde-
pendently marked by random, identically distributed volumes of
data the users want to download from their respective serving
BS. These volumes are arbitrarily distributed and have mean
1/µ bits.

The above arrival process induces the traffic demand per
surface unit ρ = γ/µ expressed in bits per second per km2.
The traffic demand in the cell of BS X ∈ Φ equals

ρ (X) = ρ |V (X)| , (4)
where |A| denotes the surface of the set A; ρ(X) is expressed
in bits per second.

2) Processor-sharing service policy: We shall assume that
the BS allocates an equal fraction of its resources to all users it
serves at a given time. Thus, when there are k users in a cell,
each user obtains a bit-rate equal to its peak bit-rate divided
by k. More explicitly, if a base station located at X serves k
users located at y1, y2, . . . , yk ∈ V (X) then the bit-rates of
these users are equal to R (SINR (yj ,Φ)) /k, j = 1, 2, . . . , k,
respectively. Users having completed their service (download of
the requested volumes) leave the system.

C. Time-averaged cell characteristics

Given the network realization (including the shadowing and
the cell activity factors), the performance of each cell V (X)
of X ∈ Φ corresponds to a (spatial version of the) processor
sharing-queue. More specifically, due to complete independence
property of the Poisson process of arrivals, the temporal dy-
namics of these queses are independent. Thus, we can use the
classical queuing-theoretic results regarding processor-sharing
queues to describe the time-averaged (steady-state) characteristic
of all individual cells. Besides the traffic demand ρ(X) already
specified in Section II-B1, these characteristics are: the critical
traffic ρc(X), cell load θ(X), mean number of users N(X),
average user throughout r(X), busy (non-idling) probability
p(X). In what follows we present these characteristics in a form
tailored to our wireless context; cf [10]. All these characteristics
can be seen as further, general (non-independent) marks of the
point process Φ and depend also on BS types, their activity
factors and shadowing processes.

1) Critical traffic: The processor-sharing queue of the base
station X ∈ Φ is stable if and only if its traffic demand ρ(X)
is smaller than the critical value which is the harmonic mean of
the peak bit-rates over the cell; cf [14]

ρc (X) := |V (X)|

(∫
V (X)

R−1 (SINR (y,Φ)) dy

)−1

. (5)

2) Cell load: We define it as the ratio between the (actual)
cell traffic demand and its critical value

θ (X) :=
ρ (X)

ρc (X)
=

∫
V (X)

ρR−1 (SINR (y,Φ)) dy . (6)

3) Mean number of users: The mean number of users in the
steady state of the processor sharing queue at BS X ∈ Φ can
be expressed as

N (X) :=


θ (X)

1− θ (X)
if θ(X) < 1

∞ otherwise .
(7)

4) User throughput: is defined as the ratio between the mean
volume request 1/µ and the mean typical-user service time in
the cell X . By the Little’s law it can be expressed as

r (X) :=
ρ(X)

N(X)
. (8)

5) Busy probability: The probability that the BS X ∈ Φ is
not idling (serves at least one user) in the steady state is equal
to

p (X) = min (θ (X) , 1) . (9)

It is easy to see that all the above characteristics (marks) of the
BS X ∈ Φ can be expressed using the traffic demand ρ(X) and
the cell load θ(X) in the following order

ρc(X) =
ρ(X)

θ(X)
, (10)

r(X) = max(ρc (X)− ρ (X) , 0) , (11)

N (X) =
ρ (X)

r (X)
. (12)

D. Spatial inter-dependence of cells — cell load equations

The individual cell characteristics described in the previous
section depend on the location of all base stations, shadowing
realizations but also on the cell activity factors ϕX , X ∈ Φ,
introduced in Section II-A3 to weight the extra cell interference
in the SINR expression, and which have been arbitrary numbers
between 0 and 1 up to now. These factors suppose to account for
the fact that BS might not transmit with their respective maximal
powers Pj depending on the BS types j = 1, . . . , J all the time.

