skip to main content
10.1145/3664647.3681612acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

Reconstructing, Understanding, and Analyzing Relief Type Cultural Heritage from a Single Old Photo

Published: 28 October 2024 Publication History

Abstract

Relief-type cultural heritage objects are commonly found at historical sites but often manifest with varying degrees of damage and deterioration. The traditional process of reconstructing these reliefs is laborious and requires extensive manual intervention and specialized archaeological knowledge. By utilizing a single old photo containing predamage information of a given relief, monocular depth estimation can be used to reconstruct 3D digital models. However, extracting depth variations along the edges is challenging in relief scenario due to the highly compression of the depth values, resulting in low-curvature edges. This paper proposes an innovative solution that leverages a multi-task neural network to enhance the depth estimation task by integrating the edge detection and semantic segmentation tasks. We redefine edge detection of relief data as a multi-class classification task rather than a typical binary classification task. In this paper, an edge matching module that performs this novel task is proposed to refine depth estimations specifically for edge regions. The proposed approach achieves better depth estimation results with finer details along the edge region. Additionally, the semantic and edge outputs provide a comprehensive reference for multi-modal understanding and analysis.

References

[1]
Ashutosh Agarwal and Chetan Arora. 2023. Attention Attention Everywhere: Monocular Depth Prediction with Skip Attention. In 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, Waikoloa, HI, USA, 5850--5859. https://doi.org/10.1109/WACV56688.2023.00581
[2]
Ibraheem Alhashim and Peter Wonka. 2019. High Quality Monocular Depth Estimation via Transfer Learning. https://doi.org/10.48550/arXiv.1812.11941 arXiv:1812.11941 [cs].
[3]
Oriental Printing Association. 1926. Oriental Printing Association No. 2. Oriental Printing Association, Dalian.
[4]
Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. 2017. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, 12 (Dec. 2017), 2481--2495. https://doi.org/10.1109/TPAMI.2016.2644615
[5]
August Johan Bernet Kempers. 1976. Ageless Borobudur: Buddhist mystery in stone, decay and restoration, Mendut and Pawon, folklife in ancient Java. Servire, Wassenaar.
[6]
Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. 2021. AdaBins: Depth Estimation Using Adaptive Bins. In 2021 Ieee/Cvf Conference on Computer Vision and Pattern Recognition, Cvpr 2021. Ieee Computer Soc, Los Alamitos, 4008--4017. https://doi.org/10/gn4sx3 ISSN: 1063--6919 WOS:000739917304021.
[7]
John Canny. 1986. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, 6 (Nov. 1986), 679--698. https://doi.org/10.1109/TPAMI.1986.4767851 Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.
[8]
Rich Caruana. [n.,d.]. Multitask Learning. ( [n.,d.]).
[9]
Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. 2018. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 40, 4 (April 2018), 834--848. https://doi.org/10.1109/TPAMI.2017.2699184 Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.
[10]
Roberto Cipolla, Yarin Gal, and Alex Kendall. 2018. Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Salt Lake City, UT, USA, 7482--7491. https://doi.org/10.1109/CVPR.2018.00781
[11]
P. Dollar, Zhuowen Tu, and S. Belongie. 2006. Supervised Learning of Edges and Object Boundaries. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), Vol. 2. 1964--1971. https://doi.org/10.1109/CVPR.2006.298 ISSN: 1063--6919.
[12]
Yiqun Duan, Xianda Guo, and Zheng Zhu. 2023. DiffusionDepth: Diffusion Denoising Approach for Monocular Depth Estimation. http://arxiv.org/abs/2303.05021 arXiv:2303.05021 [cs].
[13]
