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Abstract—We provide a distributed algorithm for the radio
resource allocation problem in multicell downlink multi-input
single-output systems. Specifically, we consider the problem of
signal-to-interference-plus-noise ratio (SINR) balancing subject
to total transmit power constraints. We propose a consensus-
based distributed algorithm, and a fast solution method via
alternating direction method of multipliers. Numerical results
show that the proposed distributed algorithm converges to the
optimal solution.

Index Terms—Distributed optimization, multicell networks,
signal-to-interference-plus-noise ratio balancing, alternating di-
rection method of multipliers (ADMM), second-order cone pro-
gram (SOCP).

I. INTRODUCTION

We provide a distributed algorithm for the signal-to-

interference-plus-noise ratio (SINR) balancing problem subject

to total transmit power constraints at the base stations (BS),

for multicell downlink systems with linear precoding. The BSs

are assumed to have multiple antennas while all the receivers

are equipped with single antenna.

Centralized methods for the SINR balancing problem

has been proposed in [1]–[5]. Unfortunately, the centralized

method is not practical for the resource allocation due to high

overhead required for collecting all channel state information

at the central processing unit. Therefore, to share the workload

of the central controller and to overcome impelling backhaul

the distributed algorithm are more desirable in practice.

The considered problem is quasiconvex [6]. Thus central-

ized methods based on bisection search [7] are commonly

used, e.g. [4], [6]. By combining the bisection search and

the uplink-downlink SINR duality, a distributed algorithm for

multi-input single-output (MISO) system is proposed in [8].

The algorithm in [8] is a hierarchical iterative method which

consists of outer and inner iterations, where the bisection

search is carried out in the outer iteration and the uplink-

downlink SINR duality is used for the inner iteration.

The main contribution of our paper is to propose a

consensus-based distributed algorithm, and a fast solu-

tion method via alternating direction method of multipliers

(ADMM) [9]. The ADMM turns the original problem into a
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series of iterative steps, namely, local variable update, global

variable update, and dual variable update [9]. The local vari-

able and dual variable updates are carried out independently in

parallel by all BSs, while the global variable update is carried

out by BSs coordination.

The remainder of this paper is organized as follows. The

considered MISO system model and problem formulation are

described in Section II. The distributed algorithm is derived in

Section III. The numerical results are presented in Section IV,

and Section V concludes our paper.

Notations: All boldface lower case and upper case letters

represent vectors and matrices respectively, and calligraphy

letters represent sets. The notation CT denotes the set of

complex T -vectors, |x| denotes the absolute value of the

scalar x, ‖x‖2 denote the Euclidean norm of the vector x,

I denotes the identity matrix, and CN (m,C) denotes the

complex circular symmetric Gaussian vector distribution with

mean m and covariance matrix C. The superscript (·)H
and

(·)⋆ is used to denote a Hermitian transpose of a matrix and

a solution of an optimization problem, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A multicell MISO downlink system, with N base stations

each equipped with T transmit antennas is considered. The set

of all BSs is denoted by N , and we label them with the integer

values n = 1, . . . , N . The transmission region of each BS is

modeled as a disc with radius RBS centered at the location of

the BS (see Figure 1). Single data stream is transmitted for

each user. We denote the set of all data streams in the system

by L, and label them with the integer values l = 1, . . . , L. The

transmitter node (i.e., the BS) of lth data stream is denoted by

tran(l) and the receiver node of lth data stream is denoted by

rec(l). We have L = ∪n∈NL(n), where L(n) denotes the set

of data streams transmitted by nth BS.

The antenna signal vector transmitted by nth BS is given

by

xn =
∑

l∈L(n)

dlml, (1)

where dl ∈ C and ml ∈ CT represent the information

symbol and the transmit beamformer associated to lth data

stream, respectively. We assume that dl is normalized such



that E|dl|2 = 1. Moreover, we assume data streams are

independent, i.e., E{dld
∗
j} = 0 for all l 6= j, where l, j ∈ L.

The signal received at rec(l) can be expressed as

yl = dlh
H

llml +
∑

j ∈ L(tran(l)), j 6= l

djh
H

jlmj

+
∑

n∈N\{tran(l)}

∑

j ∈ L(n)

djh
H

jlmj + nl,
(2)

where h
H

jl ∈C1×T is the channel matrix between tran(j) and

rec(l), and nl is circular symmetric complex gaussian noise

with variance σ2
l . Note that the second right hand term in (2)

represents the intra-cell interference and the third right hand

term represents the out-of-cell interference. The received SINR

of lth data stream is given by

Γl =
|hH

llml|2

σ2
l +

∑

j ∈ L(tran(l)), j 6= l

|hH

jlmj |2 +
∑

n∈N\{tran(l)}

z2
nl

, (3)

where z2
nl =

∑

j∈L(n) |h
H

jlmj |2 represents the power of the

out-of-cell interference from nth BS to rec(l).

