
Swift and Accurate End-to-End Throughput
Measurements for High Speed Networks

Md Arifuzzaman and Engin Arslan
University of Nevada, Reno

marifuzzaman@unr.edu, earslan@unr.edu

Abstract—Active probing is extensively used in high-speed
research networks for performance troubleshooting and transfer
optimization. For end-to-end (i.e., disk-to-disk) throughput mea-
surements, current active probing practice involves transferring
a set of files and measuring throughput upon the completion
of the transfer, which leads to long probing times. We present
FastProb that takes an adaptive approach to determine the
duration of probing transfers based on the stability behavior of
reported instantaneous throughput values. FastProb employs a
hybrid machine learning model which utilizes binary classifiers
to determine the “predictability” of probing transfers and re-
gression models to actually predict the transfer throughput upon
convergence. Experimental results show that FastProb lowers
the duration of probing transfers by 48% while attaining up
to 61% higher measurement accuracy. We further incorporate
FastProb into an online file transfer optimization algorithm to
demonstrate that shortening the duration of probing transfers
results in 35% higher overall throughput for data transfers in
production high-speed networks.

Index Terms—End-to-end network measurement, Network
probing, Transfer modeling, Throughput optimization

I. INTRODUCTION

High-speed research networks (HSNs) with up to 400 Gbps
bandwidth have been built to accommodate the growing de-
mands of distributed science applications. However, network
and end system-related performance issues hinder the effective
utilization of these networks, necessitating comprehensive
monitoring solutions to identify and mitigate performance
anomalies in a timely manner. Active probing plays an im-
portant role in achieving this goal as it is used for various
purposes including anomaly detection [1], [2] and transfer
optimization [3]. Thus, more than 2, 000 research and edu-
cation institutions use PerfSonar to conduct periodic probes
between participating sites to monitor network metrics (e.g.,
packet loss, delay, etc.) and detect anomalies proactively [1].
Active probing is also widely used for transfer optimizations to
evaluate the performance of different transfer settings in real-
time. For example, congestion control algorithms run sample
transfers to evaluate the performance of different TCP sending
rates in terms of goodput and packet loss such that the optimal
sending rate can be discovered in real-time [4], [5].

Although most network metrics (e.g., delay, jitter, and flow
path) can be measured quickly with minimal impact, through-
put measurements can adversely affect production traffic by
causing congestion. In particular, disk-to-disk throughput mea-
surements in HSNs require concurrent file transfers to probe

0 5 10 15 20 25 30
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Transfer1
Transfer2

Transfer3
Transfer4

Fig. 1. Transfers converge at different pace in different networks, thus an
adaptive approach is necessary to conduct probing transfers.

“true” end-to-end performance1, which can have significant
impact on production traffic if executed for an extended period
of time. Determining the optimal duration for probing transfers
in HSNs is a challenging task as small values may lead to
incorrect measurements while large values will increase the
impact on production flows.

Previous approaches to conduct probing transfers in HSNs
can be categorized into two groups as static and adaptive. In
the static method, a fixed data size [3] (e.g., 10GB dataset)
or duration [7] (e.g., 10 seconds) is used to execute probing
transfers. The static approaches require fine-tuning of data
size or time duration for each network as suboptimal values
can cause inaccurate measurements or long probing times.
To illustrate this, please refer to Figure 1 which presents the
normalized throughput of end-to-end transfers from multiple
HSNs. It is clear that while transfer throughput stabilizes
in less than 5 seconds in one network (i.e, blue line), it
does not converge within 30 seconds in another network (i.e,
Transfer 2). The slow convergence of transfer throughput can
be attributed to many reasons including but not limited to slow
connection setup (especially when using advanced security
protocols such as GSI [8]), high bandwidth delay product, and
network congestion. One-time optimization of the data size or
probing duration may not be sufficient as available network
bandwidth may change over time due to the dynamic nature of
resource interference. Adaptive approaches, on the other hand,
process instantaneous throughput values that are populated
periodically (e.g., once a second) using statistical methods
such as time-series analysis [9] to terminate probing transfers
as soon as the instantaneous throughput values converge.
Despite performing better than static approaches, experimental
analysis reveals that existing adaptive approaches fall short

1High performance computing clusters rely on parallel file systems (e.g.,
Lustre and GPFS) which require I/O parallelism to attain more than 10 Gbps
read/write I/O throughput [6]978-3-903176-47-8 ©2022 IFIP



to capture the intricate relationship between instantaneous
throughput values and overall transfer throughput, and result
in high measurement errors.

In this paper, we first propose machine learning (ML)
regression models to process instantaneous throughput values
and estimate the throughput of end-to-end probing transfers
accurately. We find that although the ML regression models
outperform existing adaptive approaches, they require probing
duration to be determined by end users, thus failing to offer an
automated solution. To overcome this challenge, we introduce
FastProb which pairs the regression models with classifiers
to choose optimal probing duration in real-time. The results
as gathered in several production HSNs show that FastProb
reduces probing duration by up to 48% while achieving up to
61% higher measurement accuracy in comparison to state-of-
the-art end-to-end throughput probing techniques. In summary,
the contributions of this paper are as follows:

• We gather and analyze 38K file transfer logs from four
different HSNs and show that their throughput fluctuates
significantly, making it hard to use any naive solutions to
estimate transfer throughput by processing instantaneous
throughput values (§ III).

• We propose a hybrid machine learning model, FastProb,
that combines classification and regression models to
achieve swift and precise estimation of throughput for
end-to-end transfers (§ IV).

• We run extensive evaluations both in production and ded-
icated networks to assess the performance of FastProb
and compare it against the state-of-the-art (§ V).