David Eigen, Christian Puhrsch, and Rob Fergus. 2014. Depth map prediction from a single image using a multi-scale deep network. Advances in neural information processing systems, Vol. 27 (2014). publication: üuid":1468112,"tempID":0,"paperName":"ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS","eii":"EI" EI: ?.
[14]
Söhnke Benedikt Fischedick, Daniel Seichter, Robin Schmidt, Leonard Rabes, and Horst-Michael Gross. 2023. Efficient Multi-Task Scene Analysis with RGB-D Transformers. In 2023 International Joint Conference on Neural Networks (IJCNN). 1--10. https://doi.org/10.1109/IJCNN54540.2023.10191977 ISSN: 2161--4407.
[15]
Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng Tao. 2018. Deep Ordinal Regression Network for Monocular Depth Estimation. In 2018 Ieee/Cvf Conference on Computer Vision and Pattern Recognition (cvpr). Ieee, New York, 2002--2011. https://doi.org/10/ggwcd7 ISSN: 1063--6919 WOS:000457843602014.
[16]
Renato Hermoza and Ivan Sipiran. 2018. 3D Reconstruction of Incomplete Archaeological Objects Using a Generative Adversarial Network. In Proceedings of Computer Graphics International 2018 (CGI 2018). Association for Computing Machinery, New York, NY, USA, 5--11. https://doi.org/10.1145/3208159.3208173
[17]
Shenyu Ji, Jiao Pan, Liang Li, Kyoko Hasegawa, Hiroshi Yamaguchi, Fadjar I. Thufail, Brahmantara, Upik Sarjiati, and Satoshi Tanaka. 2023. Semantic Segmentation for Digital Archives of Borobudur Reliefs Based on Soft-Edge Enhanced Deep Learning. Remote Sensing, Vol. 15, 4 (Feb. 2023), 956. https://doi.org/10/gs6hnx
[18]
Zhongping Ji, Wei Feng, Xianfang Sun, Feiwei Qin, Yigang Wang, Yu-Wei Zhang, and Weiyin Ma. 2021. ReliefNet: Fast Bas-relief Generation from 3D Scenes. Computer-Aided Design, Vol. 130 (Jan. 2021), 102928. https://doi.org/10.1016/j.cad.2020.102928
[19]
Zhongping Ji, Qiankan Zhang, and Mingqiang Wei. 2020. Bas-Relief Modeling With Detail Preservation and Local Significance Enhancement. IEEE Access, Vol. 8 (2020), 44190--44201. https://doi.org/10.1109/ACCESS.2020.2977228 Conference Name: IEEE Access.
[20]
K. Kawakami, K. Hasegawa, L. Li, H. Nagata, M. Adachi, H. Yamaguchi, F. Thufail, Setyo Riyanto, and S. Tanaka. 2020. OPACITY-BASED EDGE HIGHLIGHTING FOR TRANSPARENT VISUALIZATION OF 3D SCANNED POINT CLOUDS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. V-2--2020 (Aug. 2020), 373--380. https://doi.org/10/gs6hns
[21]
Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Konrad Schindler. 2023. Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation. http://arxiv.org/abs/2312.02145 arXiv:2312.02145 [cs].
[22]
Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. 2023. Segment Anything. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Paris, France, 3992--4003. https://doi.org/10.1109/ICCV51070.2023.00371
[23]
J Kittler. 1983. On the accuracy of the Sobel edge detector. Image and Vision Computing, Vol. 1, 1 (Feb. 1983), 37--42. https://doi.org/10.1016/0262--8856(83)90006--9
[24]
Michael Kolomenkin, George Leifman, Ilan Shimshoni, and Ayellet Tal. 2013. Reconstruction of relief objects from archeological line drawings. ACM Journal on Computing and Cultural Heritage, Vol. 6, 1 (March 2013), 1--19. https://doi.org/10.1145/2442080.2442083
[25]
Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir Navab. 2016. Deeper Depth Prediction with Fully Convolutional Residual Networks. In 2016 Fourth International Conference on 3D Vision (3DV). IEEE, Stanford, CA, 239--248. https://doi.org/10/gc7mtn
[26]
Jin Han Lee, Myung-Kyu Han, Dong Wook Ko, and Il Hong Suh. 2019. From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation. https://doi.org/10.48550/arXiv.1907.10326 Publication Title: arXiv e-prints ADS Bibcode: 2019arXiv190710326L Type: article.
[27]
Zhenyu Li, Xuyang Wang, Xianming Liu, and Junjun Jiang. 2022. BinsFormer: Revisiting Adaptive Bins for Monocular Depth Estimation. http://arxiv.org/abs/2204.00987 arXiv:2204.00987 [cs].
[28]
Yun Liu, Ming-Ming Cheng, Deng-Ping Fan, Le Zhang, Jia-Wang Bian, and Dacheng Tao. 2022. Semantic Edge Detection with Diverse Deep Supervision. International Journal of Computer Vision, Vol. 130, 1 (Jan. 2022), 179--198. https://doi.org/10.1007/s11263-021-01539--8
