skip to main content
article
Free access

Group Lasso Estimation of High-dimensional Covariance Matrices

Published: 01 November 2011 Publication History

Abstract

In this paper, we consider the Group Lasso estimator of the covariance matrix of a stochastic process corrupted by an additive noise. We propose to estimate the covariance matrix in a high-dimensional setting under the assumption that the process has a sparse representation in a large dictionary of basis functions. Using a matrix regression model, we propose a new methodology for high-dimensional covariance matrix estimation based on empirical contrast regularization by a group Lasso penalty. Using such a penalty, the method selects a sparse set of basis functions in the dictionary used to approximate the process, leading to an approximation of the covariance matrix into a low dimensional space. Consistency of the estimator is studied in Frobenius and operator norms and an application to sparse PCA is proposed.

References

[1]
Anestis Antoniadis, Jeremie Bigot, and Theofanis Sapatinas. Wavelet estimators in nonparametric regression: A comparative simulation study. Journal of Statistical Software, 6(6):1-83, 6 2001.
[2]
Francis R. Bach. Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res., 9:1179-1225, 2008.
[3]
Peter J. Bickel and Elizaveta Levina. Regularized estimation of large covariance matrices. Ann. Statist., 36(1):199-227, 2008a.
[4]
Peter J. Bickel and Elizaveta Levina. Covariance regularization by thresholding. Ann. Statist., 36 (6):2577-2604, 2008b.
[5]
Peter J. Bickel, Ya'acov Ritov, and Alexandre B. Tsybakov. Simultaneous analysis of lasso and Dantzig selector. Ann. Statist., 37(4):1705-1732, 2009.
[6]
Jérémie Bigot, Rolando J. Biscay, Jean-Michel Loubes, and Lilian Muñiz Alvarez. Nonparametric estimation of covariance functions by model selection. Electronic Journal of Statistics, 4:822-855, 2010.
[7]
Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, 2004. ISBN 0-521-83378-7.
[8]
Noel A. C. Cressie. Statistics for Spatial Data. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons Inc., New York, 1993.
[9]
Alexandre d'Aspremont, Francis Bach, and Laurent El Ghaoui. Optimal solutions for sparse principal component analysis. J. Mach. Learn. Res., 9:1269-1294, 2008.
[10]
Kenneth R. Davidson and Stanislaw J. Szarek. Local operator theory, random matrices and Banach spaces. In Handbook of the Geometry of Banach Spaces, Vol. I, pages 317-366. North-Holland, Amsterdam, 2001.
[11]
Chandler Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation. III. SIAM J. Numer. Anal., 7:1-46, 1970.
[12]
Noureddine El Karoui. Operator norm consistent estimation of large-dimensional sparse covariance matrices. Ann. Statist., 36(6):2717-2756, 2008.
[13]
Jianquin Fan, Yingying Fan, and Jinchi Lv. High dimensional covariance matrix estimation using a factor model. Journal of Econometrics, 147:186-197, 2008.
[14]
Junzhou Huang and Tong Zhang. The benefit of group sparsity. Ann. Statist., 38(4):1978-2004, 2010. ISSN 0090-5364.
[15]
Iain M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist., 29(2):295-327, 2001.
[16]
Iain M. Johnstone and Arthur Y. Lu. On consistency and sparsity for principal components analysis in high dimensions. Journal of the American Statistical Association, 104(486):682-693, June 2009.
[17]
Andre G. Journel. Kriging in terms of projections. J. Internat. Assoc. Mathematical Geol., 9(6): 563-586, 1977.
[18]
Clifford Lam and Jianqing Fan. Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Statist., 37(6B):4254-4278, 2009.
[19]
Elizaveta Levina, Adam Rothman, and Ji Zhu. Sparse estimation of large covariance matrices via a nested Lasso penalty. Ann. Appl. Stat., 2(1):245-263, 2008.
[20]
Karim Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. Electron. J. Stat., 2:90-102, 2008.
[21]
Karim Lounici, Massimiliano Pontil, Alexandre B. Tsybakov, and Sara van de Geer. Taking advantage of sparsity in multi-task learning. COLT, 2009.
[22]
Karim Lounici, Massimiliano Pontil, Alexandre B. Tsybakov, and Sara van de Geer. Oracle Inequalities and Optimal Inference under Group Sparsity. Ann. Statist., to be published., 2011.
[23]
Shahar Mendelson and Alain Pajor. On singular values of matrices with independent rows. Bernoulli, 12(5):761-773, 2006.
[24]
Yuval Nardi and Alessandro Rinaldo. On the asymptotic properties of the group lasso estimator for linear models. Electron. J. Stat., 2:605-633, 2008.
[25]
Adam J. Rothman, Peter J. Bickel, Elizaveta Levina, and Ji Zhu. Sparse permutation invariant covariance estimation. Electron. J. Stat., 2:494-515, 2008.
[26]
Mark Schmidt, KevinMurphy, Glenn Fung, and Rómer Rosales. Structure learning in random fields for heart motion abnormality detection (addendum). CVPR08, 2008.
[27]
Michael L. Stein. Interpolation of Spatial Data. Some Theory for Kriging. Springer Series in Statistics. New York, NY: Springer. xvii, 247 p., 1999.
[28]
Christopher K. Wikle and Noel Cressie. A dimension-reduced approach to space-time Kalman filtering. Biometrika, 86(4):815-829, 1999. ISSN 0006-3444.
[29]
Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. J. Comput. Graph. Statist., 15(2):265-286, 2006.

Cited By

View all
  1. Group Lasso Estimation of High-dimensional Covariance Matrices

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image The Journal of Machine Learning Research
      The Journal of Machine Learning Research  Volume 12, Issue
      2/1/2011
      3426 pages
      ISSN:1532-4435
      EISSN:1533-7928
      Issue’s Table of Contents

      Publisher

      JMLR.org

      Publication History

      Published: 01 November 2011
      Published in JMLR Volume 12

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 207
        Total Downloads
      • Downloads (Last 12 months)46
      • Downloads (Last 6 weeks)4
      Reflects downloads up to 03 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Full Access

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media