• Finally, we incorporate FastProb to a transfer optimiza-
tion algorithm to demonstrate the impact of optimized
probing transfers on the performance of transfer optimiza-
tion algorithms in three production HSNs (§ VI).

II. RELATED WORK

Active probing is widely used to measure network character-
istics (such as delay [10], bandwidth [11], [12], loss rate [13],
and topology [14]), and detect and localize performance is-
sues [15]. However, most previous work uses probing to un-
derstand and optimize internet/web traffic, which has different
characteristics than traffic in high-speed research networks.
For example, while web traffic consists of many short-lived
low-speed flows (1-100 Mbps), research network traffic is
dominated by large flows whose throughput is the order of
gigabits-per-second with up to 100Gbps [16]. Research and in-
ternet traffic also differ in terms of root causes of performance
problems. While network issues (e.g., routing instabilities and
poor performance of congestion control algorithm) are main
reasons for performance problems for internet traffic, end-
system issues (e.g., I/O limitations or interference) consti-
tute the majority of performance problems in research net-
works. Therefore, existing network bandwidth measurement
techniques that conduct memory-to-memory transfers (e.g.,
iPerf [17], Pathload [18], FastBTS [19], and Pathchirp [20])
are not well suited for high-speed research networks.

Previous studies proposed fixed-size [1], [3], fixed-
duration [7], and time-series [9] models to conduct end-to-
end probes in HSNs. Fixed-size approaches transfer a dataset
consisting of one or more files and wait for its completion
to calculate the throughput. Despite its simplicity, it can cause
long transfer times when the dataset is not configured carefully.
Yildirim et al. proposed regression analysis to determine the
optimal dataset size based on network and dataset character-
istics [3]. The proposed model, however, does not consider
background traffic, which can change drastically, significantly
increasing the probing duration due to decreased throughput.
Fixed-duration approaches also have similar limitations as
there is no single probing duration that would work optimally
in all networks.

An alternative approach to optimize the duration of prob-
ing transfers involves collecting and processing instantaneous
throughput reports. Probing transfers can be scheduled with
large datasets and terminated as soon as it is sufficient to
make an estimation using measured instantaneous throughput
reports. Sapkota et al. applied time-series analysis and machine
learning model to process instantaneous throughput values and
predict the throughput of probing transfers as soon as possible
with high accuracy [9], [21]. Our experimental results however
show that time-series models are vulnerable to throughput
fluctuations, causing more than 30% error rate in predictions.
The proposed deep neural network-based machine learning
model, despite improving the accuracy over the time-series
models, requires long probing duration.

III. PROBLEM DEFINITION

Probing transfers are used to measure the maximum achiev-
able file transfer throughput in HSNs. Although it is possible
to execute probing transfers long enough (e.g., 60 seconds) to
accurately measure the achievable throughput, shortening the
probing duration is desirable for many reasons including but
not limited to (i) reduced impact on production traffic when
probing transfers use dummy data to check the health of the
network, (ii) fast convergence time for online transfer opti-
mization algorithms that rely on probing transfers to evaluate
the performance of different transfer settings such as buffer
size and the number of parallel connections [3]. Yet, file trans-
fers exhibit distinct convergence time and stability patterns
in HSNs due to various static (e.g., file size, bandwidth, and
delay) and dynamic (e.g., file system and network congestion)
factors, making it hard to choose a probing duration that
would work in all networks. Even more challenging is the
fact that different transfers in the same network can have
completely different throughput patterns due to differences in
dataset and background traffic. Hence, an adaptive approach
is necessary to dynamically determine how long to execute a
probing transfer to accurately measure achievable throughput.

Most transfer applications (e.g., sftp, GridFTP, and rsync)
report instantaneous transfer throughput periodically for on-
going transfers, which can be used to estimate the throughput



TABLE I
FILE SYSTEM AND NETWORK SPECIFICATIONS OF TEST NETWORKS. A

TOTAL OF 38K FILE TRANSFERS ARE CONDUCTED IN FOUR NETWORKS.

Network Storage Bandwidth RTT # of transfers
HPCLab RAID-0 SSD 40G 0.2ms 10,136
ESnet RAID-0 SSD 100G 88ms 6,831
XSEDE-1

Lustre 40G 38ms 10,927
(Stampede2-Expanse)
XSEDE-2

Lustre 10G 12ms 10,171
(OSG-Bridges2)
Total 38,065

of a transfer2 quickly. Assume that throughput of a transfer is
reported once in every i seconds, then n throughput reports
will be available at t = n × i as follows {ti, t2i, t3i, . . . tni},
where ti is throughput of the transfer at t = i second. If
this transfer is executed long enough, we can calculate its
throughput as the average of all instantaneous throughput
reports, tavg =

∑n
j=1

ti×j

n . The goal of this work is then
to process instantaneous throughput reports as they become
available to predict the throughput of a transfer, tavg , as early
as possible to terminate probing transfers quickly.

To gain insights into the throughput of file transfers in
HSNs, we conducted 38K file transfers in four HSNs (as
given in Table I) between September and October 2021
using GridFTP and logged instantaneous throughput values
in one second intervals. HPCLab network consists of two data
transfer nodes that are located in the same local area network
and connected by a 40G switch. The nodes are equipped with
direct-attached SSD drives that are configured into a RAID-
0 array. In the ESnet network, two data transfer nodes (both
located at Berkeley, CA) are connected via 100G wide-area
network loop that spans between Berkeley, CA and Chicago,
IL to create a wide-area network connectivity. Both ESnet and
HPCLab networks are isolated, so transfers are not affected by
background traffic. XSEDE-1 and XSEDE-2 networks, on the
other hand, are shared production environments that connect
supercomputing centers Stampede2, Expanse, Bridges2, and
Open Science Grid (OSG) [22]. All XSEDE sites use Lustre as
a parallel file system. Since file size affects transfer through-
put and convergence behavior [23], we transferred different
datasets with various file sizes (ranges between 512 KB and
1 GB) and counts (ranges between 30 and 180, 000). We also
tuned a few application-layer transfer configurations, such as
the number of concurrent file transfers and parallel network
connections, to capture their impact on transfer convergence
behavior. Consequently, the dataset contains transfer logs
representing a wide range of network conditions, workload
characteristics, and transfer settings. All transfers are executed
at least 60 seconds using GridFTP which reports transfer
throughput at most one second intervals. Thus, each transfer
log consists of throughput reports as {t1, t2, t3, . . . tn} where
ti is the throughput of ith second and n is greater than 60. We
also calculated average throughput, tavg , by taking average of
all instantaneous throughput values, tavg = t1+t2...+tn

