skip to main content
research-article

Analysis and Performance Evaluation of Adjoint-guided Adaptive Mesh Refinement for Linear Hyperbolic PDEs Using Clawpack

Published: 15 September 2020 Publication History

Abstract

Adaptive mesh refinement (AMR) is often used when solving time-dependent partial differential equations using numerical methods. It enables time-varying regions of much higher resolution, which can selectively refine areas to track discontinuities in the solution. The open source Clawpack software implements block-structured AMR to refine around propagating waves in the AMRClaw package. For problems where the solution must be computed over a large domain but is only of interest in a small area, this approach often refines waves that will not impact the target area. We seek a method that enables the identification and refinement of only the waves that will influence the target area.
Here we show that solving the time-dependent adjoint equation and using a suitable inner product allows for a more precise refinement of the relevant waves. We present the adjoint methodology in general and give details on the implementation of this method in AMRClaw. Examples and a computational performance analysis for linear acoustics equations are presented. The adjoint method is compared to AMR methods already available in AMRClaw, and the advantages and disadvantages are discussed. The approach presented here is implemented in Clawpack, in Version 5.6.1, and code for all examples presented is archived on Github.

References

[1]
D. Bale, R. J. LeVeque, S. Mitran, and J. A. Rossmanith. 2002. A wave-propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24, 3 (2002), 955--978.
[2]
W. Bangerth, R. Hartmann, and G. Kanschat. 2007. deal.II—A general purpose object oriented finite element library. ACM Trans. Math. Softw. 33, 4 (2007), 24/1--24/27.
[3]
R. Becker, D. Meidner, and B. Vexler. 2007. Efficient numerical solution of parabolic optimization problems by finite element methods. Optimiz. Methods Softw. 22, 5 (2007), 813--833.
[4]
R. Becker and R. Rannacher. 2001. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10 (2001), 1--102.
[5]
M. Berger and I. Rigoutsos. 1991. An algorithm for point clustering and grid generation. IEEE Trans. Syst. Man Cybernet. 21, 5 (September 1991), 1278--1286.
[6]
M. J. Berger and P. Colella. 1989. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 1 (1989), 64--84.
[7]
M. J. Berger, D. L. George, R. J. LeVeque, and K. T. Mandli. 2011. The GeoClaw software for depth-averaged flows with adaptive refinement. Adv. Water Res. 34, 9 (2011), 1195--1206.
[8]
M. J. Berger and R. J. LeVeque. 1998. Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35, 6 (October 1998), 2298--2316.
[9]
M. J. Berger and J. Oliger. 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 3 (1984), 484--512.
[10]
M. Besier and R. Rannacher. 2012. Goal-oriented space-time adaptivity in the finite element Galerkin methd for the computation of nonstationary impompressible flow. Int. J. Numer. Methods Fluids 70, 9 (January 2012), 1139--1166.
[11]
J. C. Borrero, R. J. LeVeque, D. Greer, S. O’Neill, and B. N. Davis. 2015. Observations and modelling of tsunami currents at the Port of Tauranga, New Zealand. In Proceedings of the Australasian Coasts 8 Ports Conference 2015. Engineers Australia and IPENZ, Auckland, New Zealand, 90--95.
[12]
Clawpack Development Team. 2019. Clawpack software. Retrieved from http://www.clawpack.org Version 5.6.1.
[13]
B. N. Davis. Accessed 2019. Adjoint code repository. Retrieved from https://github.com/clawpack/adjoint.
[14]
B. N. Davis and R. J. LeVeque. 2016. Adjoint methods for guiding adaptive mesh refinement in tsunami modeling. Pure Appl. Geophys. 173 (2016), 4055--4074.
[15]
L. Failer and T. Wick. 2018. Adaptive time-step control for nonlinear fluid--structure interaction. J. Comput. Phys. 366 (August 2018), 448--477.
[16]
Gascoigne Development Team. 2019. Gascoigne software. Retrieved from https://www.uni-kiel.de/gascoigne/.