It is quite natural to think that BS transmit only when they
serve at least one user. 2 Taking this fact into account in an exact
way requires introducing in the denominator of (3) the indicators
that a given station Y ∈ Φ at a given time is not idling. This,
in consequence, would lead to the probabilistic dependence of
the service process at different cell, thus revoking the explicit
expressions for their characteristics presented in Section II-C
and the model becomes non-tractable. 3 For this reason, we
take into account whether Y is idling or not in a simpler way,
multiplying its maximal transmitted power by the probability
p(Y ) that it is busy in the steady state. In other words, in the
SINR expression (3) we take ϕY = p(Y ) where p(Y ) is given
by (9); i.e.,

SINR (y,Φ) =

1
LX(y)

N +
∑
Y ∈Φ\{X}

min(θ(Y ),1)
LY (y)

. (13)

We call this model (load)-weighted interference model. Clearly
this assumption means that θ(X) cannot be calculated indepen-
dently for all cells but rather are solutions of the following fixed
point problem, which we call cell load equations

θ (X) = ρ

∫
V (X)

R−1

 1
LX(y)

N +
∑
Y ∈Φ\{X}

min(θ(Y ),1)
LY (y)

 dy .

(14)
This is a system of equations which needs to be solved for
{θ (X)}X∈Φ given network and shadowing realization. In the
remaining part of this paper we assume that such a solution

2Analysis of more sophisticated power control schemes is beyond the scope
of this paper.

3We are even not aware of any result regarding the stability of such a family
of dependent queues.
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exists and is unique. 4 The other characteristics of each cell are
then deduced from the cell load and traffic demands using the
relations described in Section II-C.

III. MODEL ANALYSIS

We begin our analysis by recalling some useful results re-
garding the Poisson network model. Next, in Section III-B we
present our main results and in Section III-C postulate some
simplified approach inspired by these results.

A. Preliminaries: typical and zero-cell of the multi-tier network
We briefly recall here the notions of the typical and zero-cell,

usually considered for the Voronoi tessellation and here regard-
ing our network cells. Both objects will play their respective
roles in the remaining part of the paper.

We denote by P the probability corresponding to the stationary
distribution of our model as described in Section II.

1) The typical cell: This is a mathematical formalization of a
cell whose BS is “arbitrarily chosen” from the set of all stations,
without any bias towards its characteristics, in particular its type
and the cell size. The formalization is made on the ground
of Palm theory, where the typical cell V (0) is this of the BS
X0 = 0 located at the origin under the Palm probability P0.
By the Slivnyak’s theorem the Palm distribution of the Poisson
process corresponds to the homogeneous (stationary) one, with
the “extra” point X0 = 0 added at the origin. In the case of
i.i.d. marked Poisson process, as in our case, this extra point
gets and independent copy of the mark, with the original mark
distribution.

Note that in our network the probability that an “arbitrarily
chosen” BS is of type j, j = 1, . . . , J , is equal to λj/λ. More
formally,

P0(Z0 = j) = λj/λ . (15)

We remark, that the typical cell does not have any physical
existence in a given network. It is rather a useful mathematical
tool, in the sense that the mathematical expectations under E0 of
the typical cell V (0) characteristics (as the cell traffic demand
ρ(0), cell load θ(0), etc) can be interpreted as network-averages
of the (already time-averaged) cell performance metrics. For ex-
ample the network-averaged traffic demand per cell, considering
all cells or only cells of type j = 1, . . . , J , equal, respectively

ρ̄ := E0[ρ(0)] = lim
|A|→∞

1

Φ (A)

∑
X∈Φ∩A

ρ (X) , (16)

ρ̄j := E0[ρ(0) |Z0 = j] = lim
|A|→∞

1

Φj (A)

∑
X∈Φj∩A

ρ (X) .