The out-of-cell interference term in (3) (i.e.,
∑

n∈N\{tranl(l)} z2
nl) prevents resource allocation on an

intra-cell basis and demands BSs cooperation/coordination.

To avoid unnecessary coordination between far apart located

BSs, we make the following assumption: transmission from

nth BS interfere the lth data stream (transmitted by BS b 6= n)

only if the distance between nth BS and rec(l) is smaller

than a threshold Rint
1. The disc with radius Rint centered

at the location of any BS is referred to as the interference

region of the BS (see Figure 1). Thus, if nth BS located

at a distance larger than Rint to rec(l), the associated znl

components are set to zero2. Based on the assumption above,

we can express Γl as

Γl =
|hH

llml|2

σ2
l +

∑

j ∈ L(tran(l)), j 6= l

|hH

jlmj |2 +
∑

n∈Nint(l)

z2
nl

,

where Nint(l) ⊆ N\{tran(l)} is the set of out-of-cell

interfering BSs that are located at a distance less than Rint

to rec(l). For example, in Figure 1, we have Nint(2) = {2},

Nint(8) = {1}, and Nint(l) = ∅ for all l ∈ {1, 3, 4, 5, 6, 7}.

Providing fairness among the users with per BS power

constraint (i.e.,
∑

j∈L(n)

‖ml‖2
2 ≤ pmax

n ) is an important resource

1Similar assumptions are made, e.g., in [10] in the context of arbitrary
wireless networks.

2The value of Rint is chosen such that the power of the interference term
is below the noise level and this commonly used approximation is made to
avoid unnecessary coordinations between distant BSs. The effect of nonzero
znl terms can be accurately modeled by changing the statistical characteristics
of noise nl at rec(l). However, those issues are extraneous to the main focus
of the paper.
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Fig. 1: Multicell network: N = {1, 2}, L(1) = {1, 2, 3, 4},

L(2) = {5, 6, 7, 8}, Lint = {2, 8}. The area inside solid-lined

circle around BSs represent the associated transmission region

of each BS, and the area inside dash-lined circle around BSs

represent the associated interference region of each BS.

allocation problem. One way3 of providing fairness among the

users is by maximizing the minimum SINR [6], which can be

formulated as

maximize min
l∈L















|hH

llml|2

σ2
l +

∑

j ∈ L(tran(l)),
j 6= l

|hH

jlmj |2 +
∑

n∈Nint(l)

z2
nl















subject to z2
nl =

∑

j∈L(n)

|hH

jlmj |2, l ∈ Lint, n ∈ Nint(l)

∑

j∈L(n)

‖ml‖2
2 ≤ pmax

n , n ∈ N ,

(4)

with variables {ml}l∈L and {znl}l∈Lint,n∈Nint(l), where Lint

denotes the set of all data streams that are subject to the out-of-

cell interference, i.e., Lint = {l|l ∈ L,Nint(l) 6= ∅}. Finally,

to improve the readability of the paper we summarize a list of

sets used in this paper in Table I.

Set Description

N Set of all BSs

L Set of all data streams

L(n) Set of data streams transmitted by nth BS

Nint(l) Set of out-of-cell BSs interfering to lth data stream

Lint Set of all data streams that are subject to
the out-of-cell interference

Iint(n) Set of links for which BS n acts as the out-of-cell
interferer

Lint(n) Set of links in BS n that are affected by
the out-of-cell interference

TABLE I: Summary of a list of sets.

3A more general SINR balancing problem which can set priority of
each users (keeping the SINR values of data streams to a fixed ratio) [11,
Section IV-C] can be formulated. However to simplify the presentation,
we consider maximization of the minimum SINR. Note that the proposed
decentralized method can be easily generalized to the more general problem
considered in [11, Section IV-C].
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Fig. 2: BS 2 and BS 3 are coupled with BS 1 due to coupling

variables z2l and z3l, respectively. To distribute the problem,

local copy x1,2l of z2l at BS 1 and local copy x2,2l of z2l at

BS 2 are introduced. Similarly, local copy x1,3l of z3l at BS

1 and local copy x3,3l of z3l at BS 3 are introduced.

III. SINR BALANCING

In this section we derive a distributed algorithm for prob-

lem (4). First, we equivalently reformulate the original prob-

lem (4) in a form of global consensus problem. Then, we de-

rive the proposed distributed algorithm based on ADMM [9].

