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Abstract—Dynamic deployment aims at enhancing coverage
in wireless sensor networks by redistributing sensor nodes after
initial random deployment. In this paper, a harmony search
based dynamic deployment (HS-DD) technique is proposed that
aims at maximizing both network coverage and connectivity.
Furthermore, the performance of the proposed algorithm and
a number of the HS-variants in dynamic deployment is studied;
namely: Harmony Search-Dynamic Deployment (HS-DD), Im-
proved HS-Dynamic Deployment (IHS-DD), Global HS-Dynamic
Deployment (GHS-DD), Differential HS-Dynamic Deployment
(DHS-DD) and Self adaptive HS-Dynamic Deployment (SaHS-
DH). Simulation results show that GHS-DD achieves the best
coverage improvement with the minimum moving distance, while
SaHS-DD provides better connectivity with reasonable coverage
improvement for dense networks.

I. INTRODUCTION

A wireless sensor network (WSN) is a special type of ad-
hoc network consisting of a large number of small lightweight
sensor nodes and one or more sink nodes. WSNs are used
in a wide range of applications ranging from structural,
environmental and habitat monitoring to military surveillance
and intrusion detection. The successful operation of many of
these applications depends on an adequate coverage of the
target area by the deployed sensor nodes [1].

While deterministic deployment is preferred as it ensures
proper coverage of the deployment area, random deployment;
however is more practical in some environments, such as
[2] [3]. In dense static WSN, scheduling sensor nodes into
sleep mode is usually used to ensure full coverage, while
extending the lifetime of the network. Recently, the use of
mobile sensor nodes either for healing coverage holes or for
dynamic deployment has been exploited [4] [5].

Dynamic deployment ensures full coverage by redistributing
nodes after initial random deployment. In such cases, node
mobility is mainly used to obtain a new stationary configura-
tion with better coverage. Approaches proposed for dynamic
deployment can be categorized into virtual forces [6]–[11],
computational geometry [12], [13], geometrical patterns [14],
and evolutionary computation algorithms; such as particle
swarm (PSO) [15]–[17] and artificial bee colony (ABC) [18].

Recently, Harmony search (HS) algorithm has been applied
to a number of optimization problems, such as localization
[19], path planning [20]–[22], and structural design [23]–[25].

In this paper, the use of harmony search algorithm for
enhancing both coverage and connectivity is exploited. Our
objective function attempts to optimize both coverage and
connectivity. In addition, to the best of our knowledge, this
is the first time to consider applying GHS, DHS, and SaHS
algorithms in the context of dynamic deployment problem in
WSN. Simulation results show that using GHS-DD achieves
89% coverage in deployments which theoretically should have
100% coverage for deployments with rc ≥

√
3rs and 99%

coverage for deployments with rc = rs. . SaHS-DD on the
other hand; achieves better connectivity improvement with
reasonable coverage improvement for deployments with large
number of sensors. Both of them; GHS-DD and SaHS-DD;
have a small execution time.

The remainder of the paper is organized as follows. Related
work is presented is Section 2. The harmony search and a
number of its variants for discrete variables is formally defined
in Section 3. The proposed Harmony Search-Dynamic Deploy-
ment (HS-DD) algorithm, its variants and the system model
are presented in Section 4. Simulation results are presented in
Section 5. Finally, concluding remarks are presented in Section
6.

II. RELATED WORK

Coverage in WSN has been studied extensively in the
literature [2]–[4], [26], [27]. Recently, mobility have been
exploited in Mobile Wireless Sensor Network (MWSN) to
maximize coverage among other factors such as connectivity
and lifetime. The use of a number of optimization techniques
have been exploited. In [2], SRAHS; a sensing radius adjusting
protocol using HS; is proposed to enhance coverage in static
WSN. The work in [3] studies the performance of HS against
PSO to achieve K-coverage in visual sensor networks. HS is
found to be faster than PSO with a significant convergence
rate. The work in [27] investigates the use of HS and learning
automata in adjusting sensing radius. The main objective,
however, is topology control and not coverage.

