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Abstract—Efficient and distributed scheduling algorithms are
essential to garner the full potential of wireless systems with
multiple channels, e.g., OFDM systems. Recently, a group of
random access scheduling algorithms have been proposed to
achieve throughput optimality with a single non-fading channel.
While these distributed algorithms can readily be extended to a
multi-channel setting, the analysis of their queuing behavior and
delay performance is non-trivial in the many-channel regime,
since the state space of schedules grows exponentially with the
number of channels. In this paper, we first generalize these
distributed random access algorithms from a single-channel
setting to a multi-channel setting for fully connected networks.
In an attempt to characterize the delay performance of this
new algorithm, we introduce a novel equivalent deterministic
single-queue system and show that the queuing behavior of
individual communication links under our algorithm converges to
the equivalent queue system as the number of channels grows. By
studying this equivalent queue system, we derive a closed-form
approximation for the data queue backlogs/delays at the steady
state in the many-channel regime.

I. INTRODUCTION

Wireless systems with multiple channels, e.g., OFDM sys-

tems, have important applications in next-generation networks

such as WiMAX, 4G cellular networks, cognitive radio net-

works, etc. Efficient and distributed algorithms are essential

to garner the full potential of these systems. A number of

centralized algorithms [2]-[5] have been developed for multi-

channel systems to achieve throughput optimality. However,

these algorithms need centralized computation with high

time complexity, and thus are not suitable for practical dis-

tributed implementations. Several suboptimal low-complexity

distributed algorithms have been proposed, e.g., in [6][7],

which only support a fraction of the capacity region in

general. Recently, a class of queue-backlog-based random

access scheduling algorithms [8]-[12] have been proposed for

single channel settings. These random access algorithms yield

simple distributed implementations [13] and have been proved

to achieve throughput optimality with non-fading channels.

Throughput and delay are two important metrics to analyze

the quality of service (QoS) in wireless networks. Throughput

optimality of the aforementioned distributed algorithms has

been proved in [8]-[12], and their average queue backlog/delay

performance has been studied in [12][14][19]. Specifically,

through a mixing-time analysis, it is shown in [14] that an

upper-bound for the time-averaged data queue backlog is of

exponential order in the number of communication links in

the network, and an upper-bound of polynomial order in

the number of links is provided in [12] for a fraction of

the capacity region. A lower-bound of expected data queue

backlogs has been derived in [19]. However, these (average)

delay bounds are not tight in general. In fact, no closed-form

analysis/estimation of the queue backlog/delay performance of

these random access algorithms is available in the literature,

since interactions between links lead to complicated queuing

behaviors and make such characterization intractable. Not

surprisingly, queuing behavior and delay analysis of multi-

channel extensions of these distributed algorithms is non-

trivial and remains an open research problem, since the state

space of schedules grows exponentially with the number of

channels.

With the above motivation, we study the transient queuing

behavior of multi-channel random access algorithms for a

fully connected wireless network (e.g., WLAN and cellular

networks). To this end, we develop a novel equivalent queue

system to model and show that the queuing behavior of

individual links converges to the equivalent queue system as

the number of channels grows. Note that transient queuing

behavior (including transient evolution of service rates) im-

plies the ability to analyze the transient delay performance in

addition to the steady-state study of the queuing behavior and

the expected delay performance of the wireless system.

In this paper, we are especially interested in the behavior

of a system with a fixed number of links where the number

of channels scales over a constant capacity bandwidth. This

approach is motivated and supported by the properties and

trends of recently deployed wireless systems such as WiMAX.

The physical service area in which high data rates are provided

to links is generally limited, which means the number of links

is roughly upper bounded (e.g., in WiMAX pico and femto

cells [22]), as well. On the other hand, the same systems

operate over hundreds of orthogonal channels. So, the focus

of our investigation is the behavior of a system with a large



number of channels over a given finite frequency band, serving

a given constant population size. Note that the growing number

of channels represents diminishing bandwidth per channel,

where the sum of all bands is constant. This scenario can

be justified by the fact that inter-symbol interference (ISI) can

be significantly reduced in an OFDM system by transmitting

data in parallel over a large number of low-rate (sub)channels

[23].