A. An equivalent reformulation

We start by reformulating SINR balancing problem (4) in

the epigraph form as

minimize −γ

subject to
|hH

llml|2

σ2
l +

∑

j ∈ L(tl), j 6= l

|hH

jlmj |2 +
∑

n∈Nint(l)

z2
nl

≥ γ,

l ∈ L
z2
nl ≥

∑

j∈L(n)

|hH

jlmj |2, l ∈ Lint, n ∈ Nint(l)

∑

j∈L(n)

‖ml‖2
2 ≤ pmax

n , n ∈ N ,

(5)

where the variables are γ, {ml}l∈L, and {znl}l∈Lint,n∈Nint(l).

Problem (4) and (5) are equivalent as it can be easily shown

(e.g., by contradiction) that the second inequality holds with

equality at the optimal point.

Recall that z2
nl in problem (5) represents power of the out-

of-cell interference caused by nth BS at rec(l), and hence,

variable znl couples exactly two BSs (i.e., BS n and BS

tran(l)). Furthermore, the SINR variable γ coupes all BSs

via SINR constraints. We use consensus technique to distribute

problem (5) over the BSs. The method consist of introducing

at each BS local copies of the coupling variables znl and γ.

Let us define xk,nl as the local copy of znl at BS k. Thus

for each znl, we make two local copies, i.e., xn,nl at BS n
and xtran(l),nl at BS tran(l) (see Figure 2). Furthermore, let

us define αn as the local copy of γ at BS n. Then problem (5)

can be written equivalently in a global consensus form as

minimize −γ

subject to
|hH

llml|2

σ2
l +

∑

j ∈ L(n), j 6= l

|hH

jlmj |2 +
∑

b∈Nint(l)

x2
n,bl

≥ αn,

n ∈ N , l ∈ L(n)

x2
n,nl ≥

∑

j∈L(n)

|hH

jlmj |2, l ∈ Lint, n ∈ Nint(l)

∑

j∈L(n)

‖ml‖2
2 ≤ pmax

n , n ∈ N

xk,nl = znl, k ∈ {n, tran(l)}, l ∈ Lint,
n ∈ Nint(l)

αn = γ, n ∈ N ,
(6)

with variables γ, {ml}l∈L, {αn}n∈N ,

{xk,nl}k∈{n,tran(l)},l∈Lint,n∈Nint(l), and {znl}l∈Lint,n∈Nint(l).

Note that in the SINR constraints of problem (6), we replaced

zbl by the local copy xn,bl, γ by the local copy αn, and used

L = ∪n∈NL(n). In the second inequality constraints of (6)

we replaced znl by the local copy xn,nl. The set of equality

constraints of (6) are called consistency constraints, and they

enforce the local copies {xk,nl}k∈{n,tran(l)} and {αn}n∈N

to be equal to the corresponding global variable znl and γ,

respectively.

In problem (6) the first and the third set of inequality

constraints are separable in n ∈ N (one for each BS). Also,

it can be easily shown that the second set of inequality

constraints of (6) are separable in n ∈ N . To do this, let

us denote Iint(n) the set of links for which BS n acts as an

out-of-cell interferer, i.e., Iint(n) = {l|l ∈ Lint, n ∈ Nint(l)}.

Then, by noting that the sets {(n, l)|l ∈ Lint, n ∈ Nint(l)} and

{(n, l)|n ∈ N , l ∈ Iint(n)} are identical, the second set of

inequality constraints of (6) can be written as

x2
n,nl ≥

∑

j∈L(n)

|hH

jlmj |2, n ∈ N , l ∈ Iint(n), (7)

which is separable in n ∈ N . Observe that without the con-

sistency constraints, problem (6) can now be easily decoupled

into N subproblems, one for each BS.

We next express problem (6) more compactly. To do this,

we first express the consistency constraints of problem (6)

more compactly by using vector notations, which denote the

local and global variables associated with BS n. By using the

equivalence between the sets {(n, l)|l ∈ Lint, n ∈ Nint(l)}
and {(n, l)|n ∈ N , l ∈ Iint(n)}, let us express the fourth

constraints of problem (6) as

xn,nl = znl, n ∈ N , l ∈ Iint(n)
xtran(l),nl = znl, l ∈ Lint, n ∈ Nint(l).

(8)

In the first set of equalities of (8), {xn,nl}l∈Iint(n) is a set

of local variables associated with BS n. Similarly, to find a

set of local variables that are associated with BS n in the

second set of equalities of (8), let us define Lint(n) the set of

links in BS n that are affected by the out-of-cell interference,



i.e., Lint(n) = {l|l ∈ Lint ∩ L(n)}. Then by noting Lint =
∪n∈NLint(n) we can rewrite (8) as

xn,nl = znl, n ∈ N , l ∈ Iint(n)
xtran(l),bl = zbl, n ∈ N , l ∈ Lint(n), b ∈ Nint(l).

