skip to main content
10.5555/3571885.3571894acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

Scaling correlated fragment molecular orbital calculations on summit

Published: 18 November 2022 Publication History

Abstract

Correlated electronic structure calculations enable an accurate prediction of the physicochemical properties of complex molecular systems; however, the scale of these calculations is limited by their extremely high computational cost. The Fragment Molecular Orbital (FMO) method is arguably one of the most effective ways to lower this computational cost while retaining predictive accuracy. In this paper, a novel distributed many-GPU algorithm and implementation of the FMO method are presented. When applied in tandem with the Hartree-Fock and RI-MP2 methods, the new implementation enables correlated calculations on 623,016 electrons and 146,592 atoms in less than 45 minutes using 99.8% of the Summit supercomputer (27,600 GPUs). The implementation demonstrates remarkable speedups with respect to other current GPU and CPU codes, and excellent strong scalability on Summit achieving 94.6% parallel efficiency on 4600 nodes. This work makes feasible correlated quantum chemistry calculations on significantly larger molecular systems than before and with higher accuracy.

Supplementary Material

MP4 File (SC22_Presentation_Barca.mp4)
Presentation at SC '22

References

[1]
D. G. Fedorov, "The fragment molecular orbital method: theoretical development, implementation in gamess, and applications," Wiley Interdisciplinary Reviews: Computational Molecular Science, vol. 7, no. 6, p. e1322, 2017.
[2]
H. Umeda, T. Hanawa, M. Shoji, T. Boku, and Y. Shigeta, "GPU-accelerated FMO Calculation with OpenFMO: Four-Center Inter-Fragment Coulomb Interaction," Journal of Computer Chemistry, Japan, vol. 14, no. 3, pp. 69--70, 2015. [Online]. Available: https://www.jstage.jst.go.jp/article/jccj/14/3/14_2015-0041/_article/-char/ja/
[3]
H. Umeda, T. Hanawa, M. Shoji, T. Boku, and Y. Shigeta, "Performance Benchmark of FMO Calculation with GPU-Accelerated Fock Matrix Preparation Routine," Journal of Computer Chemistry, Japan, vol. 13, no. 6, pp. 323--324, 2015. [Online]. Available: https://www.jstage.jst.go.jp/article/jccj/13/6/13_2014-0053/article/-char/ja/
[4]
T. Takami, J. Maki, J.-i. Ooba, Y. Inadomi, H. Honda, T. Kobayashi, R. Nogita, and M. Aoyagi, "Open-architecture Implementation of Fragment Molecular Orbital Method for Peta-scale Computing," arXiv:cs/0701075, Jan. 2007, arXiv: cs/0701075. [Online]. Available: http://arxiv.org/abs/cs/0701075
[5]
Y. Inadomi, J. Maki, H. Honda, T. Takami, T. Kobayashi, M. Aoyagi, and K. Minami, "Performance Tuning of Parallel Fragment Molecular OrbitalProgram (OpenFMO) for Effective Execution on K-computer," Journal of Computer Chemistry, Japan, vol. 12, no. 2, pp. 145--155, 2013. [Online]. Available: https://www.jstage.jst.go.jp/article/jccj/12/2/12_2012-0031/_article/-char/ja/
[6]
H. Umeda, T. Hanawa, M. Shoji, T. Boku, and Y. Shigeta, "Large-scale mo calculation with gpu-accelerated fmo program," The International Conference for High Performance Computing, Networking, Storage and Analysis: SC15 - Poster, 2015. [Online]. Available: http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post198.html
[7]
S. R. Pruitt, H. Nakata, T. Nagata, M. Mayes, Y. Alexeev, G. Fletcher, D. G. Fedorov, K. Kitaura, and M. S. Gordon, "Importance of three-body interactions in molecular dynamics simulations of water demonstrated with the fragment molecular orbital method," Journal of Chemical Theory and Computation, vol. 12, no. 4, pp. 1423--1435, 2016.
[8]
B. Q. Pham and M. S. Gordon, "Hybrid distributed/shared memory model for the ri-mp2 method in the fragment molecular orbital framework," Journal of Chemical Theory and Computation, vol. 15, no. 10, pp. 5252--5258, 2019. 31509402. [Online].
[9]
K. Akisawa, R. Hatada, K. Okuwaki, Y. Mochizuki, K. Fukuzawa, Y. Komeiji, and S. Tanaka, "Interaction analyses of sars-cov-2 spike protein based on fragment molecular orbital calculations," RSC Advances, vol. 11, no. 6, pp. 3272--3279, 2021.
[10]
M. S. Gordon, D. G. Fedorov, S. R. Pruitt, and L. V. Slipchenko, "Fragmentation Methods: A Route to Accurate Calculations on Large Systems," Chemical Reviews, vol. 112, no. 1, pp. 632--672, jan 2012. [Online].
[11]
J. L. Whitten, "Coulombic potential energy integrals and approximations," The Journal of Chemical Physics, vol. 58, no. 10, pp. 4496--4501, 1973. [Online].
[12]