In this work, we first generalize the random access al-

gorithms from a single-channel setting [8]-[12] to a multi-

channel one, denoted as multi-channel random access algo-

rithm. The multi-channel random access algorithm is shown

to be throughput-optimal for any finite number of non-fading

channels under the time-scale separation assumption.1 With

the introduction of the novel equivalent deterministic single-

queue system, the salient features of our work can be listed as

follows:

(1) Assuming (asymptotically) uniform arrival rates, we show

that the queuing behavior of the network asymptotically (with

respect to the number of channels) approaches that of the

equivalent deterministic single-queue system. Law-of-large-

numbers (LLNs) results have been established in the many-

channel regime for the queue backlog and the scheduled

service rate, which are governed by simple deterministic

dynamics. These results are the first of their kind for random

access scheduling, which yield a simplified and scalable char-

acterization of the individual queuing behavior in the many-

channel regime.

(2) By studying the equivalent deterministic single-queue

system, we find a closed-form approximation for the queue

backlog in its steady state in the many-channel regime. While

the delay bounds derived in [12][14][19] for a single-channel

setting are generally not tight, we show that the closed-

form steady state queue backlog/delay approximation becomes

accurate as the number of channel increases. Furthermore, in

resonance with the findings in [18], [19], [20], we show for a

fully connected network that the more aggressive the weight

function2 is, the smaller the asymptotic queue length becomes

in the many-channel regime.3

(3) Based on a steady state study, the multi-channel random

access algorithm is proved to be asymptotically (with respect

to the number of channels) throughput-optimal without the

time-scale separation assumption.

Via numerical evaluations, we validate the accuracy of the

equivalent queue system representation and show that the

queue backlogs/delays indeed converge to the derived closed-

form steady state results in the many-channel regime.

1The time-scale separation assumption (i.e., the underlying Markov chain
of the scheduling algorithm converges instantaneously to its steady state) has
been employed in [8][9] and justified in [15][16].

2Weight functions are employed to determine the transmission probability
in the random access algorithms.

3Results have been provided in [18], [19], and [20], respectively, on the
optimality, a lower-bound on queue backlogs, and the stability for random
access algorithms in a single-channel setting. In comparison, we provide a
closed-form queue backlog approximation for random access algorithms in
the many-channel regime.

The rest of the paper is organized as follows: We introduce

the multi-channel random access algorithm in Section II and

introduce the equivalent queue system that asymptotically

represents the queuing behavior of the network under the

random access algorithm in Section III. A steady state study

is carried out in Section IV that introduces a closed-form

approximation for the queue backlogs and service rates under

the random access algorithm. We present the numerical results

in Section V and conclude our work in Section VI.

II. NETWORK MODEL AND THE MULTI-CHANNEL

RANDOM ACCESS ALGORITHM

For simplicity, we introduce the notations
P−→N and

L−→N to

denote convergence in probability and convergence in law (or

convergence in distribution) [24], respectively, as N → ∞.

A. Network Elements

We consider a time-slotted fully connected single-hop wire-

less network where M communication links contend for N
orthogonal channels. Each link i maintains a data queue qi(t)
updated at the beginning of a time slot t = 0, 1, 2, ..., with

i = 1, 2, ..., M . Let Ai(t) be the amount of data (in unit of

bits) arriving at queue i at the beginning of a time slot t. We

assume that the number of links does not scale with the number

of channels, which typically applies to WiMAX pico-cell, and

femto-cell scenarios [22].

We assume that each channel is non-fading and always

available with a capacity (i.e., maximum data rate per time

slot) C
N

, where C denotes the total capacity of the considered

wireless system. We denote by µij(t) ∈ {0, 1} the schedule

of link i, i = 1, 2, ..., M , over channel j, j = 1, 2, ..., N ,

at time slot t. Specifically, µij(t) = 1 if link i is scheduled

over channel j; µij(t) = 0, otherwise. We consider an OFDM

mechanism, i.e., one link can transmit over multiple channels

in a time slot. Since we have assumed a fully connected

network, simultaneous transmissions over the same channel

will cause interference at all nodes and, hence, each channel

can only be allocated to one link, i.e.,
∑

i µij(t) ≤ 1, ∀t.
Thus, the queue of each link evolves as, ∀i,

qi(t) = [qi(t−1)+Ai(t−1)−C

N

N
∑

j=1

µij(t−1)]+, ∀t ≥ 0, (1)

where [·]+ , max{·, 0}.