In [4], a deployment algorithm based on IHS for hybrid
WSN is proposed. The algorithm considers both k-coverage
and connectivity. A greedy algorithm is used afterwards to
extend the network lifetime by relocating mobile nodes accord-
ing to their remaining energy. In [26], a hybrid of firefly and
HS is used in robotics path planning for periodic replacement
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of damaged sensor nodes. The work in [28] proposes a hy-
brid Binary Differential Evolution Harmony Search Algorithm
for the optimal node placement in cluster-based Industrial
Wireless Sensor Networks. The problem discussed in [28] is
different from the one presented here as node placement is
deterministic while in our work we assume an initial random
deployment. Their objective function mainly focuses on the
setup cost, reliability, and communication load not coverage.

The contributions of this paper are as follows:
1) Propose the use of HS algorithm in dynamic deployment

problem.
2) Investigate performance of a number of HS variants

(GHS, DHS and SaHS) in the dynamic deployment
problem. To our best knowledge, this has not been
investigated in the literature in the context of WSN
coverage improvement.

III. HARMONY SEARCH

Harmony search (HS) is an evolutionary computation op-
timization algorithm inspired by the experiences of musi-
cians in Jazz improvisation [29]. HS has three main phases:
Parameter Initialization, Improvising, and updating (Figure
1). The algorithm starts with an initial random population
(harmonic) stored in Harmony Memory (HM), for which an
optimization function is calculated for each of its harmonic
(solution vector). HS depends on three operations to explore
the search space and generate a new harmonic: harmony
memory consideration, pitch adjusting and randomization.
Memory consideration ensures that the best solutions will be
carried over to the new population. Pitch adjustment modifies
a solution from the HM by adjusting it to a neighboring value
while randomization enables the algorithm of exploring new
possible solutions. HS generates only one new harmonic which
replaces the worst one in the old population.

A. Problem and Parameter Initialization

During parameter initialization step, the following HS pa-
rameters are initialized:
• Harmony memory size (HMS), the population size.
• Number of decision variables (N ).
• The harmony memory considering rate (HMCR), the

probability of choosing randomly one of the solutions
stored in HM.

• Pitch adjusting rate (PAR), the probability of adjusting
the chosen solution.

• Bandwidth (BW ).
• The number of iterations (NI).
• The harmony memory (HM ) is populated randomly with

solution vectors.
The HMCR, PAR and BW parameters affect the search
process. For example, low HMCR values may lead to slow
convergence since only few harmonics are selected while very
large values may lead to poor exploration of the search [30].
Likewise, low PAR values leads to exploring small part of the
search space leading to slow convergence. Very large values
on the other hand is similar to random selection [30].

Fig. 1: HS Flowchart

The HM is initialized with HMS vectors each of them
represents a possible solution. let X represents a possible
solution vector consisting of N decision variables xi and f(X)
is the objective function. Each decision variable can have a
lower xLi and upper limit xUi . Then HM can be initialized as
in Eq. 1 [29].

HM =


x11 · · · xN1 | f(X1)
x12 · · · xN2 | f(X2)

...
...

x1HMS xNHMS | f(XHMS)

 (1)

where

xji = xLi + rand(0, 1).(xUi − xLi ) (2)

and 1 ≤ i ≤ HMS,1 ≤ j ≤ N

B. Improvising

During each iteration of the NI iterations, a new solution
vector X is generated. Each decision variable xi in the solution
vector X is generated using one of three operations: random
selection, memory consideration or pitch adjustment as in Eq.
3.

xi =



xLi + rand(0, 1).(xUi − xLi )
ifr < (1−HMCR)

xji ∈ HM(i)
ifr < (HMCR).(1− PAR)

xji ±BW.rand(0, 1), x
j
i ∈ HM(i)

ifr < (HMCR.PAR)

(3)
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C. Updating the Harmony Memory

If the new harmony vector X has a better objective function
than any of the harmonics stored in HM. The new harmony
replaces the worst harmony vector in HM. A further improve-
ment can be obtained using accidentaling which performs
pitch adjustment on each decision variable xi in the new
solution vector X [31]. The HS algorithm terminates when
the maximum number of iterations (NI) is reached.