(9)

Clearly, in the second set of equalities of (9) 4,

{xtran(l),bl}l∈Lint(n),b∈Nint(l) is a set of local variables that

is associated with BS n. We now denote (9) compactly using

vector notation. Let us define vectors xn and zn as 5

xn = {{xn,nl}l∈Iint(n), {xtran(l),bl}l∈Lint(n),b∈Nint(l)}
zn = {{znl}l∈Iint(n), {zbl}l∈Lint(n),b∈Nint(l)}.

(10)

Then (9) can be compactly written as

xn = zn, n ∈ N . (11)

Note that xn is a collection of the local variables that are

associated with BS n, and zn is a collection of the global

variables that are associate with the components of variable

xn.

Furthermore, for the sake of brevity, let us define the matrix

Mn = [ml]l∈L(n) obtained by concatenating the column

vectors ml, the following set

C =


















































Mn,xn, αn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|hH

llml|2

σ2
l +

∑

j ∈ L(n)
j 6= l

|hH

jlmj |2 +
∑

b∈Nint(l)

x2
n,bl

≥ αn,

l ∈ L(n)

x2
n,nl ≥

∑

j∈L(n)

|hH

jlmj |2, l ∈ Iint(n)

∑

j∈L(n)

‖ml‖2
2 ≤ pmax

n



















































,

(12)

and the following indicator function In(Mn,xn, αn)

In(Mn,xn, αn) =

{

0 (Mn,xn, αn) ∈ C
∞ otherwise.

(13)

Then by using notations (11), (12) and (13) consensus prob-

lem (6) can be rewritten compactly as

minimize −γ +
∑

n∈N
In(Mn,xn, αn)

subject to xn = zn, n ∈ N
αn = γ, n ∈ N ,

(14)

4Note that Lint(n) ⊆ L(n). Hence, tran(l) = n for all l ∈ Lint(n).
5To simplify the presentation, here we have used a slight abuse of notation,

i.e., we have considered that the sets in (10) are ordered.

with variables γ and {Mn,xn, zn, αn}n∈N . Furthermore, by

noting that
∑

n∈N αn = Nγ (from the second equality con-

straints of (14)), problem (14) can be equivalently expressed

as

minimize
∑

n∈N

(

− αn

N
+ In(Mn,xn, αn)

)

subject to xn = zn, n ∈ N
αn = γ, n ∈ N ,

(15)

with variables γ and {Mn,xn, zn, αn}n∈N .

B. Distributed algorithm via ADMM

In this section we derive distributed algorithm for prob-

lem (15). The proposed algorithm is based on ADMM [9].

We start by writing the augmented Lagrangian [12] for

problem (15) as

Lρ

(

{Mn,xn, αn,un, vn, zn}n∈N , γ
)

=
∑

n∈N

(

− αn

N
+ In(Mn,xn, αn) + u

T
n (xn − zn)

+vn(αn − γ) +
ρ

2
‖xn − zn‖2

2 +
ρ

2
‖αn − γ‖2

2

)

,

(16)

where un
6 and vn are the dual variables associated with the

first and second equality constraints of (15), respectively, and

ρ > 0 is a penalty parameter that adds the quadratic penalty

to the standard Lagrangian L0 for the violation of the equality

constraints of problem (15).

Each iteration of ADMM [9] consists of the steps (17)-

(20). Note that the first step in (17) is completely de-

centralized. Each BS n ∈ N updates the local variables

(Mi+1
n ,xi+1

n , αi+1
n ) by solving the following optimization

problem

minimize
(

− αn

N
+ In(Mn,xn, αn) + u

iT
n (xn − z

i
n)

+vi
n(αn − γi) +

ρ

2
‖xn − z

i
n‖2

2 +
ρ

2
‖αn − γi‖2

2

)

,

(21)

with variables αn, Mn, and xn. Let vn = (1/ρ)un and λn =
(1/ρ)vn, then combining the linear and the quadratic terms7,

6Let {uk,nl}k∈{n,tran(l)},l∈Lint,n∈Nint(l)
be the dual variables as-

sociated with the fourth equality constraints of problem (6), then
by following steps (8) to (10), we can easily express un =
{{un,nl}l∈Iint(n), {un,bl}l∈Lint(n),b∈Nint(l)

} for all n ∈ N .
7For convenience we can combine the terms in problem (21) as a)

u
iT
n (xn − z

i
n) + ρ

2
‖xn − z

i
n‖

2
2 = ρ

2
‖xn − z

i
n + v

i
n‖

2
2 − ρ

2
‖vi

n‖ and

b) vi
n(αn − γi) + ρ

2
‖αn − γi‖2

2 = ρ

2
‖αn − γi + λi

n‖
2
2 − ρ

2
‖λi

n‖.