B. Multi-Channel Random Access Algorithm

In this section, we introduce a distributed throughput-

optimal multi-channel random access algorithm, which is a

generalization of the single-channel random access algorithms

[9]-[13]. For each time slot t, the algorithm is composed of

two parts: Exchange Phase and Scheduling Phase.

The exchange phase is scheduled at the beginning of time

slot t and is composed of M mini-slots reserved for (control)

message exchange. Each link is assigned a dedicated mini-slot

out of the M mini-slots. Transmissions during mini-slots use

the entire spectrum C (i.e., channels {1, ..., N}) to minimize



the length of mini-slots, which we assume is negligible com-

pared to that of a unit time slot. Specifically, the transmitter

of each link i broadcasts the following three binary vectors to

all other nodes (i.e., the receiver of link i, and the transmitters

and the receivers of all the other links) during its dedicated

mini-slot:
(

(µij(t − 1))N
j=1, (aij(t))

N
j=1, (pij(t))

N
j=1

)

, where

(µij(t−1))N
j=1 denotes the schedules of link i at the previous

time slot t−1. The contention variables aij(t) are independent

over link i and channel j with

aij(t) =

{

1, w.p. β,

0, w.p. 1 − β.

The contention probability 0 < β < 1 is typically chosen

as 1
M

[17]. The transmission variables pij(t) are independent

over links i and i.i.d. over channels j with

pij(t) =















1, w.p.
h(qi(t − 1))

1 + h(qi(t − 1))

0, w.p.
1

1 + h(qi(t − 1))

, where we denote the

transmission weight function by h : [0,∞) → [0,∞). These

binary vectors
(

(µij(t − 1))N
j=1, (aij(t))

N
j=1, (pij(t))

N
j=1

)

are

received by all links in the single-hop network and used to

determine the transmission schedules for individual links. Note

that the vector of contention variables (pij(t))
N
j=1 will be

used only by the transmitter i and its intended receiver in

the scheduling phase.

After the exchange phase, the schedule µij(t), for any given

link i and channel j, is determined in the scheduling phase

based on the Glauber dynamics in a single channel setting

[9]-[13]. Specifically, the schedule µij(t) for any given link i
and channel j at time slot t depends on the following three

conditions:

Condition (i): The “contention” of link i for channel j is

successful, i.e., aij(t)
∏

k 6=i(1 − akj(t)) = 1.

Condition (ii):
∑

k 6=i µkj(t− 1) = 0, i.e., no other links were

allocated channel j in the previous time slot.

Condition (iii): The transmission variable pij(t) = 1.

The scheduling phase is performed locally at each node (i.e.,

the transmitter and the receiver of each link i) as follows:

Scheduling Phase

The transmitter and the receiver of each link i determine

µij(t), j = 1, ..., N , according to the following:

If Conditions (i), (ii), and (iii) hold,

then µij(t) = 1 (i.e., channel j is allocated to link i for

time slot t);
Else if Condition (i) does not hold,

then µij(t) = µij(t − 1);
Otherwise, µij(t) = 0.

From the multi-channel random access algorithm introduced

above, we conclude, for any given link i and any given channel

j,

µij(t)

=aij(t)
∏

k 6=i

(1 − akj(t))



1 −
∑

k 6=i

µkj(t − 1)



 pij(t)

+



1 − aij(t)
∏

k 6=i

(1 − akj(t))



 µij(t − 1).

(2)

The first term on the RHS of (2) corresponds to the case when

Conditions (i)(ii)(iii) hold, and the second term on the RHS of

(2) corresponds to the case when Condition (i) does not hold.

Since both the transmitter and the receiver of link i have a

copy of the schedule vector (µij(t))
N
j=1 when the scheduling

phase ends, they will tune to the set of channels {j : µij(t) =
1} for data transmission in the remaining time slot.

In the following theorem, we state the throughput optimality

of the above random access algorithm.

Theorem 1: Assume that the transmission weight function

takes the form of h(x) = ef(x) with f(x) satisfying the

following two properties:

(A1) f : [0,∞) → [0,∞) is nondecreasing and continuous

with limx→∞ f(x) = ∞.