n and

2Throughput is defined as average throughput when a transfer is executed
long enough such as 30 seconds or more.

HPCLab ESnet XSEDE-1 XSEDE-2
Network

0.0

0.3

0.6

0.9

>1.2

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n 
(σ

/μ
)

Fig. 2. End-to-End data transfers exhibit significant throughput fluctuations
in all networks.

3.5 4.0 4.5 5.0 5.5
Time (sec)

24

26

28

30

E
rr

or
 R

at
e 

(%
)

5%

10%

15%

20%
30% Closeness Threshold

Fig. 3. A simple approach to detecting throughput convergence based on the
closeness of consecutive instantaneous throughput values results in more than
24% for XSEDE-1 transfers even with a 5% distance threshold.

appended it to instantaneous throughput logs.
Figure 2 shows the Coefficient of Variance (CV) for trans-

fers, which is calculated by dividing the standard deviation in
instantaneous throughput values by mean (tavg). CoV value is
calculated for each transfer independently, so large CoV values
indicate considerable fluctuations in instantaneous throughput.
As HPCLab is an isolated testbed, the throughput of transfers
fluctuates the least among others. ESnet transfers, on the other
hand, fluctuate despite running in an isolated environment.
This can be attributed to high bandwidth-delay characteristics
(i.e., 100G bandwidth and 89ms delay) of ESnet network
which results in slower convergence speed. Transfers in
XSEDE networks also exhibit high fluctuations mainly due to
the shared nature of network and I/O resources. These results
indicate that simple solutions to detect throughput convergence
by processing instantaneous throughput reports would fail
to perform well. To validate this claim, we implemented
closeness-based throughput convergence detection method that
processes instantaneous throughput values to determine if
throughput has stabilized. For example, suppose instantaneous
throughput values of a transfer for the first six seconds are
reported as {100, 800, 1200, 1600, 1250, 1400}. Then, the con-
vergence detection algorithm with a 20% closeness threshold
will mark the transfer throughput as “converged” at the sixth
second since it is the first time that consecutive instanta-
neous throughput values fall within the 20% range of each
other. Once the convergence decision is made, one can take
the average of the last two instantaneous throughput values
(throughput of the fifth and sixth second in the above example)
as the throughput of the transfer, tpred.

We evaluated the closeness based throughout convergence
detection using transfer logs gathered in XSEDE-1 network.
The error rate is calculated as the percentage of the difference
between the predicted throughput, tpred, and the average
throughput of transfers, tavg. Please note that tavg is the
average of all instantaneous throughput reports captured dur-



0 5 10 15 20 25 30
Time (sec)

0

4

8

12

16

>20
E

rr
or

 ra
te

(%
)

Linear Regression
Linear Support Vector
Neural Network
XGBoost
Random Forest

(a) HPCLab

0 5 10 15 20 25 30
Time (sec)

0

5

10

15

20

>25

E
rr

or
 ra

te
(%

)

Linear Regression
Linear Support Vector
Neural Network
XGBoost
Random Forest

(b) ESnet

0 5 10 15 20 25 30
Time (sec)

0

10

20

30

40

>50

E
rr

or
 ra

te
(%

)

Linear Regression
Linear Support Vector
Neural Network
XGBoost
Random Forest

(c) XSEDE-1

0 5 10 15 20 25 30
Time (sec)

10

20

30

E
rr

or
 ra

te
(%

)

Linear Regression
Linear Support Vector
Neural Network
XGBoost
Random Forest

(d) XSEDE-2
Fig. 4. Performance comparison of regression models in different networks. Although Random Forest performs, Neural Network, and XGBoost models can
achieve good performance, optimal probing duration is not the same in all networks, necessitating an automated solution.

0 5 10 15 20 25 30
Time (sec)

0

3

6

9

Th
ro

ug
hp

ut
 (G

bp
s) Transfer 1

Transfer 2

Fig. 5. Time series and classification based convergence detection meth-
ods [9], [21] result in high error rate when transfer throughput stalls shortly
(49% prediction error for Transfer-1) and long probing times under high
throughput fluctuation scenarios (15s probing duration for Transfer-2).

ing data collection whereas tpred is the average last two
instantaneous throughput report when the closeness criteria is
met. Figure 3 presents the average prediction time and error
rate for XSEDE-1 transfers when the closeness threshold is
ranged between 5% and 30%. Clearly, the error rate is too
high even when setting the closeness threshold to 5%. This is
because throughput stalls for 1− 2 seconds before starting to
increase again for a non-negligible portion of transfers due to
delayed connections and transient I/O and network resource
interference (please see Transfer 3 and 4 in Figure 1).