M
i+1
n ,xi+1

n , αi+1
n = argmin

Mn,xn,αn

Lρ

(

Mn,xn, αn,ui
n, vi

n, zi
n, γi

)

, n ∈ N (17)

{zi+1
n }n∈N , γi+1 = argmin

{zn}n∈N ,γ

Lρ

(

{Mi+1
n ,xi+1

n , αi+1
n ,ui

n, vi
n, zn}n∈N , γ

)

(18)

u
i+1
n = u

i
n + ρ

(

x
i+1
n − z

i+1
n

)

, n ∈ N (19)

vi+1
n = vi

n + ρ
(

αi+1
n − γi+1

)

, n ∈ N . (20)



problem (21) can be simplified as

minimize −αn

N
+ In(Mn,xn, αn) +

ρ

2
‖xn − z

i
n + v

i
n‖2

2

+
ρ

2
‖αn − γi + λi

n‖2
2,

(22)

with variables αn, Mn, and xn. Note that in the objec-

tive function of (22) constant terms ρ
2‖vi

n‖ and ρ
2‖λi

n‖ are

dropped, because they do not affect the solution of the

optimization problem.

Problem (22) is not convex, due to the indicator function

In(Mn,xn, αn) which is a function of nonconvex set C
(see (12) and (13)). However, for fixed αn the set C is convex,

and hence problem (22) can be solved easily. Therefore, to

solve problem (22), we first find the optimal α⋆
n, and then

find M
⋆
n and x

⋆
n.

For fixed αn, let us denote the optimal value function of

problem (22) as

p(αn) = inf
Mn,xn

(

− αn

N
+ In(Mn,xn, αn)

+
ρ

2
‖xn − z

i
n + v

i
n‖2

2 +
ρ

2
‖αn − γi + λi

n‖2
2)

)

= inf
Mn,xn

(

In(Mn,xn, αn) +
ρ

2
‖xn − z

i
n + v

i
n‖2

2

)

−αn

N
+

ρ

2
‖αn − γi + λi

n‖2
2, (23)

where (23) follows by noting αn/N and ρ
2‖αn − γi + λi

n‖2
2

are constants. Then the optimal value of problem (22) is given

by

p⋆ = inf
αn

p(αn). (24)

To solve (24), in Lemma 1, we first show that the optimal

value function p(αn) on an interval αn ∈ [0, αmax
n ] is an

unimodal function, where αmax
n is any arbitrary positive value.

Then we propose a bracketing method (e.g., golden ratio

search) [13], [14] to solve problem (24) on the interval

[0, αmax
n ]. For ease of presentation, let us express the optimal

value function p(αn) in (23) as

p(αn) = p̃(αn) − αn

N
+

ρ

2
‖αn − γi + λi

n‖2
2, (25)

where p̃(αn) is the optimal value of the following optimization

problem

minimize
ρ

2
‖xn − z

i
n + v

i
n‖2

2

subject to
|hH

llml|2

σ2
l +

∑

j ∈ L(n), j 6= l

|hH

jlmj |2 +
∑

b∈Nint(l)

x2
n,bl

≥ αn,

l ∈ L(n)

x2
n,nl ≥

∑

j∈L(n)

|hH

jlmj |2, l ∈ Iint(n)

∑

j∈L(n)

‖ml‖2
2 ≤ pmax

n ,

(26)

with variables xn and {ml}l∈L(n). Note that to write (26), we

have used the notations defined in (12) and (13).

� �� �

(a) If p(c) ≤ p(d), then squeeze
from the right and use [a,d].

� ��

(b) If p(d) ≤ p(c), then squeeze
from the left and use [c,b].

Fig. 3: The decision process for finding α⋆
n.

Lemma 1: The function p(αn),

p(αn) = p̃(αn) − αn

N
+

ρ

2
‖αn − γi + λi

n‖2
2, (27)

is an unimodal function on an interval αn ∈ [0, αmax
n ].

Proof: For any fixed αn ∈ [0, αmax
n ] the feasible set of

problem (26) is closed and convex. Thus, problem (26) is a

minimization of a quadratic function over a closed convex

set. Therefore, p̃(αn) is a continuous and piecewise quadratic

function on the interval αn ∈ [0, αmax
n ] [15, Corollary 4.8]. It

follows that p(αn) is a sum of piecewise quadratic, affine, and

quadratic functions. Therefore, function p(αn) is piecewise

convex, and hence, unimodal on the interval [0, αmax
n ].