[17]
C. Goll, T. Wick, and W. Wollner. 2017. DOpElib: Differential equations and optimization environment; A goal oriented software library for solving PDEs and optimization problems with PDEs. SIAM J. Contr. Optimiz. 55, 4 (2017), 2271--2288.
[18]
A. Jameson. 1988. Aerodynamic design via control theory. J. Sci. Comput. 3, 3 (1988), 233--260.
[19]
S. M. Kast and K. J. Fidkowski. 2013. Output-based mesh adaptation for high order Navier-Stokes simulations on deformable domains. J. Comput. Phys. 252 (2013), 468--494.
[20]
M. Kouhi, E. Oñate, and D. Mavriplis. 2015. Adjoint-based adaptive finite element method for the compressible Euler equations using finite calculus. Aerospace Sci. Technol. 46 (2015), 422--435.
[21]
A. Lacasta, M. Morales-Hernández, Pilar Brufau, and Pilar García-Navarro. 2018. Application of an adjoint-based optimization procedure for the optimal control of internal boundary conditions in the shallow water equations. J. Hydraul. Res. 56, 1 (2018), 111--123. arXiv: https://doi.org/10.1080/00221686.2017.1300196
[22]
J. O. Langseth and R. J. LeVeque. 2000. A wave-propagation method for three-dimensional hyperbolic conservation laws. J. Comput. Phys. 165 (2000), 126--166.
[23]
R. J. LeVeque. 1997. Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys. 131, CP965603 (1997), 327--353.
[24]
R. J. LeVeque. 2004. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK.
[25]
R. J. LeVeque, D. L. George, and M. J. Berger. 2011. Tsunami modeling with adaptively refined finite volume methods. Acta Numer. 20 (2011), 211--289.
[26]
Anders Logg, Kent-Andre Mardal, Garth N. Wells, et al. 2012. Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin.
[27]
Y. Luo and K. J. Fidkowski. 2011. Output-based space-time mesh adaptation for unsteady aerodynamics. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Orlando, Florida.
[28]
K. T. Mandli, A. J. Ahmadia, M. Berger, D. Calhoun, D. L. George, Y. Hadjimichael, D. I. Ketcheson, G. I. Lemoine, and R. J. LeVeque. 2016. Clawpack: Building an open source ecosystem for solving hyperbolic PDEs. PeerJ Comput. Sci. 2 (2016), e68.
[29]
K. T. Mandli and C. N. Dawson. 2014. Adaptive mesh refinement for storm surge. Ocean Model. 75 (March 2014), 36--50.
[30]
J. Marburger. 2012. Adjoint-Based Optimal Control of Time-Dependent Free Boundary Problems. http://arxiv.org/abs/1212.3789
[31]
D. Meidner and T. Richter. 2015. A posteriori error estimation for the fractional step theta discretization of the incompressible Navier--Stokes equations. Comput. Methods Appl. Mech. Eng. 288 (May 2015), 45--59.
[32]
M. A. Park. 2004. Adjoint-based, three-dimensional error prediction and grid adaptation. AIAA J. 42, 9 (2004), 1854--1862.
[33]
N. A. Pierce and M. B. Giles. 2000. Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Rev. 42, 2 (2000), 247--264.
[34]
B. F. Sanders and N. D. Katopodes. 2000. Adjoint sensitivity analysis for shallow-water wave control. J. Eng. Mech. 126, 9 (2000), 909--919.
[35]
D. A. Venditti and D. L. Darmofal. 2002. Grid adaptation for functional outputs: Application to two-dimensional inviscid flows. J. Comput. Phys. 176, 1 (2002), 40--69.
[36]
D. A. Venditti and D. L. Darmofal. 2003. Anisotropic grid adaptation for functional outputs: Application to two-dimensional viscous flows. J. Comput. Phys. 187, 1 (2003), 22--46.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 46, Issue 3
September 2020
267 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/3410509
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 September 2020
Online AM: 07 May 2020
Accepted: 01 April 2020
Revised: 01 December 2019
Received: 01 September 2018
Published in TOMS Volume 46, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. AMRClaw
  2. Adjoint problem
  3. Clawpack
  4. adaptive mesh refinement
  5. finite volume method
  6. hyperbolic equations

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)19
  • Downloads (Last 6 weeks)5
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media