Previous studies proposed time-series analysis and classi-
fication methods to process instantaneous throughput values
and detect throughput convergence [9], [21]. Autoregressive
(AR) model uses linear regression to processes instantaneous
throughput values and predict the transfer throughput for
the next time interval. It terminates the transfer when the
prediction falls within a certain range (default is 5%) of
actual throughput observation. Deep Neural Network (DNN)
classifier similarly processes instantaneous throughput values
to detect the convergence of throughput and uses the average
of the last four instantaneous throughput values to predict the
throughput. Figure 5 presents an example where both AR
and DNN models fail to make accurate predictions. Since
throughput appears to have converged in the first few seconds
of Transfer-1, both models terminate the transfer at t = 5
and underestimates the actual average by 49%. On the other
hand, they fail to detect a convergence for Transfer-2 until
the maximum time limit (i.e., 15 second) thus cause long
probing duration. We therefore apply machine learning (ML)
regression models as they are better at capturing otherwise
intricate dynamics between input parameters (instantaneous
throughput values) and output (average throughput) to lower
prediction times and increase the prediction accuracy.

IV. MODELING THROUGHPUT OF FILE TRANSFERS

Regression models use instantaneous throughput values
t1, t2, ..., tn are used to predict the average throughput of a
transfer, tpred, as

tpred = α0 + α1t1 + α2t2 + ...+ αntn (1)

where α is the coefficient vector estimated in the model
fitting phase. Instead of using absolute throughput values as
inputs to regression models, we feed normalized values to
minimize the bias. As a normalization method, we adopted
standard normalization method (aka feature scaling), which
separately scales each data column. As linear regression-
based models suffer from multicollinearity, we also applied
principal component analysis (PCA) to transform features (i.e.,
instantaneous throughput values) so that they become linearly
uncorrelated. Note that PCA transformation is not applied to
the input of machine learning models that do not assume
feature independence, such as Random Forest and Extreme
Gradient Boosting (aka XGBoost) Regression models. Finally,
we use all components of PCA as it is used to overcome the
multicollinearity problem not to reduce the number of features.

Next, we use the gathered 38K transfer logs to train Linear
Regression (LR), Support Vector Regression (SVR), Neural
Network (NN), XGBoost (XGB), and Random Forest (RF)
Regression models to predict average transfer throughput,
tavg , using instantaneous throughput values. Since we envision
using the prediction models in real-time to determine the
stopping condition of probing transfers, the number of avail-
able instantaneous throughput reports will start from zero and
increase one by one as time passes. For instance, if we measure
the throughout of probing transfers at one-second intervals,
we will have one instantaneous throughput value at t = 1s,
two instantaneous throughout values at t = 2s, and so on.
Hence, n in Equation 1 depends on how long a probing transfer
is executed. Since the optimal probing duration is different
for each network, we first trained a separate model for each
possible probing duration (i.e., one second, two seconds, three
seconds, etc.) as the number of input features is dependent on
probing duration. For example, evaluating the Random Forest
Regressor at t = 3s and t = 4s requires two models; one
takes 3 inputs and the other takes 4 inputs. Although it is
possible for the 3-input model to process t = 4s data by
taking its last 3 reported instantaneous throughput values, we
instead chose to derive a separate model to take advantage
of all available reported values for improved performance. As



Training 
Dataset

Subset1 Subset2Regressor

Labeled 
Subset2Classifier

Error > P Yes: Label =0

No: Label =1

Data

TestTraining

(a) Training

𝑡!
𝑡"
𝑡!𝑡"𝑡#

𝑡"
𝑡$

𝑡!
⋮

2-input 
Classfier

Tim
e

3-input 
Classfier

n-input 
Classfier

Yes

No

Converged

No

Converged

Converged

Prediction

No

⋮

2

3

n

2-input 
Regressor

Yes 3-input 
Regressor

Yes n-input 
Regressor

(b) Inference

Fig. 6. Illustration of training (a) and inference (b) phases of FastProb. It trains classifier-regression model pairs. The classifiers are used to determine if
reported instantaneous throughput values are sufficient to accurately predict the average throughput of a transfer using corresponding regression models.

probing transfers are expected to execute for a short period,
we limit the maximum probing duration to 30 seconds and
train 30 separate models for each ML model type.

To train an n-input model, we take the first n instantaneous
throughput values of each transfer log and feed them to
the model along with the actual average throughput of the
transfer, tavg as a label. For example, for a transfer log
with following instantaneous and average throughput values <
100, 800, 900, 1100, · · · >,< 1320 >, we pass < 100, 800 >
as an input to 2-second regression models with a label <
1320 >, < 100, 800, 900 > as an input to 3-second regression
models with a label < 1320 >, and so on. To separate transfer
logs as training and test, we use timestamp-based partitioning,
which sorts all transfer logs based on their start time and
places first 80% into the training and last 20% into the test
category. This is intended to capture the data shift problem
which can adversely affect the performance of ML models
when system conditions change over time. We conducted 5
cross-validations, for which we first split the transfer logs into
6 groups using time-based partitioning. Then, we train the
models using the transfer logs in the first group and test against
the transfers in the second group; retrain models using the logs
in the first two groups and test against the transfers in the third
data group, and so on. We use Mean Absolute Percentage Error
(MAPE) to calculate the error rate of models.

We use Gaussian process-based Bayesian optimization (us-
ing scikit-optimize library) to discover the optimal hyperpa-
rameters for the models, such as kernel and regularization
values for SVR, number of trees and maximum depth for RF
and XGB. We used AutoKeras [24] to tune the hyperparame-
ters of NN models, which perform Neural Architecture Search
(NAS) to find out the best performing architecture for the given
dataset. Since we derive 30 models for each network, a total
120 architecture search is required, which incurs a significant
training cost. Thus, we performed the architecture search for
randomly selected subset of 20 DNN models and realized
that all searches returned similar architectures that consist of
5 − 8 Dense, ReLU, and Dropout layers. Hence we adopted
a 7 layer architecture for all DNN models that are composed
of Normalizer, Dense, ReLU, Dense, Dropout, ReLU, Dense
layers respectively.