(A2) Given any M1, M2 > 0 and any ǫ′ > 0 arbitrarily small,

there exists M3 > 0 such that for all x > M3:

f(x)(1 − ǫ′) ≤ f(x − M1) ≤ f(x + M2) ≤ f(x)(1 + ǫ′).
If the arrival process is stationary and bounded above (i.e.,

Ai(t) ≤ Amax, ∀t, ∀i, for some sufficiently large Amax > 0),

under the time-scale separation assumption [8] (which is

employed in [8][9] and justified in [15][16]), the algorithm

is throughput-optimal4 for any given N ≥ 1.

Proof: Theorem 1 is proved in [26].

Random access algorithms proposed in [8]-[11] have been

proved to be throughput-optimal in a single channel set-

ting. However, there are few works analyzing the queue

backlog/delay performance for these throughput-optimal al-

gorithms other than the order results [12][14] on the upper-

bounds and [19] on the lower-bounds of the expected queue

backlogs, which are not tight in general. In Section III,

we show that the queue backlogs (qi(t)) and service rates

asymptotically converge to an equivalent deterministic single-

queue system. In Section IV, by studying the steady state of

the equivalent queue, we find a closed-form approximation for

the steady state queue backlogs/delays in the many-channel

regime.

III. ASYMPTOTIC QUEUING BEHAVIOR UNDER THE

MANY-CHANNEL REGIME

Before we present the asymptotic queuing behavior under

the multi-channel random access algorithm in Theorem 2,

we introduce the following limit law assumption on arrival

processes:

Ai(t)
P−→N α, ∀i, ∀t, (3)

4We say that an algorithm is throughput-optimal if it can stabilize any
arrival rate vector within the capacity region (which is the closure of all
arrival rate vectors that can be stably supported by the network) [1].



where α > 0 can be interpreted as the arrival rate normal-

ized by the number of channels. The arrival process defined

above is general: It can be non-stochastic, dependent over

links or even bursty (with the constraint (3) satisfied). The

arrival process does not necessarily depend on the number of

channels, e.g., Ai(t) = α, ∀i, ∀t (i.e., constant homogenous

arrivals). Some examples of arrival processes are given with

numerical results in [26]. Note that the analysis can be

readily extended to the model with assumption (3) relaxed as

Ai(t)
P−→N α(t), ∀i, ∀t, where α(t) is deterministic for each

time slot t.

For analytical simplicity, we initialize the system at t = −1
as follows:

qi(−1) = 0, µij(−1) = 0, and Ai(−1)
P−→N α, ∀i, j. (4)

Then, we show in the following theorem that the queuing

behavior of individual links under the multi-channel random

access algorithm converges to an equivalent deterministic

single-queue system as the number of channels grows.

Theorem 2: Assume that the transmission weight function

h is invertible and assumption (3) holds. There exist an

equivalent deterministic queue q(t) and an equivalent schedule

variable v(t) for each time slot t, such that the following four

arguments (denoted by I(t), II(t), III(t), and IV(t)) hold ∀t
under the multi-channel random access algorithm:

The data queue backlogs converge in probability to the equiv-

alent deterministic queue q(t) for each link:

I(t): qi(t)
P−→N q(t), ∀i. (5)

The schedules of individual links converge in law to v(t):

II(t): µij(t)
L−→N v(t), ∀i, j. (6)

The following law-of-large-numbers result holds for each link:

III(t):
1

N

N
∑

j=1

µij(t)
P−→N E{v(t)}, ∀i. (7)

Schedules of different channels become asymptotically mutu-

ally independent. Specifically, for any given two links i1, i2 ∈
L, and any two distinct channels j1 6= j2, the scheduling

decisions are independent, i.e., ∀k1, k2 ∈ {0, 1},

IV(t): lim
N→∞

P{µi1j1(t) = k1, µi2j2(t) = k2}

= P{v(t) = k1}P{v(t) = k2}.
(8)

The dynamics of the equivalent queue and the equivalent

schedule variable are defined as

q(t) = [q(t − 1) + α − CE{v(t − 1)}]+, t ≥ 0, (9)

v(t) = V1(t)v(t − 1) + V2(t)(1 − v(t − 1)), t ≥ 0, (10)

with the initial states

q(−1) = 0 and v(−1) = 0. (11)

V1(t) and V2(t) are mutually independent random variables,

independent over time slot t, defined in the following:

V1(t) =

{

1, w.p. F1 + (2 − M)F0(q(t − 1)),

0, otherwise,

V2(t) =

{

1, w.p. F0(q(t − 1)),

0, w.p. 1 − F0(q(t − 1)),

where for notational simplicity we define

F1 , 1 − β(1 − β)M−1

F0(x) , β(1 − β)M−1 h(x)

1 + h(x)
.