(17)
where A denotes a disc centered at the origin, of radius
increasing to infinity. The convergence is P-almost sure and
follows from the ergodic theorem for point processes (see [33,
Theorem 13.4.III]). We define similarly the network-average
load (overall and per cell type)

θ̄ := E0[θ(0)] , (18)

θ̄j := E0[θ(0) |Z0 = j] j = 1, . . . , J. (19)

4Note that the mapping in the right-hand-side of (14) is increasing in all
θ(Y ), Y ∈ Φ provided function R is increasing. Using this property it is
easy to see that successive iterations of this mapping started off θ(Y ) ≡ 0
on one hand side and off θ(Y ) = 1 (full interference model) on the other
side, converge to a minimal and maximal solution of (14), respectively. The
uniqueness of the solution (in the Poisson or more general) network is an
interesting theoretical question, which is however beyond the scope of this paper.
A very similar problem (with finite number of stations and a discrete traffic
demand) is considered in [29], where the uniqueness of the solution is proved.

The convergence analogue to (16), (17) holds for each of the
previously considered local characteristics. However (at least
for Poisson network) it is not customary to consider directly
E0[N(0)] since the (almost sure) existence of some (even
arbitrarily small) fraction of BS X which are not stable (with
ρ(X) ≥ ρc(X), hence N(X) =∞) makes E0[N(0)] =∞. 5

Also, as we will explain in what follows, E0[r(0)] does
not have a natural interpretation. In particular it cannot be
interpreted as the mean user throughput.

2) Zero cell: This is the cell (of the stationary distributed
network) that covers the origin 0 of the plane, which plays
the role of an arbitrarily fixed location. The characteristics of
the zero-cell correspond to the characteristics of the cell which
serves the typical user. Clearly this is a size-biased choice and
indeed the zero cell has different distributional characteristics
from the typical cell. Let us denote by X∗ the location of the
BS serving the zero-cell and its type by Z∗.

We will recall now a useful result regarding multi-tier net-
works, from which we will derive the distribution of Z∗; cf [25,
Lemma 1].

Lemma 1: Assume that E
[
S2/β

]
< ∞. Then Φ̂ =

{(Ln = Ln(0), Zn)}n is a Poisson point process on [0,∞) ×
{1, . . . , J} with intensity measure
Λ ((0, t]× {j}) := E[#{n : Ln ≤ t, Zn = j}] = ajt

2/β , (20)
t ≥ 0, j = 1, . . . , J , where

aj :=
πE
[
S2/β

]
K2

λjP
2/β
j . (21)

Remark 2: The form (20) of the intensity measure Λ of
Φ̂ allows us to conclude that the point process {Ln(0)}n of
propagation-loss values (between all base stations and the origin)
is a Poisson point process of intensity Λ((0, t]× {1, . . . , J}) =
at2/β , where

a :=

J∑
j=1

aj . (22)

Moreover, the types Zn of the BS corresponding to the respec-
tive propagation-loss values Ln constitute i.i.d. marking of this
latter process of propagation-loss values, with the probability
that an arbitrarily chosen propagation-loss comes from a BS of
type j having probability aj/a. In particular, for the serving
station (offering the smallest propagation-loss) we have

P{Z∗ = j } = aj/a .
6 (23)

Our second remark on the result of Lemma 1 regards an
equivalent way of generating the Poisson point process of
intensity (20).

Remark 3: Consider a homogeneous Poisson network of
intensity λ, in which all stations emit with the same power

P =

 J∑
j=1

λj
λ
P

2/β
j

β/2

(24)

and assume the same model of the propagation-loss with
shadowing as described in Section II-A2. Let us “artificially”

5For a well dimensioned network one does not expect unstable cells. For a
perfect hexagonal network model Φ without shadowing all cells are stable or
unstable depending on the value of the per-surface traffic demand ρ. For an
(infinite) homogeneous Poisson model Φ, for arbitrarily small ρ there exists a
non-zero fraction of BS X ∈ Φ, which are non-stable. This fraction is very
small for reasonable ρ, allowing to use Poisson to study QoS metrics which,
unlike E0[N(0)], are not “sensitive” to this artifact.

6Interpreting (15) and (23) we can say that an arbitrarily chosen BS is of type
j with probability λj/λ, while an arbitrarily chosen propagation-loss (measured
at the origin) comes from a BS of type j with probability aj/a.
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(without altering the power P ) mark these BS by randomly,
independently selecting a mark j = 1 . . . , J for each station with
probability aj/a. A direct calculation shows that the marked
propagation-loss process observed in this homogeneous network
by a user located at the origin, analogue to Φ̂, has the same
intensity measure Λ given by (20). Consequently, the distribution
of all user/network characteristics, which are functionals of
the marked propagation-loss process Φ̂ can be equivalently
calculated using this equivalent homogeneous model.