The results, as presented in Figure 4 show that the error

rate of most ML models decreases as the number of inputs
(i.e., probing duration) increases. The error rates of SVR and
LR models are significantly higher compared to other models.
In particular, they cause over 30% error rate in XSEDE-1
and XSEDE-2 networks due to failing to capture an accurate
relationship between instantaneous and average throughput
when instantaneous throughput fluctuates significantly. NN,
XGBoost, and RF models all have competitive results as they
attain less than 6% error with 6 inputs (i.e., 6-second probing)
for HPCLab and ESnet networks. Although their error rates
increase for XSEDE transfers due to higher throughput fluctu-
ations, they can keep the error rate less than 12% for 6-second
probing and less than 10% for 10-second probing intervals.

Although ML regression models can achieve less than 10%
prediction error rate in all networks, the minimum duration
to achieve it is not the same for all networks. For instance,
one can use 3-input RF regression model to achieve less than
10% error rate in HPCLab and ESnet, but require 10-input RF
regression model to achieve the same error rate in XSEDE-
1. Even more challenging is the fact that different transfers
in shared, production networks (i.e., XSEDE-1 and XSEDE-
2) can converge at different times as some transfers fluctuate
more than others in the same network due to difference in
background traffic, dataset characteristics, and transfer set-
tings. Therefore, it is important to determine the duration of
each probing transfer in real-time based on its behavior, then
use the corresponding regression model to make the prediction
for average throughput.

Adaptive Regression with FastProb: To achieve this goal,
we introduce FastProb that pairs the regression models with a
classifier which to determine whether or not a given regression
model would be able to make high accuracy prediction for a
probing transfer using its available instantaneous throughput
values. As an example, if we want to find out whether or
not we can use a 3-input regression model to predict the
throughput of a probing transfer at t = 3s, we can train
a binary classifier that will process populated instantaneous
throughput values. < t1, t2, t3 >, to determine if the 3-input
regression model will be able to make accurate prediction
for this transfer. If the classifier returns “yes”, then we
can use the 3-input regression model to predict the average
throughput and terminate the probing transfer. Otherwise, we



0 3 6 9 12 15
Time (sec)

0

3

6

9

12

15
E

rr
or

 R
at

e 
(%

)
Fixed-size
Fixed-duration
AutoRegressive
DNN Classifier
FastProb

(a) HPCLab

3 6 9 12 15
Time (sec)

4

8

12

16

20

E
rr

or
 R

at
e 

(%
)

Fixed-size
Fixed-duration
AutoRegressive
DNN Classifier
FastProb

(b) ESnet

6 9 12 15
Time (sec)

8

12

16

20

E
rr

or
 R

at
e 

(%
)

Fixed-size
Fixed-duration
AutoRegressive
DNN Classifier
FastProb

(c) XSEDE-1

6 9 12 15
Time (sec)

6

9

12

15

E
rr

or
 R

at
e 

(%
)

Fixed-size
Fixed-duration
AutoRegressive
DNN Classifier
FastProb

(d) XSEDE-2
Fig. 7. Performance comparison of different probing algorithms. FastProb offers more than 50% improvement in error rate and transfer duration compared
to the state-of-the-art solutions.

let the transfer continue for another second and use the 4-
input classifier to determine if the 4-input regression model
would be able to predict the transfer throughput accurately
using < t1, t2, t3, t4 >. Hence, each regression model is
paired with a classification model to estimate if the regression
model is likely to return an accurate prediction for a given
transfer as shown in Figure 6(b). We kept the maximum
runtime for probing transfers to 15 seconds in FastProb as
we noticed that the performance of the RF regressors does not
improve significantly after 15 seconds (i.e., 15-input regressor)
in Figure 4.

To train the prediction models, we first split the training
set into two categories as Subset1 (70%) and Subset2 (30%),
then train a regression model using the Subset1. The regression
model is evaluated for transfers in Subset2 and error rates are
calculated for each transfer. Next, the transfers with less than
a certain error rate, P , are marked with the label 1 and others
with a label 0. Finally, the labeled transfers of Subset2 are
used to train a binary classifier. In the above example, we
first use Subset 1 to train a 3-input regression and then test
it on Subset2 to label them based on the performance of the
regression model. Finally, a 3-input binary classifier is trained
to decide whether or not the 3-input regression model can be
used to make accurate predictions for probing transfer at their
third second.

We implemented various combinations of XGBoost (XGB),
Neural Network (NN), and Random Forest (RF) classifier-
regressor pairs and evaluated them in terms of prediction time
and estimation accuracy. For instance, we combined an NN
classifier with an XGB regressor to test the performance of
using NN as the binary classifier and XGB as the regression
model. Although we omitted the full results due to space
limitations, the best performance is achieved when RF classi-
fication models are paired with RF binary classifiers. Hence,
FastProb is composed of 14 RF Classifier-RF Regressor
pairs. We again tuned the hyperparameters of the classifiers
(as described in Section IV) to maximize the performance.
As FastProb uses confidence threshold (P ) to determine the
label of transfer in Subset2 as illustrated in Figure 6(a), we
compared the model performance using different P values
between 1 − 20% for XSEDE-1 transfers. While higher P
values (e.g., 20%) result in significantly high error rates in
exchange for lower probing times, lower P values (e.g., 1%)
lead to long probing times in exchange of higher accuracy.
Thus. we used P = 5% as it strikes a good balance between
prediction accuracy and probing duration.

TABLE II
COMPARISON OF FastProb AGAINST RF REGRESSION MODEL.