A number of HS variants have been proposed over the
past years [32]–[35]. They either try to improve the algorithm
parameter setting step or hybridize HS with other meta-
heuristic algorithms [36], [37]. In this paper, the main focus
is on parameter setting improvements. HS has three important
parameters HMCR, PAR and BW . In [32], improved har-
mony search (IHS) algorithm changes PAR and BW values
dynamically each iteration using equation 4, 5.

PAR(i) = PARmin + (PARmax − PARmin)
i

NI
(4)

BW (i) = BWmax exp(ln(BWmin)− ln(BWmax))
i

NI
(5)

Although decreasing BW with an iteration number may
improve the final solution, continuous increase in PAR value
may lead to oscillation [34]. Another problem is determining
the values of the new parameters. Global-best harmony search
(GHS) [33]; on the other hand; eliminates the need to use BW
parameter by using the concept of “global best particle” from
particle swarm optimization (PSO). Improvising is done using
equation 6. Although GHS does not need to tune parameter
values, it may suffer from premature convergence [34].

xi =



xLi + rand(0, 1).(xUi − xLi )
ifr < (1−HMCR)

xji ∈ HM(i)
ifr < (HMCR).(1− PAR)

xbestr , r ∈ rand(0, 1)
ifr < (HMCR.PAR)

(6)

Another attempt to eliminate the need for BW parameter
is proposed in [35]. Differential HS (DHS) replaces the
pitch adjustment process with a mutation one borrowed from
differential evolution (DE) algorithm as in equation 7, where
F is a scaling factor, r1 and r2 are two random values.

xi =



xLi + rand(0, 1).(xUi − xLi )
ifr < (1−HMCR)

xji ∈ HM(i)
ifr < (HMCR).(1− PAR)

xji + F (xr1 − xr2)
ifr < (HMCR.PAR)

(7)

Another variant is proposed in [34]; namely, the Self Adap-
tive HS (SaHS). SaHS attempts to avoid parameter setting and
enhance the quality of the final solution by using the adaptive
PAR as in equation4 and the minimum and maximum values;

instead of BW ; in the selected harmonic (8) in pitch adjust-
ment. In addition, it uses low-discrepancy sequences [38] in
initializing the HM to reduce the convergence time. Table 1
compares the basic HS and its four variants reviewed in this
paper.

xi =



xLi + rand(0, 1).(xUi − xLi )
ifr < (1−HMCR)

xji ∈ HM(i)
ifr < (HMCR).(1− PAR)

xji + [Max(HM(i)− xji ]rand(0, 1)
xji − [xji −Min(HM(i)]rand(0, 1)

ifr < (HMCR.PAR)

(8)

TABLE I: HS and its variants

Algorithm HM Init. Parameter
Setting Improvising

HS [29] R R Eq.(3)

IHS [32] PAR, BW adaptive
using (4,5) R Eq.(3)

GHS [33] PAR adaptive using (4),
BW not used

R Chooses best variable instead
of pitch adjustment (6)

DHS [35] BW not used R DE mutation instead
of pitch adjustment( 7)

SaHS [34] PAR adaptive using (4),
BW not used

Low-discrepancy
sequences

Pitch adjustment using min.
and max. values (8)

IV. SYSTEM MODEL AND PROBLEM FORMULATION

This paper studies and compares the performance of ap-
plying the HS algorithm and a number of its variants to the
dynamic deployment problem in WSNs. Five algorithms are
implemented and evaluated; namely HS Dynamic Deployment
(HS-DD), IHS Dynamic Deployment (IHS-DD), GHS Dy-
namic Deployment (GHS-DD), DHS Dynamic Deployment
(DHS-DD) and SaHS Dynamic Deployment (SaHS-DD). The
main objective is to find new positions of the sensor nodes after
initial random deployment that maximizes the full coverage
and maintains connectivity in the deployment area.

A. Network Model

We consider a WSN in which a set of mobile sensors
S are deployed in a 2D rectangular area A. Sensors are
homogeneous, using a binary disk sensing model with radius
rs and a communication range rc. A point is considered to be
k-covered if it is within distance less than at least k sensors’
sensing radius. Full coverage; thus, can be defined as follows:

C = ∪s∈S
‖S‖
‖A‖

(9)

where ‖A‖ denotes the area of A and ‖S‖ denotes the area
covered by the sensing radius of sensors.