[29]
Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbelaez, and Luc Van Gool. 2018. Convolutional Oriented Boundaries: From Image Segmentation to High-Level Tasks. IEEE transactions on pattern analysis and machine intelligence, Vol. 40, 4 (April 2018), 819--833. https://doi.org/10.1109/TPAMI.2017.2700300
[30]
Jiahui Mao, Tingting Li, Feiyu Zhang, Meili Wang, Jian Chang, and Xuequan Lu. 2021. Bas-relief layout arrangement via automatic method optimization. Computer Animation and Virtual Worlds, Vol. 32, 3--4 (June 2021), e2012. https://doi.org/10.1002/cav.2012 Publisher: John Wiley & Sons, Ltd.
[31]
D.R. Martin, C.C. Fowlkes, and J. Malik. 2004. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, 5 (May 2004), 530--549. https://doi.org/10.1109/TPAMI.2004.1273918 Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.
[32]
David A. Mély, Junkyung Kim, Mason McGill, Yuliang Guo, and Thomas Serre. 2016. A systematic comparison between visual cues for boundary detection. Vision Research, Vol. 120 (March 2016), 93--107. https://doi.org/10.1016/j.visres.2015.11.007
[33]
J. Pan, L. Li, H. Yamaguchi, K. Hasegawa, F. I. Thufail, Brahmantara, and S. Tanaka. 2020. Fused 3d Transparent Visualization for Large-Scale Cultural Heritage Using Deep Learning-Based Monocular Reconstruction. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. V-2--2020. 989--996. https://doi.org/10/gs6hng
[34]
Jiao Pan, Liang Li, Hiroshi Yamaguchi, Kyoko Hasegawa, Fadjar I. Thufail, Brahmantara, and Satoshi Tanaka. 2022. 3D reconstruction of Borobudur reliefs from 2D monocular photographs based on soft-edge enhanced deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 183 (Jan. 2022), 439--450. https://doi.org/10/gp59q7
[35]
Mengyang Pu, Yaping Huang, Qingji Guan, and Haibin Ling. 2021. RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Montreal, QC, Canada, 6859--6868. https://doi.org/10.1109/ICCV48922.2021.00680
[36]
Mengyang Pu, Yaping Huang, Yuming Liu, Qingji Guan, and Haibin Ling. 2022. EDTER: Edge Detection with Transformer. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, New Orleans, LA, USA, 1392--1402. https://doi.org/10.1109/CVPR52688.2022.00146
[37]
Xiaojuan Qi, Zhengzhe Liu, Renjie Liao, Philip H. S. Torr, Raquel Urtasun, and Jiaya Jia. 2022. GeoNet: Iterative Geometric Neural Network with Edge-Aware Refinement for Joint Depth and Surface Normal Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 44, 2 (Feb. 2022), 969--984. https://doi.org/10/ghpj6x JCR??: Q1 ??: ?????1? ????: 23.6 5?????: 26.7 EI: ? CCF: A ?????: A.
[38]
Michael Ramamonjisoa and Vincent Lepetit. 2019. SharpNet: Fast and Accurate Recovery of Occluding Contours in Monocular Depth Estimation. In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). IEEE, Seoul, Korea (South), 2109--2118. https://doi.org/10/gg8f6p
[39]
Marjorie Redon, Matthieu Pizenberg, Yvain Quéau, and Abderrahim Elmoataz. 2023. 3D surface Approximation of the Entire Bayeux Tapestry for Improved Pedagogical Access. In 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, Paris, France, 1585--1594. https://doi.org/10.1109/ICCVW60793.2023.00174
[40]
Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015, Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (Eds.). Vol. 9351. Springer International Publishing, Cham, 234--241. https://doi.org/10.1007/978--3--319--24574--4_28 Series Title: Lecture Notes in Computer Science.
[41]
Haryani Santiko and D. S. Nugrahani. 2012. Adegan dan ajaran hukum karma pada relief Karmawibhangga. Balai konservasi borobudur, Borobudur. http://pustaka.kebudayaan.kemdikbud.go.id/index.php?p=show_detail&id=9315&keywords=adegandanajaranhukumkarma
[42]
Saurabh Saxena, Junhwa Hur, Charles Herrmann, Deqing Sun, and David J. Fleet. 2023. Zero-Shot Metric Depth with a Field-of-View Conditioned Diffusion Model. https://doi.org/10.48550/arXiv.2312.13252 arXiv:2312.13252 [cs].
[43]
Daniel Seichter, Söhnke Benedikt Fischedick, Mona Köhler, and Horst-Michael Groß. 2022. Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. In 2022 International Joint Conference on Neural Networks (IJCNN). 1--10. https://doi.org/10.1109/IJCNN55064.2022.9892852 ISSN: 2161--4407.