Network RF Regressor FastProb

Error (%) - 3 Sec Error (%) - 10 Sec Error (%) Time (sec)
HPCLab 2.8 2.1 2.8 3.2

ESnet 6.6 5.1 5.6 5.2

XSEDE-1 18.9 10.1 9.9 7.7

XSEDE-2 12.1 7.3 8.4 6.7

V. EXPERIMENTAL EVALUATIONS

We first compare the performance of FastProb against the
Random Forest regression model (as presented in Figure 4) in
Table II. Since the regression models require probing duration
to be specified by the user, we picked two fixed values as
3 and 10 seconds and used 3- and 10-input RF regression
models as we observe that the models can achieve less than
10% error rate in 3 − 10 seconds for different networks. We
observe that while 10−input can keep the error rate less than
10%, it is an unnecessarily long probing duration for some
networks such as HPCLab and ESnet. 3− input regression
model, on the other hand, causes up to 18% average error
rate and more than 50% for 8.4% of transfers. FastProb can
strike a balance between probing time and error rate as it
can attain very similar error rates compared to the 10− input
regressor model while requiring less than 7.7 seconds in all
networks and less than 5.2 seconds in ESnet and HPCLab. This
is mainly due to its ability to distinguish stable/predictable
transfers from others such that they can be terminated quickly.
While one can possibly choose a different probing duration for
each network after analyzing the performance of the regression
models (e.g, 3 seconds for ESnet and 10 seconds for XSEDE-
1), FastProb eliminates this step and automatically detects
the optimal duration for each network with the help of its
binary classifiers.

Comparison to state-of-the-art: We next compare
FastProb against state-of-the-art static (i.e., fixed-size,
fixed-duration), and adaptive (i.e., Autoregressive [9] and
DNN [21]) probing methods. Fixed-size approach transfers a
fixed dataset and calculates the transfer throughput based on
transfer duration. Yildirim et al. developed regression models
to estimate optimal size for probing transfers and found that
using 10− 23% of the original dataset size results in the best
trade-off between accuracy and duration [3]. Therefore, we
used 2 − 60 GiB data depending on network settings (larger
data in high delay, bandwidth networks) to match with the
data size used in [3]. Fixed-duration method runs probing



0 3 6 9 12 15 18 21
Time (day)

0

25

50

75

100

E
rr

or
 R

at
e 

(%
) Model Reuse

Model Retraining

Fig. 8. Incremental training can be used to mitigate the need for exhaustive
data collection as well as to adopt changing network conditions. (+) indicates
retraining of the model due to degrading model performance.

transfers for a predetermined amount of time and calculates
throughput based on the amount of data transferred [7].
Although earlier work set the probing duration to as much
as 120 seconds [7], we kept it at 5 seconds for HPCLab
and ESnet networks and 8 seconds for XSEDE networks to
present its results in a similar time scale as other approaches.
Autoregressive is a time-series model that uses third-degree
linear regression to process instantaneous throughput values
and predict the throughput for the next time interval. It then
lets the transfer run for one more interval and compares its
prediction against the observed throughput. If the prediction is
close enough to the actual throughput (default is 5%), it then
assumes that the model has captured the throughput behavior
of the transfer thus terminates the transfer immediately and
uses the model to predict the throughput upon convergence.
Deep Neural Network (DNN) Classifier trains a model that
can determine when to stop a probing transfer based on the
convergence pattern of instantaneous throughput values. Once
the convergence is detected, it terminates the transfer and
uses an average of the last four throughput values to predict
the average throughput.

Figure 7 demonstrates the performance comparison of the
models. Probing duration takes more than 14 seconds when
using the fixed-size approach in all networks. In return, it
achieves a lower error rate compared to Autoregressive and
DNN Classifier models. In contrast, fixed-duration yields
shorter execution times while causing relatively higher error
rates in most networks. The Autoregressive model keeps its
execution time less than 10 seconds for all networks but returns
a 1.5 − 3.5 times higher error rate than FastProb, which
can be attributed to its termination condition. It stops the
probing transfers when the prediction made by the model is
close to actual observation in the next interval. However, this
comparison is susceptible to immature terminations when the
predictions fall within a close range of observed throughput
not because of throughput convergence but merely due to
throughput fluctuations. DNN Classifier yields a better error
rate and probing duration than the Autoregressive and static
approaches (i.e., fixed-size and fixed-time) in most networks as
it can adapt its execution time based on instantaneous reports.
On the other hand, FastProb outperforms DNN Classifier in
terms of error rate and probing duration. The improvement
ratio ranges between 17 − 61% for error rate and 12 − 48%
for the probing period. The highest performance gain occurs
in HPCLab, where it yields a 61% lower error rate and 48%
lower probing time compared to the DNN classifier.

Incremental training: Gathering rich and diverse training

datasets may not be possible in every network. Thus, an ability
to train an initial model with limited data and update later as
more data becomes available is critical to enable the adoption
of supervised learning models. Even in networks with suffi-
cient training datasets, evolving nature of networks and end
systems in terms of configurations (e.g., network bandwidth
and file system settings) and usage behavior demands model
retraining based on new observations. Therefore, we imple-
mented incremental training for FastProb as follows: We first
train an initial model using transfer logs of XSEDE-1 network
that are collected in the first day of data collection phase,
which contains around 500 transfer logs. We then evaluated
the model against transfer logs of following days in batches
(30 transfer logs in each batch). If the error rate of a batch
of transfers exceeds a certain threshold (by default 20%), we
retrain FastProb using all previous transfer logs; otherwise
keep using the same model. We repeat this process around
300 times (nearly 9, 000 transfers in total with each batch
containing 30 transfers) for the data collected in three weeks
time-frame. We selected XSEDE-1 to demonstrate the efficacy
of incremental training in the most challenging network as all
probing solutions obtain their worst performance in XSEDE-1.