In Algorithm 2, we summarize the bracketing method

(golden ratio search) [13, Section 8.1] to find the optimal α⋆
n

for problem (24).

Algorithm 1: Bracketing method to find optimal α⋆
n for

problem (24)

1) Initialization: given SINR interval [0, αmax
n ], r = (

√
5−

1)/2, and ǫ > 0. Set a = 0, b = αmax
n , c = ra+(1−r)b,

and d = (1 − r)a + rb.

2) Compute p(c) and p(d) using (25).

3) Squeeze the search SINR range: if p(c) ≤ p(d), set b =
d, else set a = c.

4) Compute c = ra + (1 − r)b and d = (1 − r)a + rb.

5) Stopping criterion: if b − a < ǫ, STOP, and set α⋆
n = c.

Otherwise, go to step 2.

Figure (3) illustrates the search of α⋆
n on the interval [a, b]

by using Algorithm 1. The first step initializes the algorithm.

Here two interior points c and d are selected such that a <
c < d < b as shown in Figure 3a and 3b. Step 2 computes

p(c) and p(d) using (25). In step 3 the search interval [a, b] is

squeezed by comparing the functional values p(c) and p(d).
If p(c) ≤ p(d) (see Figure 3a), the minimum occurs in the

subinterval [a, d], and we replace b with d. If p(c) > p(d)
(see Figure 3b), the minimum occurs in the subinterval [c, b],
and we replace a with c. In step 4 interior points c and d are

updated. Step 5 checks the stopping criteria, and the algorithm

stops if the stopping criteria is satisfied, then we set α⋆
n = c.

Otherwise the algorithm continues.

Next we find x
⋆
n and M

⋆
n = {m⋆

l }l∈L(n) associated with

α⋆
n by solving problem (26). By writing the problem in



the epigraph form, and then following the approach of [6,

Section IV-B], problem (26) can be equivalently reformulated

in the form of second-order cone program (SOCP) as

minimize t

subject to

[

t
√

ρ/2(xn − z
i
n + v

i
n)

]

ºSOC 0










√

1 + 1
αn

h
H

llml

M
H

nhll

x̃n

σn











ºSOC 0, l ∈ L(n)

[

xn,nl

M
H

nhjl

]

ºSOC 0, l ∈ Iint(n)

[ √
pmax

n

vec(Mn)

]

ºSOC 0,

(28)

with variables t, xn, and Mn, where x̃n =
{xn,bl}l∈Lint(n),b∈Nint(l) is a subset of xn (see (10)),

the matrix hjl in the third set of constraints denotes the

channel from BS n to link l (i.e., the index j in the third

set of constraints denotes an arbitrary link in L(n)). Note

that to write problem (26) in the SOCP form (28), we first

took the square root of the objective function of (26). Hence,

the optimal value of problem (26) is given by t⋆2 (i.e.,

p̃(αn) = t⋆2), where t⋆ is a solution of problem (28).

We now turn to the second step of ADMM in (18), where

the global variables {zn}i+1
n∈N and γi+1 are updated. By

dropping the constant terms which do not affect the solution,

problem (18) can be written as

minimize
∑

n∈N

(

u
iT
n (xi+1

n − zn) + vi
n(αi+1

n − γ)

+
ρ

2
‖xi+1

n − zn‖2
2 +

ρ

2
‖αi+1

n − γ‖2
2

)

,
(29)

with variables {zn}n∈N and γ.

Problem (29) is separable in variables {zn}n∈N and γ.

We first provide solution for {zn}n∈N , and then for γ.

Minimization of problem (29) with respect to {zn}n∈N yields

the following optimization problem

minimize
∑

n∈N

(

u
iT
n (xi+1

n − zn) +
ρ

2
‖xi+1

n − zn‖2
2

)

,

(30)

with variable {zn}n∈N . Note that the objective function of

problem (30) is the sum of linear and quadratic cost in-

curred by the difference in the first equality constraints of

problem (15). Furthermore, the first equality constraints of

problem (15) are the compact representation of the fourth

equality constraints of problem (6). Hence, by using the

fourth equality constraints of problem (6), problem (30) in

the components of xn, zn, and un can be expressed as

minimize
∑

l∈Lint

∑

n∈Nint(l)

∑

k∈{n,tran(l)}

(

ui
k,nl(x

i+1
k,nl − znl)

+ρ
2 (xi+1

k,nl − znl)
2
)

,

(31)

with variable {znl}l∈Lint,n∈Nint(l), where

{uk,nl}k∈{n,tran(l)},l∈Lint,n∈Nint(l) are the dual variables

associated with the fourth equality constraints of problem (6) 8.