P. M. Gill, "Molecular integrals over gaussian basis functions," ser. Advances in Quantum Chemistry, J. R. Sabin and M. C. Zerner, Eds. Academic Press, 1994, vol. 25, pp. 141 -- 205. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0065327608600192
[13]
J. Kussmann and C. Ochsenfeld, "Preselective screening for linear-scaling exact exchange-gradient calculations for graphics processing units and general strong-scaling massively parallel calculations," Journal of Chemical Theory and Computation, vol. 11, no. 3, pp. 918--922, 2015. 26579745. [Online].
[14]
G. M. J. Barca and P. M. W. Gill, "Two-electron integrals over gaussian geminals," Journal of Chemical Theory and Computation, vol. 12, no. 10, pp. 4915--4924, 2016. 27598837. [Online].
[15]
G. M. J. Barca, D. L. Poole, J. L. G. Vallejo, M. Alkan, C. Bertoni, A. P. Rendell, and M. S. Gordon, "Scaling the hartree-fock matrix build on summit," in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC '20. IEEE Press, 2020.
[16]
G. M. J. Barca and P.-F. Loos, "Three- and four-electron integrals involving gaussian geminals: Fundamental integrals, upper bounds, and recurrence relations," The Journal of Chemical Physics, vol. 147, no. 2, p. 024103, 2017. [Online].
[17]
G. M. J. Barca, J. L. G. Vallejo, D. L. Poole, M. Alkan, R. Stocks, A. P. Rendell, and M. S. Gordon, "Enabling large-scale correlated electronic structure calculations: Scaling the ri-mp2 method on summit," in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC '21. New York, NY, USA: Association for Computing Machinery, 2021. [Online].
[18]
I. S. Ufimtsev and T. J. Martinez, "Quantum chemistry on graphical processing units. 2. direct self-consistent-field implementation," Journal of Chemical Theory and Computation, vol. 5, no. 4, pp. 1004--1015, 2009. 26609609. [Online].
[19]
Y. Miao and K. M. Merz, "Acceleration of electron repulsion integral evaluation on graphics processing units via use of recurrence relations," Journal of Chemical Theory and Computation, vol. 9, no. 2, pp. 965--976, 2013. 26588740. [Online].
[20]
G. M. J. Barca, J. L. Galvez-Vallejo, D. L. Poole, A. P. Rendell, and M. S. Gordon, "High-performance, graphics processing unit-accelerated fock build algorithm," Journal of Chemical Theory and Computation, vol. 16, no. 12, pp. 7232--7238, 2020. 33206515. [Online].
[21]
G. M. J. Barca, M. Alkan, J. L. Galvez-Vallejo, D. L. Poole, A. P. Rendell, and M. S. Gordon, "Faster self-consistent field (scf) calculations on gpu clusters," Journal of Chemical Theory and Computation, vol. 17, no. 12, pp. 7486--7503, 2021. 34780186. [Online].
[22]
G. M. J. Barca, P.-F. Loos, and P. M. W. Gill, "Many-electron integrals over gaussian basis functions. i. recurrence relations for three-electron integrals," Journal of Chemical Theory and Computation, vol. 12, no. 4, pp. 1735--1740, 2016. 26981747. [Online].
[23]
G. M. Barca and P.-F. Loos, "Chapter eight - recurrence relations for four-electron integrals over gaussian basis functions," in Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems, ser. Advances in Quantum Chemistry, P. E. Hoggan, Ed. Academic Press, 2018, vol. 76, pp. 147--165. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S006532761730031X
[24]
G. M. J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J. E. Deustua, D. G. Fedorov, J. R. Gour, A. O. Gunina, E. Guidez, T. Harville, S. Irle, J. Ivanic, K. Kowalski, S. S. Leang, H. Li, W. Li, J. J. Lutz, I. Magoulas, J. Mato, V. Mironov, H. Nakata, B. Q. Pham, P. Piecuch, D. Poole, S. R. Pruitt, A. P. Rendell, L. B. Roskop, K. Ruedenberg, T. Sattasathuchana, M. W. Schmidt, J. Shen, L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari, J. L. Galvez Vallejo, B. Westheimer, M. Włoch, P. Xu, F. Zahariev, and M. S. Gordon, "Recent developments in the general atomic and molecular electronic structure system," The Journal of Chemical Physics, vol. 152, no. 15, p. 154102, 2020. [Online].

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SC '22: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis
November 2022
1277 pages
ISBN:9784665454445

Sponsors

In-Cooperation

  • IEEE CS

Publisher

IEEE Press

Publication History

Published: 18 November 2022

Check for updates

Badges

Author Tags

  1. FMO
  2. GPU
  3. MP2
  4. SCF
  5. electronic structure
  6. summit

Qualifiers

  • Research-article

Conference

SC '22
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 152
    Total Downloads
  • Downloads (Last 12 months)75
  • Downloads (Last 6 weeks)5
Reflects downloads up to 14 Sep 2024

Other Metrics

Citations

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media