Figure 8 presents the error rate for each interval along with
timestamps in which we retrained FastProb due to increased
error rate. It is clear that we retrain FastProb more often in
the first few days compared to the last ones as initial models
fails to perform well due to limited training data. In total,
the model is retrained only 9 times out of 300 evaluations.
The average prediction error rate is 11.93% with an aver-
age duration of 7.65 seconds. Although the performance of
FastProb with incremental training algorithm is similar to
the cross-validation results (Figure 7), its standard deviation
is noticeably higher in cross-validated experiments. This can
be attributed to having larger training and test data in cross-
validated experiments. One drawback of incremental training
when used with Random Forest models is that it requires
complete retraining of the models using full historical data
as decision tree-based models do not support incremental
learning. We believe that this is not a significant limitation
as it takes only around 2 minutes to train FastProb with
all XSEDE-1 data that contains 10, 000 transfers logs using a
server with 16GB RAM and Intel i7-7700 CPU @ 3.60GHz
processor. Moreover, the frequency of retraining decreases
rapidly as the model performance improves over time. Al-
ternatively, one can replace RF in FastProb with models
that support incremental training such as Neural Network.
However, we observe that NN models take significantly longer
to train/update compared to training RF models from scratch.
Specifically, it took 8 seconds to train the RF model with
the first 500 transfer logs whereas it took 138 seconds for
NN. Similarly, retraining the RF model when its error rate
increases takes around 30 seconds whereas updating the NN
model with only new data takes more than 200 seconds. Thus,
RF model does not only offer advantage over NN model in
terms of model performance but also in terms of training cost.



VI. AN APPLICATION SCENARIO: TUNING TRANSFER
SETTINGS FOR BULK DATA TRANSFERS

To demonstrate the benefit of improved probing accuracy
and duration, we integrated FastProb into a simple real-
time transfer tuning algorithm. The algorithm searches for
optimal concurrency levels for file transfers to increase the
transfer throughput. Concurrency refers to the simultaneous
transfer of multiple files using different processes and network
connections. It is widely used to overcome I/O and network
limitations in HSNs as a single I/O process or network connec-
tion falls short to reach maximum possible performance [6],
[25]. However, the optimal concurrency value is not the same
for all networks as it depends on several factors including
file system configuration, network bandwidth, dataset charac-
teristics, and network and I/O interference. The dynamic and
unpredictable nature of some of these factors such as network
and I/O congestion demands an adaptive approach to evaluate
the performance of different concurrency levels at the runtime.

We implemented a simple search algorithm that evaluates
a range of concurrency values for their performance (i.e.,
achieved throughput) using probing transfers to find the value
that yields maximum throughput such that it can be used
to transfer the rest of dataset. We tested this algorithm in
HPCLab, Stampede2-Expanse, and BlueWaters-Expanse net-
works using 106 GB, 60 GB, and 960 GiB datasets consist-
ing of 1 GiB files. While achievable throughput is around
20 − 30Gbps in HPCLab and Stampede2-Expanse networks,
it is nearly 85Gbps in BlueWaters-Expanse network, thus
we arranged dataset size proportional to average transfer
throughput in each network to give the optimization algorithm
enough time to find the optimal solution. We check the
concurrency values between 1 and n where n is defined as 5,
12, and 20 for HPCLab, Stampede2-Expanse, and BlueWaters-
Expanse networks, respectively. Although training data was
available for HPCLab and Stampede2-Expanse networks to
train custom FastProb classifier-regressor pairs, no such data
was available for BlueWater-Expanse network. Hence, we
used the FastProb model trained with Stampede2-Expanse
dataset to optimize probing transfers in BlueWaters-Expanse
as both networks have similar characteristics in terms of high
bandwidth between end points and shared parallel file systems
at the end hosts. We repeated each experiment ten times and
present average and standard deviation results for transfer
throughput and probing time in Table III.

Overall, FastProb can keep probing time below 5 seconds
in all three networks and achieves 2−5x shorter probing times
compared to the other solutions. Since HPCLab servers are lo-
cated in the same local area network, instantaneous throughput
reports are more stable compared to others networks. As a
result, Autoregressive and DNN Classifier models can keep
the probing time less than 5 second and yield only 10− 15%
less throughput than FastProb. On the other hand, transfer
throughput exhibits more fluctuations in wide area networks,
causing longer probing transfers when using AutoRegressive
and DNN Classifier models similar to Transfer-2 in Figure 5.
Consequently, FastProb can lower search time for the online

TABLE III
PERFORMANCE OF REAL-TIME TRANSFER TUNING ALGORITHM USING

DIFFERENT PROBING TECHNIQUES.

Model HPCLab Stampede2-Expanse BlueWaters-Expanse
Average Transfer Throughput (Gbps)

Fixed-duration 15.1 3.2 31.7
DNN Classifier 17.1 3.2 33.9
AutoRegressive 17.2 3.4 37.0

FastProb 19.6 4.3 49.4
Average Probing Time (sec)

Fixed-duration 10.01 11.57 11.56
DNN Classifier 4.67 10.95 9.71
AutoRegressive 4.13 7.86 10.95

FastProb 2.11 4.52 2.62

optimizations significantly and lead to 25% to 35% higher
overall throughput in Stampede2-Expanse and BlueWaters-
Expanse, respectively.