Proof: The proof of Theorem 2 is provided in Appendix

A.

In [26], we also verify that V1(t) is a valid random variable,

i.e., 0 < F1+(2−M)F0(q(t−1)) < 1. Note that different from

Theorem 1, the assumptions of stationary arrival processes and

time-scale separation are not required in Theorem 2.

Remark 1: Theorem 2 states that the queuing behavior of

each individual link converges to an equivalent deterministic

single-queue system as the number of channels goes to infinity.

Specifically, according to (5) and (7), the queuing behavior of

each link i
(

qi(t),
C
N

∑N

j=1 µij(t)
)

(i.e., queue backlog and

scheduled service rate) converges asymptotically in the number

of channels to the equivalent queue system (q(t), CE{v(t)}).
By taking expectation on both sides of (10), we know that

the equivalent queue system (q(t), CE{v(t)}) can be updated

deterministically and independent of individual links with (9)

and

E{v(t)} = [F1 + (1 − M)F0(q(t − 1))]E{v(t − 1)}
+ F0(q(t − 1)).

(12)

Thus, the easy updates of (q(t), CE{v(t)}) yield a simplified

and scalable characterization of the queuing behavior for indi-

vidual links under the multi-channel random access algorithm.

In Section IV, we will study the steady state of the

equivalent queue system (q(t), CE{v(t)}), which becomes

the (asymptotic) steady state of each link under the multi-

channel random access algorithm according to Theorem 2. In

the following corollary, we present the LLN results for the

aggregated queue backlog and aggregated service rate under

the multi-channel random access algorithm.

Corollary 1: Given q(t) and v(t) updated as in Theorem 2,

the following LLN results hold for any time slot t:

1

M

M
∑

i=1

qi(t)
P−→N q(t),

C

MN

M
∑

i=1

N
∑

j=1

µij(t)
P−→N CE{v(t)}.

Corollary 1 directly follows (5) and (7). Note that
1
M

∑

i qi(t) and C
MN

∑

i

∑

j µij(t) can be considered as the

average queue occupancy (which represents the congestion

level/delay performance) and average service rate under the

multi-channel random access algorithm, respectively.



IV. A STEADY STATE STUDY

We have shown that the equivalent queue system

(q(t), CE{v(t)}) represents the queuing behavior of individual

links in the many-channel regime according to Theorem 2

and Corollary 1. We now study the steady state result for

(q(t), CE{v(t)}), i.e., the case when t → ∞, in an attempt to

approximate the steady state of the queue backlogs under the

multi-channel random access scheduling algorithm. By analyz-

ing the steady state of q(t), we show that the multi-channel

random access algorithm is asymptotically (with respect to N )

throughput-optimal without the time-scale separation assump-

tion, which is required for Theorem 1 to hold.

Since the maximal stabilizable normalized arrival rate can-

not exceed C
M

as N → ∞ 5, we only analyze the case for

α < C
M

. We assume that the following limit exists: 6

(q, v) , lim
t→∞

(q(t), CE{v(t)}), with 0 < q ≤ ∞. (13)

Note that q = ∞ stands for the case when the normalized

arrival rate α cannot be stabilized by the algorithm. We say that

the multi-channel random access algorithm is asymptotically

throughput-optimal if the steady state q of the equivalent queue

q(t) corresponding to the algorithm is finite (i.e., q < ∞) for

all 0 < α < C
M

.

By taking the limit (over time) of both sides of (9) and (12),

we obtain the steady state in its closed form

(q, v) =

(

h−1

(

α

C − αM

)

, α

)

.

Since α < C
M

, we can find ǫ , C − αM > 0 such that

0 < q = h−1
(α

ǫ

)

< ∞. (14)

The steady-state equivalent queue backlogs that correspond to

different weight functions are listed in Table I.