B. Global network performance metrics

The objective of this section is to express pertinent, global
network characteristics and relate them to mean throughput of
the typical user of the network.

1) Traffic and load per cell: The mean traffic demand and
load of the typical cell, globally and per cell type, can be
expressed as follows.

Proposition 4: We have for the traffic demand

ρ̄ =
ρ

λ

ρ̄j = ρ̄
P

2/β
j

P 2/β
, j = 1, . . . , J, (25)

where P is the “equivalent network” power given by (24).
Proof: We have

ρ̄ = E0 [ρ (0)] = ρE0 [|V (0)|] =
ρ

λ
,

where the second equality is due to (4) and the last one follows
from the inverse formula of Palm calculus [34, Theorem 4.2.1]
(which may be extended to the case where the cell associated to
each BS is not necessarily the Voronoi cell; the only requirement
is that the user located at 0 belongs to a unique cell almost
surely). Similarly,

ρ̄j = ρE0 [|V (0) | Z0 = j] = ρ
E0 [|V (0)| × 1{Z0 = j}]

P0 (Z0 = j)

=
ρ

λ

P (Z∗ = j)

P0 (Z0 = j)
= ρ̄

aj/a

λj/λ
= ρ̄

P
2/β
j

P 2/β
,

where the third equality follows again from the inverse formula
of Palm calculus and the two remaining ones from (15), (23)
and (21), (22), respectively.

Proposition 5: We have for the cell load

θ̄ =
ρ

λ
E
[
R−1 (SINR (0,Φ))

]
, (26)

θ̄j = θ̄
P

2/β
j

P 2/β
, j = 1, . . . , J , (27)

where P is given by (24).
Proof: Denote g (y,Φ) = R−1 (SINR (y,Φ)). In the same

lines as the proof of Proposition 4, by the inverse formula of
Palm calculus θ̄ = E0 [θ (0)] = ρ

λE [g (0,Φ)]. Similarly

θ̄j = E0 [θ (0) |Z0 = j]

= ρE0

[∫
V (0)

g (y,Φ)1{Z0 = j} dy

]
/P0 (Z0 = j)

=
ρ

λ
E [g (0,Φ)1{Z∗ = j}] /P0 (Z0 = j)

=
ρ

λ
E [g (0,Φ)]

aj/a

λj/λ
,

where the third equality follows from the inverse formula of
Palm calculus, and the fourth equality from the independent
marking of the propagation-loss process by the BS types; cf
Remark 2.

2) Number of users per cell and mean user throughput: For
the reasons already explained at the end of Section III-A1 it is
more convenient to average the number of users per cell in the
stable part of the network. To this regard we define the network-
averaged number of users per stable cell as

N̄ := E0 [N (0)1{θ (0) < 1}]
and similarly for each cell tier j = 1, . . . , J

N̄j := E0 [N (0)1{θ (0) < 1} |Z0 = j] .

Note that the mean traffic demand ρ̄, load θ̄ and number of
users N̄ per (stable) cell characterize network performance from
the point of view of its typical (or averaged) cell. We move now
to a typical user performance metric that is its mean throughput.
This latter QoS metric is traditionally (in queueing theory)
defined as the mean data volume requested by the typical user
to the mean service duration of the typical user. In what follows
we apply this definition (already retained at the local, cell level
in Section II-C4) globally to the whole network, filtering out the
impact of unstable cells.

Denote by Sj the union of stable cells of type j = 1, . . . , J ;
that is Sj =

⋃
X∈Φj :θ(X)<1 V (X) and S =

⋃J
j=1 Sj . Let πS

(πSj ) be the probability the typical user is served in a stable cell
(of type j = 1, . . . , J)

πS = P (θ (X∗) < 1)

πSj = P (θ (X∗) < 1 |Z∗ = j) , j = 1, . . . , J ,

where (recall) X∗ is the BS whose cell covers the origin and
Z∗ is its type. Note that πSj = a/ajE[1{0 ∈ Sj}] and thus it
can be related to the volume fraction of the stable part of the
network served by tier j and similarly for πS = E[1{0 ∈ S}].