[44]
Ozan Sener and Vladlen Koltun. [n.,d.]. Multi-Task Learning as Multi-Objective Optimization. ( [n.,d.]).
[45]
Jing Shang and Meili Wang. 2022. Variety decorative bas-relief generation based on normal prediction and transfer. Computer Animation and Virtual Worlds, Vol. 33, 3--4 (June 2022), e2068. https://doi.org/10.1002/cav.2068 Publisher: John Wiley & Sons, Ltd.
[46]
Ivan Sipiran, Alexis Mendoza, Alexander Apaza, and Cristian Lopez. 2022. Data-Driven Restoration of Digital Archaeological Pottery with Point Cloud Analysis. International Journal of Computer Vision, Vol. 130, 9 (Sept. 2022), 2149--2165. https://doi.org/10.1007/s11263-022-01637--1
[47]
Xavier Soria, Gonzalo Pomboza-Junez, and Angel Domingo Sappa. 2022. LDC: Lightweight Dense CNN for Edge Detection., Vol. 10 (2022).
[48]
Xavier Soria, Angel Sappa, Patricio Humanante, and Arash Akbarinia. 2023. Dense Extreme Inception Network for Edge Detection. Pattern Recognition, Vol. 139 (July 2023), 109461. https://doi.org/10.1016/j.patcog.2023.109461 arXiv:2112.02250 [cs].
[49]
Ramesh Ashok Tabib, Dikshit Hegde, Tejas Anvekar, and Uma Mudenagudi. 2023. DeFi: Detection and Filling of Holes in Point Clouds Towards Restoration of Digitized Cultural Heritage Models. In 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, Paris, France, 1595--1604. https://doi.org/10.1109/ICCVW60793.2023.00175
[50]
Pardis Taghavi, Reza Langari, and Gaurav Pandey. 2024. SwinMTL: A Shared Architecture for Simultaneous Depth Estimation and Semantic Segmentation from Monocular Camera Images. http://arxiv.org/abs/2403.10662 arXiv:2403.10662 [cs] version: 1.
[51]
S. Tanaka, K. Hasegawa, N. Okamoto, R. Umegaki, S. Wang, M. Uemura, A. Okamoto, and K. Koyamada. 2016. See-Through Imaging of Laser-Scanned 3d Cultural Heritage Objects Based on Stochastic Rendering of Large-Scale Point Clouds. In Xxiii Isprs Congress, Commission V, L. Halounova, V. Safar, F. Remondino, J. Hodac, K. Pavelka, M. Shortis, F. Rinaudo, M. Scaioni, J. Boehm, and D. RiekeZapp (Eds.), Vol. 3. Copernicus Gesellschaft Mbh, Gottingen, 73--80. https://doi.org/10/gs6hnv ISSN: 2194--9042 Issue: 5 WOS:000391014700010.
[52]
Marvin Teichmann, Michael Weber, J. Zöllner, Roberto Cipolla, and Raquel Urtasun. 2016. MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving. (Dec. 2016).
[53]
Tomomasa Uchida, Kyoko Hasegawa, Liang Li, Motoaki Adachi, Hiroshi Yamaguchi, Fadjar I. Thufail, Sugeng Riyanto, Atsushi Okamoto, and Satoshi Tanaka. 2020. Noise-robust transparent visualization of large-scale point clouds acquired by laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 161 (March 2020), 124--134. https://doi.org/10/gp5t5z JCR??: Q1 ??: ????1? ????: 12.7 5?????: 12.4 EI: ? ?????: A.
[54]
Lijun Wang, Jianming Zhang, Oliver Wang, Zhe Lin, and Huchuan Lu. 2020. SDC-Depth: Semantic Divide-and-Conquer Network for Monocular Depth Estimation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Seattle, WA, USA, 538--547. https://doi.org/10/ghbbh8
[55]
Ke Xian, Jianming Zhang, Oliver Wang, Long Mai, Zhe Lin, and Zhiguo Cao. 2020. Structure-Guided Ranking Loss for Single Image Depth Prediction. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Seattle, WA, USA, 608--617. https://doi.org/10.1109/CVPR42600.2020.00069
[56]
Huarong Xie, Long Shen, Xiaohan Chen, Shuichi Hokoi, and Yonghui Li. 2023. Assessment and optimization of environmental regulation measures for stone carvings from the perspective of algal growth. Building and Environment, Vol. 234 (April 2023), 110115. https://doi.org/10.1016/j.buildenv.2023.110115
[57]
Zhenda Xie, Zigang Geng, Jingcheng Hu, Zheng Zhang, Han Hu, and Yue Cao. 2023. Revealing the Dark Secrets of Masked Image Modeling. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Vancouver, BC, Canada, 14475--14485. https://doi.org/10.1109/CVPR52729.2023.01391
[58]