Remark 2: ǫ can be considered as the closeness of the

traffic load to the optimality. We know from (5) that the data

queue backlogs converge in probability to q(t). Therefore,

when the number of channels N becomes large, the individual

queue backlogs in the steady state converge to the steady

state of the equivalent queue q. We can see from Table I that

more aggressive weight functions lead to smaller delays. For

example, h(x) = ex − 1 results in a better delay performance

than x and log(x+1). This is in accordance with the findings

in a single channel setting [19], where a lower-bound on the

expected queue backlog is derived with respect to weight

functions. We note that while a more aggressive weight func-

tion reduces delays, it can potentially aggravate the temporal

starvation [21] when there is a limited number of channels,

i.e., links can undergo prolonged periods of inactivity followed

5Recall assumption (3) and that the total channel capacity is C. We must
have α ≤ C

M
as N → ∞.

6We have shown in [26] that (q, v) is indeed a stable equilibrium of
the system (q(t), CE{v(t)}). We also show through extensive numerical
results in Section V and [26] that the queuing behavior of individual links
(

qi(t),
C
N

∑N
j=1

µij(t)
)

converges to (q, v) in time, for sufficiently large

N .

by a prolonged period of activity, leading to bursty service

and undesirable jitter performance. The study of this tradeoff

between delay and temporal starvation will be one of our

future works.

Since channel resources are shared by M links, the interval

of 0 < α < C
M

denotes the stabilizable range of (normalized)

arrival rates. From (14), the steady state value q is finite

for any α < C
M

, and hence, the random access algorithm

is asymptotically (with respect to N ) throughput-optimal un-

der the assumption that limt→∞(q(t), CE{v(t)}) exists. This

asymptotic result is summarized in the following proposition:

Proposition 1: The multi-channel random access algorithm

is asymptotically throughput-optimal with respect to N under

assumption (13).

We note that Proposition 1 is a steady state outcome of the

convergence results I(t)-IV(t) in Theorem 2, which hold for

each time slot t. Thus, like Theorem 2, Proposition 1 does not

require the assumptions of stationary arrival processes and the

time-scale separation.

In [26], we further show that
(

h−1
(

α
ǫ

)

, α
)

is indeed a

stable equilibrium of the system (q(t), CE{v(t)}).

TABLE I
STEADY STATE EQUIVALENT QUEUE BACKLOG q WITH DIFFERENT

WEIGHT FUNCTIONS h

h(x) ex − 1 x log(x + 1)

q log(α
ǫ

+ 1) α
ǫ

e
α

ǫ − 1

V. NUMERICAL RESULTS

In this section, we provide extensive numerical results for

the multi-channel random access algorithm. For analytical

simplicity, we assume a unit capacity system, i.e., C = 1.

Following the steady-state analysis in Section IV, we only

consider the case α < 1
M

since the maximal stabilizable

normalized arrival rate cannot exceed 1
M

as N → ∞. The

contention probability is fixed as β = 1
M

[17]. The equivalent

queue system (q(t), E{v(t)}) is updated deterministically ac-

cording to dynamics (9)(12). In the numerical evaluations, we

focus on the following metric which represents the aggregated

algorithm performance on delay: The average queue backlog
(

1
M

∑M

i=1 qi(t)
)

. Simulation results on another aggregated

metric, average service rate
(

1
MN

∑M

i=1

∑N

j=1 µij(t)
)

, have

been presented in [26], as well.

A. Convergence of Queue Backlogs and Scheduled Service

Rates with Increasing N

In Figure 1(a), we illustrate the simulation results of the

evolution of actual queue backlogs with different number of

channels N , compared to the equivalent queue q(t). Figure

1(a) shows that the queue dynamics of the aggregated links

approaches the equivalent queue q(t) as the number of chan-

nels increases, where we note that C = 1 in the simulations.

In the numerical evaluations, we consider M = 10 links

(corresponding to a typical WiMAX femto cell scenario [22]).
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Fig. 1. Queue dynamics under the multi-channel random access algorithm

Specifically, we consider a scenario with normalized arrival

rate α = 0.5/M , the weight function h(x) = ex − 1, and

identical arrival processes Ai(t) = α, ∀i ∀t. It is observed

in Figure 1(a) that the accuracy of the approximation of

the average queue backlog by q(t) increases as N increases,

which coincides with the convergence results in Corollary 1.