We define the (global) mean user throughput as

r̄ := lim
|A|→∞

1/µ

mean call duration in A ∩ S
and for each cell type j = 1, . . . , J ,

r̄j := lim
|A|→∞

1/µ

mean call duration in A ∩ Sj
,

where A denotes a disc centered at the origin of radius increasing
to infinity. These limits exist almost surely by the ergodic
theorem; cf [33, Theorem 13.4.III]. Here is our main result
regarding this mean user QoS. It can be seen as a consequence
of a spatial version of the Little’s law.

Proposition 6: We have for the mean user throughput

r̄ =
ρ̄

N̄
πS

r̄j =
ρ̄j
N̄j

πSj , j = 1, . . . , J (28)

Proof: Let Wj =
⋃
X∈A∩Sj V (X). Consider call arrivals

and departures to Wj . By Little’s law
NWj = γ |Wj |TWj ,

where TWj is the mean call duration in Wj and NWj is the
steady-state mean number of users in Wj . Thus mean user
throughput, with users restricted to Wj , equals
1/µ

TWj
=
ρ |Wj |
NWj

= ρ

∑
X∈A∩Φ |V (X)|1{θ (X) < 1, X ∈ Φj}∑
X∈A∩ΦN (X)1{θ (X) < 1, X ∈ Φj}

.

Letting |A| → ∞, it follows from the ergodic theorem that

r̄j = ρ
E0 [|V (0)|1{θ (0) < 1, Z0 = j}]
E0 [N (0)1{θ (0) < 1, Z0 = j}]

.

By the inverse formula of Palm calculus

E0 [|V (0)|1{θ (0) < 1, Z0 = j}] =
1

λ
P (θ (X∗) < 1, Z∗ = j)
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and consequently

r̄j =
ρ

λ

P (θ (X∗) < 1, Z∗ = j)

P0 (Z0 = j) N̄j

=
ρ̄j
N̄j

P (θ (X∗) < 1|Z∗ = j) =
ρ̄j
N̄j

πj .

The expression for r̄ may be proved in the same lines as above.

The mean number of users per stable cell and the mean user
throughput in the stable part of the network do not admit explicit
analytic expressions. We calculate these expressions by Monte-
Carlo simulation of the respective expectations with respect to
the distribution of the Poisson network model. We call this semi-
analytic approach the typical cell approach.

C. Mean cell approach

We will propose now a more heuristic approach, in which
we try to capture the performance of the heterogeneous network
considering J simple M/G/1 processor sharing queues related to
each other via their cell loads, which solve a simplified version
of the cell load equation.

Recall that in the original approach, in the cell load fixed
point equation (14) we have an unknown cell loads θ(X) for
each cell of the network. Recall also that knowing all these cell
loads and the cell traffic demands (which depend directly on
the cell surfaces) we can calculate all other cell characteristics.
We will consider now a simpler “mean” cell load fixed point
equation in which all cells of a given type j = 1, . . . , J share
the same constant unknown θ̃j . 7 Specifically, in analogy to (27),
we assume that the new unknowns θ̃j are related to each other
by

θ̃j = θ̃
P

2/β
j

P 2/β
, j = 1, . . . , J (29)

where P is given by (24) and θ̃ solves the following equation

θ̃ =
ρ

λ
E

R−1

 1
LX∗ (0)

N + θ̃
∑J
j=1

P
2/β
j

P 2/β

∑
Y ∈Φj\{X∗}

1
LY (0)



(30)

The mean fixed point cell load equations boils down hence to
an equation in one variable θ̃. Note that the argument of R−1

in (30) is a functional of the marked path-loss process Φ̂ and
thus the expectation in this expression can be evaluated using
the equivalent homogeneous model described in Remark 3.