B. Problem Formulation- Algorithm Parameter

HS and a number of its variants are used to solve the
dynamic deployment problem where every solution vector
represents a possible deployment. It has decision variables
equal to the number of sensor (N ), where each decision
variable represents (x, y) coordinates of a sensor node. Both

The 10th International Workshop on Wireless Network Measurements and Experimentation (WiNMeE 2014)

101



one-coverage and one-connectivity are checked for each row
of HM and the objective function is defined as follows:

Max.(F ) = α.C + β.Conn. (10)

Subject to

xi ∈ X, i = 1, 2, 3, ..., N

xLi ≤ xi ≤ xUi
yLi ≤ yi ≤ yUi

(11)

where C denotes coverage and is calculated using Eq. 9.
Conn. denotes connectivity and is calculated using metric
in [39]. α and β are scaling factors. (xi, yi) are the values
of the xi decision variable. (xLi , y

L
i ), (x

U
i , y

U
i ) represent the

minimum and maximum boundaries of the deployment area.
The algorithms parameters are listed in Table II

TABLE II: HS and its variants Parameters

Parameter Value
HMS 5

NI 500
HMCR 0.9

PAR 0.35
BW 0.01

Min PAR 0.01
Max PAR 0.99
Min BW 0.0001
Max BW 0.0005

V. THEORETICAL MINIMUM NUMBER OF SENSORS

In order to compute a precise bound on the performance
of the proposed algorithms, the optimal number of sensors in
deterministic patterns is used. The triangle lattice pattern has
been proven to be optimal to achieve one-coverage and up
to six-connectivity when rc/rs ≥

√
3 [40]. However, when

rc/rs ≤
√
3, the strip-based pattern outperforms the triangle

lattice and can achieve one-coverage and one/two-connectivity
[41]. The minimum number of sensor nodes to cover a square
with area L2, and the centers of which form a 1-connected
network is calculated as given in [41] as follows:

lim
rs→0

πr2sN(rs, rc) = K(rs, rc)L
2 (12)

Where

K(rs, rc) =


2π
√
3/9
ifπ/3 ≥ ϕ

π(sinϕ+ 2 sin π−2ϕ
2 )−1

ifπ/3 ≤ ϕ

By applying Eq. 12 to our deployment area (100 x 100 m2)
and rs = 10m, the required minimum theoretical number of
nodes to achieve one-coverage and up to six-connectivity when
rc ≥

√
3rs is 40 and 170 nodes, respectively, when rc = rs .

VI. SIMULATION RESULTS

A simulator is implemented in Java to evaluate the perfor-
mance of the proposed HS-DD algorithm and its variants. In
our simulation, sensors are placed randomly and uniformly
over a 100 x 100 m2 area. The sensing radius of each sensor
is 10 m. Two cases are considered: (1) equal sensing and
communicating radius, and (2) the communication radius is√
3 of the sensing radius where coverage implies connectivity

[39]. For simplicity, network channel is assumed to be error-
free and collision-free. In order to compare the performance
of the different algorithms, the number of deployed sensors
is increased from 30 to 210, and the results are obtained by
averaging over 20 simulation runs. The theoretical number of
sensors explained in section V is used as a baseline to evaluate
the performance of the algorithms under consideration.

The evaluation considers the effect of the scaling factors α
and β on both coverage and connectivity.

A. Effect of Scaling Factors

Two metrics are used to evaluate the performance of the
algorithms, namely, coverage as defined in Eq. (9), and reach-
ability [39].