Since the dynamics of q(t) is deterministic and independent

of the queuing behavior of individual links, the equivalent

queue system provides a simplified but accurate estimation for

the actual queuing behavior under the multi-channel random

access algorithm in the many-channel regime.

We note that N = 1000 is a practical choice for OFDM-

based wireless systems. For example, the number of sub-

carriers can be up to 2048 in WiMAX [25]. Thus, in the

following numerical evaluations, we consider the case of

N = 1000.

B. Effect of Different Normalized Arrival Rates α

We compare the queue dynamics under different normalized

arrival rates α in Figure 1(b). Specifically, we consider a

scenario with M = 10 links, N = 1000 channels, weight

function h(x) = ex − 1, and arrival processes Ai(t) = α, ∀i
∀t. Note that α = 0.95

M
corresponds to a normalized arrival

rate achieving 95% of the maximum stabilizable capacity.

In conformance with Corollary 1, the equivalent queue q(t)
accurately tracks the (average) queue backlogs of the multi-

channel random access algorithm. As expected, the queue

backlogs increase with a growing normalized arrival rate α.

In addition, while tracking the queuing behavior of the multi-

channel random access algorithm, q(t) indeed converges to the

steady state q over time, as illustrated in Figure 1(b). We also

observe in Figure 1(b) that the convergence of q(t) to steady

state is slower with a larger traffic load (i.e., a larger α).

C. Effect of Different Weight Functions

In Figure 2(a), we compare the multi-channel random access

algorithm with different weight functions h: h(x) = ex − 1,

h(x) = x, and h(x) = log(x + 1). Specifically, we consider a

scenario with M = 10 links, N = 1000 channels, Ai(t) = α,

∀i ∀t, and a heavy load α = 0.8/M . The results again show

that, while tracking the average queue backlog, q(t) converges

to and attains its limit q as theoretically calculated in Table I.

In conformance with Table I, the more aggressive the weight

function h is, the higher congestion level (illustrated as the

average queue backlog in Figure 2(a)) the system experiences.

D. Queuing Behavior with Different Number of Links

In this section, we illustrate the queuing behavior for

different number of links in Figure 2(b), where we consider

N = 1000 channels, weight function h(x) = ex − 1,

normalized arrival rate α = 0.75
M

, and i.i.d. arrivals with

Ai(t) = α − rand(1) × 0.2α√
N

, ∀i, ∀t,

where rand(1) outputs a random value uniformly distributed

over the interval (0, 1) independently across time slots and

links. For M = 10, 20, 50, which are typical values for pico

and femto cell scenarios [22], we observe that the data queue

backlogs are correctly tracked by q(t) and fluctuates around

the steady state q as t → ∞. Thus, we conclude that, for

all considered M values, the evolution of the original system

is well presented by the equivalent single-queue system. Note

that under this simulation setting, the steady state q = log( 3
M

+
1), according to (14). Hence, a larger number of links leads to

smaller delays (represented by queue lengths in Figure 2(b))

when the traffic load is fixed (i.e., αM = 0.75).

VI. CONCLUSIONS AND FUTURE WORKS

Our work aims to better understand the delay performance

and the fundamental properties of queuing dynamics for ran-

dom access algorithms in a many-channel regime. Specifically,

in this paper, we generalize a class of throughput-optimal

random access algorithms to a multi-channel setting. We show

that the individual queuing behavior under the multi-channel
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random access algorithm converges to an equivalent determin-

istic single-queue system. By analyzing this equivalent queue

system, we find a closed-form approximation for the steady

state queue backlogs in the many-channel regime.

To show the efficacy of our model, we will perform testbed

implementations of the multi-channel random access algorithm

in our future work. The LLN results presented in Theorem

2 are based on assumption (3) of asymptotically uniform

(normalized) arrival rates and the fully connected network

topology (where the interference set is uniform for all links).

In our future work, we will also study the queuing behavior

for its convergence to an equivalent M -queue system, in a

multi-hop topology where each of the M links has a unique

interference set and an individual arrival rate. By analyzing

the equivalent M -queue system, we will study the throughput

and delay performance of the random access algorithm in a

more general setting.
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APPENDIX A

PROOF OF THEOREM 2

Theorem 2 can be proved by mathematical induction over

time slot t. With the initialization (4)(11), I(−1), II(−1),
III(−1), and, IV(−1) trivially hold as the base case. Suppose

I(t − 1), II(t − 1), III(t − 1), and, IV(t − 1) hold, which we

call as induction hypothesis. We prove that the induction step



holds. Specifically, we prove I(t), II(t), and III(t) hold in the

following subsections, and prove IV(t) holds in [26], which

completes the proof for Theorem 2.