By the mean cell of type j = 1, . . . , J we understand a
(virtual) processing sharing queue with the traffic demand

ρ̃j := ρ̄j =
ρ

λ

P
2/β
j

P 2/β

and the traffic load θ̃j given by (29), where θ̃ is the solution
of (30). The remaining mean cell characteristics (the critical
load, user throughput and the number of users) are related to
these two “primary” characteristics in analogy to (10), (11) and
(12) via

ρ̃cj :=
ρ̃j

θ̃j
, (31)

r̃j := max(ρ̃cj − ρ̃j , 0) , (32)

Ñj :=
ρ̃j
r̃j
, (33)

7Recall that (14) is already a simplification of the reality in which the extra
cell interference should be wighted by the dynamic (evolving in time) factors
capturing cells’ activity.

j = 1, . . . , J .
We will also consider a (global) mean cell having, respec-

tively, the traffic demand and cell load given by ρ̃ := ρ̄ = ρ
λ and

θ̃, and the remaining characteristics ρ̃c, r̃, Ñ given, respectively
by (31), (32) and (33) where the subscript j is dropped.

In the next section we shall evaluate the mean cell approx-
imation (both globally and per type) by comparison to the
characteristics of the typical cell obtained both from simulation
and from real field measurements.

IV. NUMERICAL RESULTS AND MODEL VALIDATION

In this section we present numerical results of the analysis
of our model and compare them to the corresponding statistics
obtained from some real field measurements. We show that the
obtained results match the real field measurements. Our numeri-
cal assumptions, to be presented in Section IV-A2, correspond to
an operational network in some big city in Europe in which two
types of BS can be distinguished, conventionally called macro
and micro base stations. 8
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Fig. 1. CDF of the emitted antenna powers, without antenna gains, in
the network consisting of micro (power ≤ 35dBm) and macro BS (power
≥ 35dBm). The average micro BS power is 33.42dBm and the average macro
BS power is 41.26dBm. Adding antenna gains, which are equal respectively
14dBm and 17dBm for micro and macro BS, we obtain P2 = 47.42dBm,
P1 = 58.26dBm.

The real field measurements are obtained using a methodol-
ogy described in Section IV-A1. In Section IV-B the statistics
obtained from these measuremetns will be compared to the per-
formance of each category of BS calculated using the approach
proposed in the present paper.

A. Model specification

1) Measurements: The raw data are collected using a special-
ized tool used by network maintenance engineers. This tool has
an interface allowing to fetch values of several parameters for
every base station 24 hours a day, at a time scale of one hour. For
a given day, for every hour, we obtain information regarding the
BS coordinates, type, power, traffic demand, number of users and
cell load calculated as the percentage of the Transmission Time
Intervals (TTI) scheduled for transmissions. Then we estimate
the global cell performance metrics for the given hour averaging
over time (this hour) and next over all considered network cells.
The mean user throughput is calculated as the ratio of the mean
traffic demand to the mean number of users. The mean traffic

8Let us explain what we mean here by macro and micro BS: Historically,
the operator deployed first what we call here macro BS. Powers of these
stations slightly vary around some mean value as a consequence of some local
adaptations. We assume them constant. In order to cope with the increase of the
traffic demand, new stations are added progressively. These new stations, which
we call micro BS, emit with the power about 10 times smaller than the macro
BS. Figure 1 shows the cumulative distribution function (CDF) of the antenna
powers (without antenna gains).
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demand ρ is also used as the input of our model. Knowing all
cell coordinates, their types and the surface of the deployment
region we deduce the network density and fraction of BS in the
two tiers.

2) Numerical assumptions: The BS locations are generated
as a realization of a Poisson point process of intensity λ =
λ1 +λ2 = 4.62km−2 (which corresponds to an average distance
between two base stations of 0.5km) over a sufficiently large ob-
servation window which is taken to be the disc of radius 2.63km.
The ratio of the micro to macro BS intensities equals λ2/λ1 =
0.039. The transmitted powers by macro and micro BS are
P1 = 58.26dBm, P2 = 47.42dBm, respectively. The power (24)
of the “equivalent” homogeneous network is P = 58.03dBm.
The propagation loss due to distance is l(x) = (K |x|)β where
K = 7117km−1 and the path loss exponent β = 3.8. Shadowing
is assumed log-normally distributed with standard deviation
σ = 10dB and spatial correlation 0.05km. The technology is
HSDPA (High-Speed Downlink Packet Access) with MMSE
(Minimum Mean Square Error) receiver in the downlink. The
peak bit-rate equals to 30% of the information theoretic capacity
of the Rayleigh fading channel with AWGN; that is