The problem (31) decouples across znl, since the objective

function is separable in znl for all l ∈ Lint, n ∈ Nint(l). Note

that the objective function of problem (31) is quadratic in znl.

Hence by setting the gradient of (31) with respect to znl equal

to zero, we can get the solution z⋆
nl which can be expressed

as

z⋆
nl =

(

xi+1
n,nl + xi+1

tran(l),nl +
1

ρ
(ui

n,nl + ui
tran(l),nl)

)

/

2 (32)

for all l ∈ Lint, n ∈ Nint(l). Therefore, the update zi+1
nl = z⋆

nl

for all l ∈ Lint, n ∈ Nint(l). Moreover, by substituting zi+1
nl

in (19) 9, we can show that the sum of the dual variables

ui
n,nl+ui

tran(l),nl is equal to zero, thus the update zi+1
nl further

simplifies to

zi+1
nl =

(

xi+1
n,nl + xi+1

tran(l),nl

)

/

2, (33)

for all l ∈ Lint, n ∈ Nint(l). Hence the global variable

update zi+1
nl is simply the average of its local copies xi+1

n,nl

and xi+1
tran(l),nl.

We next provide solution γ⋆ for problem (29). By setting

the gradient of problem (29) with respect to γ equal to zero,

we can get

γ⋆ =

∑

n∈N vi
n + ραi+1

n

ρN
, (34)

hence the update γi+1 = γ⋆. Moreover, by substituting γi+1

in (20) we can show that the sum of the dual variables
∑

n∈N vi
n is equal to zero, thus the update γi+1 (i.e., (34))

further simplifies to

γ⋆ =

∑

n∈N αi+1
n

N
, (35)

which is simply the average of the local copies αn of each

BS.

We now summarize the proposed ADMM based distributed

algorithm for SINR balancing problem in Algorithm 2.

Algorithm 2: Proposed ADMM based distributed algorithm

for SINR balancing

1) Initialization: given maximum transmit power pmax
n for

all n ∈ N and penalty ρ > 0. Set i = 0, {u0
n}n∈N = 0,

and {v0
n}n∈N = 0.

2) BS n = 1 . . . N update local variables

(Mi+1
n ,xi+1

n , αi+1
n ).

3) Exchange local updates:

a) BS n and BS tran(l) exchange their local copies

xi+1
n,nl and xi+1

tran(l),nl for all n ∈ Lint, n ∈ Nint(l).

8Note that {un}n∈N are the dual variables associate with the first equality
constraint of problem (15). By following steps (8) to (10), we can easily denote
un = {{un,nl}l∈Iint(n), {un,bl}l∈Lint(n),b∈Nint(l)

}, n ∈ N .
9Note that (19) in the components of un, xn, and zn can be expressed as

ui+1
k,nl

= ui
k,nl

+ ρ(xi+1
k,nl

− zi+1
nl

) for all k ∈ {n, tan(l)}, l ∈ Lint, n ∈
Nint(l).



b) BS n transmits local copy αi+1
n to all other BSs

for all n ∈ N .

4) BS n = 1 . . . N update global variables (zi+1
n , γ).

5) BS n = 1 . . . N update dual variables (ui+1
n , vi+1

n ).
6) If stopping criteria is satisfied, STOP. Otherwise set i =

i + 1, and go to step 2.

The first step initializes the algorithm. Step 2 updates the

local variables of each BS. Step 2 is completely decentralized.

In step 3, BSs exchange their local copies to update the global

variables. The adjacent BSs that are coupled by variable znl

(i.e., BS n and BS tran(l)) exchange the local local copies

xi+1
n,nl and xi+1

tran(l),nl. The local copy αn is broadcasted to all

other BSs. Step 4 updates the global variables z
i+1
n and γi+1.

In step 5, the dual variables are updated by each BS. Note

that steps 4 and 5 are completely decentralized. Step 6 checks

the stopping criteria, and the algorithm stops if the stopping

criteria is satisfied10. Otherwise, the algorithm continues in an

iterative manner.

C. Finding feasible solution at each iteration of Algorithm 2

Note that at each step of Algorithm 2, the locally obtained

SINR αi
n at each BS may not be equal before converging

the algorithm. So, we take the global variable γi as the

intermediate solution of Algorithm 2. However, due to the

difference in the local copies xi+1
n,nl and xi+1

tran(l),nl for all

n ∈ Lint, n ∈ Nint(l), and the maximum transmit power

constraint of the BSs, the intermediate solution γi may not

be feasible for all BSs.