In the experiments, the objective is to study the effect of the
scaling factors α and β on both coverage and connectivity.
In order to do so, the scaling factors, α is set to 1 while
β is varying from 0 to 0.9. With β = 0 means maximizing
coverage only, while setting β = 0.9 attempts to maximize
both coverage and connectivity. Since in these experiments
rc ≤

√
3rs, large number of sensor nodes is needed to achieve

both coverage and connectivity.
For small number of sensors (i.e, n=30 and 60), increasing

the value of β from 0 to 0.9 improved the connectivity of
the network but at the expense of reducing the achieved
coverage as shown in Figure 2-(a). For number of sensors
between 90 and 150, where reasonable overlapping between
sensor nodes can be achieved, varying β has a small effect
on both coverage and connectivity as shown in Figure 2-(b).
While for large number of sensors (i.e, n≥180) increasing β
improves connectivity without affecting coverage as shown in
Figure2-(c). Considering the trade off between coverage and
connectivity, a β value of 0.5 gives good results for all number
of sensors.

GHS-DD achieves the best coverage improvement among
the five algorithms as can be seen from Table III. Considering
the trade off between coverage and connectivity; GHS-DD is
more suitable for small to moderate number of sensors (n=30-
150), where there is a significant improvement in coverage
and fair one in connectivity. SaHS-DD, on the other hand,
achieves better results for large number of sensors (n ≥ 180),
where the connectivity improvement is more significant than
the improvement achieved in coverage.

In deployments with 180 nodes, which theoretically should
have full coverage and connectivity, HS-DD achieves 98%-
coverage and 89%-connectivity, IHS-DD, DHS-DD and SaHS-
DD achieve 97%-coverage and 78%, 89% and 81%, respec-
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(a) n=60 (b) n=120

(c) n=210

Fig. 2: Coverage rate and connectivity for α = 1, rc = rs.

tively, for connectivity. GHS-DD achieves 99%-Coverage and
77%-connectivity.

TABLE III: Coverage Improvement Percentages (n=30, rc =
rs)

Algorithm β = 0 β = 0.5 β = 0.9
HS-DD 23.9 % 16.7 % 11.7 %
IHS-DD 23.3 % 18.3 % 12.6 %
GHS-DD 27.9 % 18.9 % 12.7 %
DHS-DD 20.9 % 17.1 % 10.3 %
SaHS-DD 19.2 % 17.1 % 10.4 %

Figure 3 shows the coverage improvement when setting the
communication radius greater that

√
3 of the sensing radius. In

this case, α = 1, β = 0 as coverage implies connectivity. As
can be seen, GHS-DD still outperforms all other algorithms
for n=30-150, while SaHS achieves slightly higher coverage
for large number of sensors, as shown in Table IV.

Fig. 3: Coverage rate for rc =
√
3rs.

In deployments with 60 sensors, which theoretically should
have 100% coverage, HS-DD achieves 87%, both IHS-DD and
DHS-DD achieve 86%, SaHS-DD achieves 85% ,while GHS-
DD achieves 89%.

TABLE IV: Coverage Improvement Percentages (rc =
√
3rs)

Algorithm n = 30 n = 90 n = 210
HS-DD 23.6 % 4.4 % 1.9 %
IHS-DD 25.1 % 4.4 % 1.8 %
GHS-DD 26.7 % 5.9 % 2.0 %
DHS-DD 23.7 % 4.2 % 1.7 %
SaHS-DD 20.2 % 3.0 % 2.2 %

In terms of execution time, both IHS-DD and SaHS-DD take
greater execution time than that of the other algorithms. It is
worth noting that both HS-DD and GHS-DD have a reasonable
execution time regardless of the number of deployed sensors
as shown in Figure 4.

Fig. 4: Execution Time.

Figures 5 and 6 show the average moving distance for
different number of sensors and for rc = rs, rc =

√
3rs,

respectively. GHS-DD has the minimum moving distance
for all different number of sensors for both rc = rs, and
rc =

√
3rs.

(a) β = 0.9 (b) β = 0

Fig. 5: Average Moving Distance for rc = rs.

Fig. 6: Average Moving Distance for rc =
√
3rs.
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VII. CONCLUSION

In this paper, a dynamic deployment algorithms using har-
mony search (HS-DD) and a number of its variant are proposed
and their performance is evaluated. Simulations show that the
GHS-DD outperforms the rest of the algorithms in achieving
coverage with minimum moving distance. Our ongoing work
investigates how to achieve coverage improvement with the
minimum number of moving nodes in order to extend the
network’s lifetime and study the behavior of the algorithm
in achieving k-coverage.
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