R (SINR) = 0.3WE
[
log2

(
1 + |H|2 SINR

)]
(34)

where the expectation E [·] is with respect to the Rayleigh fading
H of mean power E[|H|2] = 1, and W = 5MHz is the frequency
bandwidth. A fraction ε = 10% of the transmitted power is used
by the pilot channel (which is always transmitted whether the
BS serves users or not). 9 The antenna pattern is described in [1,
Table A.2.1.1-2]. The noise power is −96dBm.

B. Results

We present now the results obtained form the analysis of
our two-tier Poisson model conformal to a given region of the
operational network, adopting both the typical cell approach
described in Section III-B and the mean cell approach explained
in Section III-C. The obtained results are compared to the
respective quantities estimated in the given operational network.
Error bars on all figures represent the standard deviation in the
averaging over 10 realizations of the Poisson network in the
Monte-Carlo estimation of the respective expectations.

Figure 2 shows the mean cell load together with the stable
fraction of the network, both globally and separately for the two
tiers, as functions of the mean traffic demand per cell ρ̄ = ρ/λ.
The mean cell load is calculated using the two approaches: the
typical cell and the mean cell one. The stable fraction of the
network is available only in the typical cell approach. Figure 2
presents also 24 points presenting the mean cell load estimated
from the real field measurements done during 24 different hours
of some given day. Note a good fit of our results and the network
measurements. Observe also that all real field measurements
fall within the range of the traffic demand (ρ̄ ≤ 600kbps) for
which the stable fraction of the network for both network tiers
is very close to 1. This is of course a consequence of a good
dimensioning of the network. Interestingly these latter metrics
allows us to reveal existing dimensioning margins. Specifically,
we predict that there will be no unstable macro cells with the
traffic demand slightly less than ρ̄ ≤ 700kbps and the micro
cells remain stable for much higher traffic demand of order
ρ̄ ≈ 1000kbps.

9It is taken into account by replacing min(θ(Y ), 1) in (14) by
min(θ(Y ), 1)(1−ε)+ε. Similar modification concerns θ̃ in the right-hand-side
of (30).

We move now to the mean number of users per cell presented
on Figure 3, again, as function of the mean traffic demand
per cell ρ̄ = ρ/λ. Both approaches (typical and mean cell)
are adopted and the two network tiers are analyzed jointly
and separately. As for the load, we present also 24 points
corresponding the network measurements. Note a good fit of
our model results and the network measurements. Note also
that the prediction of the model performance for the traffic
demand ρ̄ ≥ 700kbps , where the fraction of unstable cell is non-
negligible (cf Figure 2), is much more volatile. More precisely,
the relatively large error-bars of the mean number of users for
ρ̄ ≥ 700kbps can be explained by a non-negligible probability
of finding a cell whose load is just below 1. It still contributes
to the calculation of the mean number of users (as we remove
only strictly unstable cells) and makes the empirical mean very
large for this simulation experiment.

Finally, Figure 4 shows the relation between the mean user
throughput and the mean traffic demand per cell ρ̄ obtained via
the two modeling approaches and real field measurements. The
global performance of the network and its macro-tier are quite
well captured by our two modeling approaches. The micro-tier
analysis via the typical cell and the real field measurements
exhibit important volatility due to a relatively small number of
such cells in the network. The mean cell model allows to predict
however a macroscopic law in this regard.

V. CONCLUSIONS

A heterogeneous cellular network model allowing for different
BS types (having different transmission powers) is proposed,
aiming to help in performance evaluation and dimensioning
of real (large, irregular) operation networks. It allows one to
identify key laws relating the performance of the different
base station types. In particular, we show how the mean load
of different types of BS is related in a simple way to their
transmission powers. The results of the model analysis are
compared to real field measurement in an operational network
showing its pertinence.
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