A. Proof of I(t)

From the induction hypothesis I(t − 1) and III(t − 1), we

have

qi(t − 1) + Ai(t − 1) − C

N

N
∑

j=1

µij(t − 1)

P−→N q(t − 1) + α − CE{v(t − 1)}.

Thus, we conclude that I(t) holds, i.e., qi(t)
P−→N q(t), ∀i, by

queue dynamics (1)(9) and the continuity of the function [·]+.

B. Proof of II(t)

Taking the conditional expectation on both sides of (2) leads

to

E{µij(t)|(µkj(t − 1))M
k=1, qi(t − 1)}

=F0(qi(t − 1)) −
∑

k 6=i

F0(qi(t − 1))µkj(t − 1)

+ F1µij(t − 1).

(15)

Further taking the expectation of both sides of (15), we get

E{µij(t)} = E{F0(qi(t − 1))}
−

∑

k 6=i

E{F0(qi(t − 1))µkj(t − 1)} + F1E{µij(t − 1)}. (16)

From the induction hypothesis I(t − 1) and II(t − 1), we

have

(qi(t − 1), µkj(t − 1))
L−→N (q(t − 1), v(t − 1)).

By applying the continuous mapping theorem [24], we find

that

F0(qi(t − 1))µkj(t − 1)
L−→N F0(q(t − 1))v(t − 1).

By the bounded convergence theorem [24], we further obtain

lim
N→∞

E{F0(qi(t−1))µkj(t−1)} = F0(q(t−1))E{v(t−1)}.

Similarly, we can obtain

lim
N→∞

E{F0(qi(t − 1))} = F0(q(t − 1)),

lim
N→∞

F1E{µij(t − 1)} = F1E{v(t − 1)}.

Applying the above results to (16), we conclude

lim
N→∞

P{µij(t) = 1} = lim
N→∞

E{µij(t)}

=F0(q(t − 1)) − (M − 1)F0(q(t − 1))E{v(t − 1)}
+ F1E{v(t − 1)}

=F0(q(t − 1)) + [(1 − M)F0(q(t − 1)) + F1] E{v(t − 1)}
=E{v(t)} = P{v(t) = 1},

where the second to last equality follows from (12). Hence,

II(t) holds, i.e., µij(t)
L−→N v(t), ∀i, j, by definition of

convergence in law.

C. Proof of III(t)

We first take the variance of 1
N

∑N

j=1 µij(t), for any given

link i:

V ar







1

N

N
∑

j=1

µij(t)







= N−2
N

∑

j=1

V ar{µij(t)}

+ N−2
∑

j,k=1,...,N,j 6=k

Cov{µij(t), µik(t)}

= N−1V ar{µi1(t)} +
N − 1

N
Cov{µi1(t), µi2(t)} (17)

N→∞−−−−→ 0, (18)

where (17) follows the exchangeability of µi1(t), ..., µiN (t),
and (18) is implied from

lim
N→∞

Cov(µi1(t), µi2(t)) = 0

since we have proved IV(t) in [26], i.e., µi1(t) and µi2(t) are

asymptotically mutually independent.

Employing Chebyshev’s inequality to

V ar{ 1
N

∑N

j=1 µij(t)}, we have ∀ǫ > 0:

P







∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

µij(t) − E{ 1

N

N
∑

j=1

µij(t)}

∣

∣

∣

∣

∣

∣

≥ ǫ







N→∞−−−−→ 0.

Thus, by the exchangeability and the definition of convergence

in probability, we conclude

1

N

N
∑

j=1

µij(t) − E{µi1(t)}

=
1

N

N
∑

j=1

µij(t) − E{ 1

N

N
∑

j=1

µij(t)} P−→N 0.

Employing II(t) (proved in Appendix A-B) to the above

convergence result yields

1

N

N
∑

j=1

µij(t)
P−→N E{v(t)},

which completes the proof of III(t).