Therefore to make local copies at each BS equal and

check the feasibility of γi, we set local variables fixed at the

respective global variables at each BS (i.e., we set xn = z
i
n

and αn = γi for all n ∈ N ). Then solve problem (26),

which results into the following SOCP (see [6, Section IV-

B]) feasibility problem

find {ml}l∈L(n)

subject to











√

1 + 1
αn

h
H

llml

M
H

nhll

x̃n

σl











ºSOC 0, l ∈ L(n)

[

xn,nl

M
H

nhjl

]

ºSOC 0, l ∈ Iint(n)

[ √
pmax

n

vec(Mn)

]

ºSOC 0, l ∈ Iint(n)

(36)

with variable Mn = [ml]l∈L(n), where x̃n =
{xn,bl}b∈Nint(l),l∈Lint(n) is a subset of xn (see (10)),

the matrix hjl in the third set of constraints denotes the

channel from BS n to link l (i.e., the index j in the third set

of constraints denotes an arbitrary link in L(n)).

10In ADMM algorithm, standard stopping criteria is to check primal and
dual residuals [9]. However, for practical implementation finite number of
iteration is more favorable. Thus, we adopt fixed number of iteration to stop
the algorithm.

Note that we get a set of {m⋆
l }l∈L that is feasible for the

original problem (4) only if problem (36) is feasible for all

n ∈ N BSs. Thus, in Algorithm 2, we can update the feasible

SINR γi
feas as

γi
feas =

{

γi if problem (36) is feasiblem for all n ∈ N
γi−1
feas otherwise,

(37)

where γ0
feas = 0.

IV. NUMERICAL EXAMPLE

In this section we numerically evaluate the performance of

proposed Algorithm 2. In our simulations multicell wireless

network as shown in Figure 1 is considered. There are N = 2
BSs with T = 4 antennas at each one. The distance between

the BSs is denoted by DBS. We assume BSs have circular

transmission and interference regions, where the radius of the

transmission region of each BS is denoted by RBS, and the

radius of the interference region of each BS is denoted by

Rint. For simplicity, we assume 4 users per cell. The location

of users associated with BSs are arbitrarily chosen as shown

in Figure 1.

We assume an exponential path loss model, where the

channel matrix between BSs and users is modeled as

hjl =

(

djl

d0

)−η/2

cjl,

where djl is the distance from the transmitter of data stream

j (i.e., BS tran(j)) to the receiver of data stream l (i.e., user

rec(l)), d0 is the far field reference distance [16], η is the path

loss exponent, and cjl ∈ CT is arbitrarily chosen from the

distribution CN (0, I) (i.e., frequency-flat fading channel with

uncorrelated antennas). Here, we refer an arbitrarily generated

set of fading coefficients C = {cjl|j, l ∈ L} as a single fading

realization.

We assume the maximum power constraint is same for each

BS, i.e., pmax
n = pmax

0 for all n ∈ N , and σl = σ for all l ∈ L.

We define the signal-to-noise ratio (SNR) operating point at a

distance r as

SNR(r) =

(

r

d0

)−η
pmax
0

σ2
. (38)

In our simulations, we set d0 = 1, η = 4, σ2 = 1,

pmax
0 /σ2 = 45dB, SNR(Rint) = 0dB, SNR(RBS) = 5dB, and

DBS = 1.5 × RBS.

Figure 4 shows the progress of the global variable γ by

iteration for SNR = 5 dB. As a benchmark, we consider

centralized optimal algorithm proposed in [6, Section V]. For

Algorithm 1, we set ǫ = 0.1, and αmax
n = 2 × 100.1×SNR for

all n ∈ N .

Results show that proposed Algorithm 2 converges to the

optimal centralized solution for all considered penalty param-

eter ρ. The global variable γ is the average of the locally

obtained SINR {αn}n∈N (see, (35)). Hence, the intermediate

values of γ may not be feasible before the algorithm converges

(see, Section III-C). For example, the value of γ for ρ = 0.5



is clearly infeasible at the iteration step i = {4, 5, 6, 7, 8}.

Therefore, to illustrate the convergence of feasible γ, we define

the following metric

γi
best = max

t=1,...,i
{γt

feas}, (39)

where γi
best is the best feasible SINR value at ith iteration,

and γt
feas is the feasible SINR at tth iteration obtained by (37).

Figure 5 shows the behavior of γi
best by iteration. Results show

that the proposed algorithm always generate the feasible SINR

γ, when the algorithm converges.

V. CONCLUSIONS

We have provided distributed algorithm for signal-to-

interference-plus-noise ratio balancing problem in multicell

downlink multi-input single-output systems. We have proposed

consensus-based distributed algorithms, and a fast solution

method via alternating direction method of multipliers. Nu-

merical results show that the proposed distributed algorithm

converges to the optimal centralized solution.
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