Xu, Keqin, Li, and Fei. 2008. 3D Reconstruction Method for Large Scale Relic Landscape from Laser Point Cloud. Geomatics and Information Science of Wuhan University, Vol. 33, 7 (July 2008), 684--687. http://ch.whu.edu.cn/en/article/id/1640
[59]
Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe. 2018. PAD-Net: Multi-tasks Guided Prediction-and-Distillation Network for Simultaneous Depth Estimation and Scene Parsing. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Salt Lake City, UT, 675--684. https://doi.org/10.1109/CVPR.2018.00077
[60]
Haibo Yang, Yang Chen, Yingwei Pan, Ting Yao, Zhineng Chen, and Tao Mei. 2023. 3DStyle-Diffusion: Pursuing Fine-grained Text-driven 3D Stylization with 2D Diffusion Models. In Proceedings of the 31st ACM International Conference on Multimedia. ACM, Ottawa ON Canada, 6860--6868. https://doi.org/10.1145/3581783.3612363 rate: 2.
[61]
Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. 2024. Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Ieee. http://arxiv.org/abs/2401.10891 arXiv:2401.10891 [cs] version: 1.
[62]
Naci Yastikli. 2007. Documentation of cultural heritage using digital photogrammetry and laser scanning. Journal of Cultural Heritage, Vol. 8, 4 (Sept. 2007), 423--427. https://doi.org/10.1016/j.culher.2007.06.003
[63]
Chih-Kuo Yeh, Shi-Yang Huang, Pradeep Kumar Jayaraman, Chi-Wing Fu, and Tong-Yee Lee. 2017. Interactive High-Relief Reconstruction for Organic and Double-Sided Objects from a Photo. IEEE Transactions on Visualization and Computer Graphics, Vol. 23, 7 (July 2017), 1796--1808. https://doi.org/10.1109/TVCG.2016.2574705
[64]
Wei Yin, Yifan Liu, and Chunhua Shen. 2021. Virtual Normal: Enforcing Geometric Constraints for Accurate and Robust Depth Prediction. http://arxiv.org/abs/2103.04216 rate: 0.
[65]
Yu-Wei Zhang, Bei-bei Qin, Yanzhao Chen, Zhongping Ji, and Caiming Zhang. 2019. Portrait relief generation from 3D Object. Graphical Models, Vol. 102, C (2019), 10--18. https://doi.org/10.1016/j.gmod.2019.01.002
[66]
Yu-Wei Zhang, Hongguang Yang, Ping Luo, Zhi Li, Hui Liu, Zhongping Ji, and Caiming Zhang. 2023. Modeling multi-style portrait relief from a single photograph. Graphical Models, Vol. 130 (Dec. 2023), 101210. https://doi.org/10.1016/j.gmod.2023.101210
[67]
Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. 2017. Pyramid Scene Parsing Network. 2881--2890. https://openaccess.thecvf.com/content_cvpr_2017/html/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.html
[68]
Kunyu Zhao. [n.,d.]. Four Questions on the Lost Sculptures of Yungang - Research. http://www.silkroads.org.cn/portal.php?mod=view&aid=53167
[69]
D. Ziou and S. Tabbone. 1998. Edge Detection Techniques-An Overview. https://www.semanticscholar.org/paper/Edge-Detection-Techniques-An-Overview-Ziou-Tabbone/587aacc01a4c33f0fe7fb172f5db785f40522b57

Index Terms

  1. Reconstructing, Understanding, and Analyzing Relief Type Cultural Heritage from a Single Old Photo

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        MM '24: Proceedings of the 32nd ACM International Conference on Multimedia
        October 2024
        11719 pages
        ISBN:9798400706868
        DOI:10.1145/3664647
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 28 October 2024

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. 3d reconstruction
        2. cultural heritage
        3. multi-task learning
        4. relief

        Qualifiers

        • Research-article

        Funding Sources

        Conference

        MM '24
        Sponsor:
        MM '24: The 32nd ACM International Conference on Multimedia
        October 28 - November 1, 2024
        Melbourne VIC, Australia

        Acceptance Rates

        MM '24 Paper Acceptance Rate 1,150 of 4,385 submissions, 26%;
        Overall Acceptance Rate 2,145 of 8,556 submissions, 25%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 920
          Total Downloads
        • Downloads (Last 12 months)920
        • Downloads (Last 6 weeks)23
        Reflects downloads up to 13 Jan 2025

        Other Metrics

        Citations

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media