VII. CONCLUSION

This paper introduces FastProb to predict the throughput
of file transfers upon convergence by processing instantaneous
throughput values. FastProb leverages Random Forest-based
classification models to determine if the throughput of a
transfer can be predicted based on available instantaneous
throughput values. If the classification models return a positive
response, then it uses a Random Forest-based regression
model to process instantaneous throughput values to estimate
convergence throughput. The results from a wide range of net-
work, dataset, and configuration settings show that FastProb
outperforms the state-of-the-art solutions by nearly 50% both
in terms of probing time and measurement accuracy. We
integrated FastProb into a real-time transfer optimization
algorithm to demonstrate the benefit of optimizing probing
transfers. The results from three different networks show
that FastProb can shorten the probing duration by 2 − 5x,
thereby improving the transfer throughput by up to 35% for
optimization algorithms.

ACKNOWLEDGEMENT

The work in this study was supported in part by the NSF
grants 1850353 and 2007789.

REFERENCES

[1] A. Hanemann, J. W. Boote, E. L. Boyd, J. Durand, L. Kudarimoti,
R. Łapacz, D. M. Swany, S. Trocha, and J. Zurawski, “Perfsonar:
A service oriented architecture for multi-domain network monitoring,”
in International conference on service-oriented computing. Springer,
2005, pp. 241–254.

[2] J. Zhang, R. Gardner, and I. Vukotic, “Anomaly detection in wide
area network meshes using two machine learning algorithms,” Future
Generation Computer Systems, vol. 93, pp. 418–426, 2019.

[3] E. Yildirim, J. Kim, and T. Kosar, “Modeling throughput sampling size
for a cloud-hosted data scheduling and optimization service,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1795–1807, 2013.

[4] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” Queue, vol. 14, no. 5, p. 50,
2016.

[5] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “{PCC}:
Re-architecting congestion control for consistent high performance,”
in 12th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 15), 2015, pp. 395–408.



[6] Y. Liu, Z. Liu, R. Kettimuthu, N. S. Rao, Z. Chen, and I. Foster, “Data
transfer between scientific facilities–bottleneck analysis, insights, and
optimizations,” in 2019 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), 2019, pp. 122–131.

[7] D. Yun, C. Q. Wu, N. S. Rao, and R. Kettimuthu, “Advising big data
transfer over dedicated connections based on profiling optimization,”
IEEE/ACM Transactions on Networking, vol. 27, no. 6, pp. 2280–2293,
2019.

[8] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor,
C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke, “Security for
grid services,” in High Performance Distributed Computing, 2003.
Proceedings. 12th IEEE International Symposium on. IEEE, 2003,
pp. 48–57.

[9] H. Sapkota, B. A. Pehlivan, and E. Arslan, “Time series analysis for
efficient sample transfers,” in Proceedings of the ACM Workshop on
Systems and Network Telemetry and Analytics, 2019, pp. 11–18.

[10] R. Durairajan, S. K. Mani, P. Barford, R. Nowak, and J. Sommers,
“Timeweaver: Opportunistic one way delay measurement via ntp,” in
2018 30th International Teletraffic Congress (ITC 30), vol. 1. IEEE,
2018, pp. 185–193.

[11] A. K. Paul, A. Tachibana, and T. Hasegawa, “An enhanced available
bandwidth estimation technique for an end-to-end network path,” IEEE
Transactions on Network and Service Management, vol. 13, no. 4, pp.
768–781, 2016.

[12] R. Fontugne, A. Shah, and K. Cho, “Persistent last-mile congestion:
Not so uncommon,” in Proceedings of the ACM Internet Measurement
Conference, 2020, pp. 420–427.

[13] F. Baccelli, S. Machiraju, D. Veitch, and J. C. Bolot, “On optimal
probing for delay and loss measurement,” in Proceedings of the 7th
ACM SIGCOMM conference on Internet measurement, 2007, pp. 291–
302.

[14] B. Donnet and T. Friedman, “Internet topology discovery: a survey,”
IEEE Communications Surveys & Tutorials, vol. 9, no. 4, pp. 56–69,
2007.

[15] A. Dhamdhere, D. D. Clark, A. Gamero-Garrido, M. Luckie, R. K.
Mok, G. Akiwate, K. Gogia, V. Bajpai, A. C. Snoeren, and K. Claffy,
“Inferring persistent interdomain congestion,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
2018, pp. 1–15.

[16] “MyESnet,” 2020, ”https://my.es.net/”.
[17] “iPerf,” 2022, https://iperf.fr/.
[18] M. Jain and C. Dovrolis, “Pathload: A measurement tool for end-to-

end available bandwidth,” in In Proceedings of Passive and Active
Measurements (PAM) Workshop. Citeseer, 2002.

[19] X. Yang, X. Wang, Z. Li, Y. Liu, F. Qian, L. Gong, R. Miao, and
T. Xu, “Fast and light bandwidth testing for internet users,” in 18th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, Apr. 2021, pp. 1011–1026. [Online].
Available: https://www.usenix.org/conference/nsdi21/presentation/yang-
xinlei

[20] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell,
“pathchirp: Efficient available bandwidth estimation for network paths,”
in Passive and active measurement workshop, 2003.

[21] H. Sapkota, M. Arifuzzaman, and E. Arslan, “Sample transfer optimiza-
tion with adaptive deep neural network,” in 2019 IEEE/ACM Innovating
the Network for Data-Intensive Science). IEEE, 2019, pp. 69–76.

[22] “Extreme Science and Engineering Discovery Environment,” 2022,
https://www.xsede.org/ecosystem/resources.

[23] R. Kettimuthu, Z. Liu, D. Wheeler, I. Foster, K. Heitmann, and F. Cap-
pello, “Transferring a petabyte in a day,” Future Generation Computer
Systems, 2018.

[24] H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural architecture
search system,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 2019, pp.
1946–1956.

[25] M. Arifuzzaman and E. Arslan, “Online optimization of file transfers in
high-speed networks,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2021, pp. 1–13.


