skip to main content
10.5555/1928047.1928071guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Brain morphometry by probabilistic latent semantic analysis

Published: 20 September 2010 Publication History

Abstract

The paper proposes a new shape morphometry approach that combines advanced classification techniques with geometric features to identify morphological abnormalities on the brain surface. Our aim is to improve the classification accuracy in distinguishing between normal subjects and schizophrenic patients. The approach is inspired by natural language processing. Local brain surface geometric patterns are quantized to visual words, and their co-occurrences are encoded as visual topic. To do this, a generative model, the probabilistic Latent Semantic Analysis is learned from quantized shape descriptors (visual words). Finally, we extract from the learned models a generative score, that is used as input of a Support Vector Machine (SVM), defining an hybrid generative/discriminative classification algorithm. An exhaustive experimental section is proposed on a dataset consisting of MRI scans from 64 patients and 60 control subjects. Promising results are reporting by observing accuracies up to 86.13%.

References

[1]
Giuliani, N.R., Calhouna, V.D., Pearlson, G.D., Francis, A., Buchanan, R.W.: Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophrenia Research 74(2-3), 135-147 (2005)
[2]
Shenton, M.E., Dickey, C.C., Frumin, M., McCarley, R.W.: A review of mri findings in schizophrenia. Schizophrenia Research 49(1-2), 1-52 (2001)
[3]
Styner, M., Oguz, I., Xu, S., Brechbuhler, C., Pantazis, D., Levitt, J., Shenton, M., Gerig, G.: Framework for the statistical shape analysis of brain structures using spharm-pdm. In: Open Science Workshop at MICCAI (2006)
[4]
Niethammer, M., Reuter, M., Wolter, F.E., Bouix, S., Peinecke, N., Koo, M.S., Shenton, M.: Global medical shape analysis using the laplace-beltrami spectrum. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 850-857. Springer, Heidelberg (2007)
[5]
Reuter, M., Wolter, F.E., Shenton, M., Niethammer, M.: Laplace-Beltrami eigenvalues and topological features on eigenfuntions for statistical shape analysis. Computed-Aided Design 41(10), 739-755 (2009)
[6]
Toews, M., Wells III, W.M., Collins, D.L., Arbel, T.: Feature-based morphometry. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 109-116. Springer, Heidelberg (2009)
[7]
Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)
[8]
Davatzikos, C.: Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage 23(1), 17-20 (2004)
[9]
Yoon, U., Lee, J., Im, K., Shin, W., Cho, B.H., Kim, I., Kwon, J., Kim, S.: Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia. NeuroImage 34, 1405-1415 (2007)
[10]
Fan, Y., Shen, D., Gur, R.C., Gur, R.E., Davatzikos, C.: Compare: Classification of morphological patterns using adaptive regional elements. IEEE Transactions on Medical Imaging 26(1), 93-105 (2007)
[11]
Pohl, K.M., Sabuncu,M.R.: A unified framework for mr based disease classification. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 300-313. Springer, Heidelberg (2009)
[12]
Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 42(1-2), 177-196 (2001)
[13]
Koenderink, J., van Doorn, A.: Surface shape and curvature scales. Image and Visual Computing 10, 557-565 (1992)
[14]
Awate, S.P., Yushkevich, P., Song, Z., Licht, D., Gee, J.C.: Multivariate highdimensional cortical folding analysis, combining complexity and shape, in neonates with congenital heart disease. In: IPMI (2009)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
MICCAI'10: Proceedings of the 13th international conference on Medical image computing and computer-assisted intervention: Part II
September 2010
691 pages
ISBN:3642157440
  • Editors:
  • Tianzi Jiang,
  • Nassir Navab,
  • Josien P. W. Pluim,
  • Max A. Viergever

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 20 September 2010

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media