skip to main content
article

Semantic-Based Optimization of Deep Learning for Efficient Real-Time Medical Image Segmentation

Published: 09 April 2024 Publication History

Abstract

In response to the critical need for advanced solutions in medical imaging segmentation, particularly for real-time applications in diagnostics and treatment planning, this study introduces SM-UNet. This novel deep learning architecture efficiently addresses the challenge of real-time, accurate medical image segmentation by integrating convolutional neural network (CNN) with multilayer perceptron (MLP). The architecture uniquely combines an initial convolutional encoder for detailed feature extraction, MLP module for capturing long-range dependencies, and a decoder that merges global features with high-resolution CNN map. Further optimization is achieved through a tokenization approach, significantly reducing computational demands. Its superior performance is confirmed by evaluations on standard datasets, showing interaction times drastically lower than comparable networks—between 1/6 to 1/10, and 1/25 compared to SOTA models. These advancements underscore SM-UNet's potential as a groundbreaking tool for facilitating real-time, precise medical diagnostics and treatment strategies.

References

[1]
Abdollahi, A., Pradhan, B., & Alamri, A. (2020). VNet: An end-to-end fully convolutional neural network for road extraction from high-resolution remote sensing data. IEEE Access : Practical Innovations, Open Solutions, 8, 179424–179436.
[2]
Alamer, S. A., Ilyas, Q. M., Ahmad, M., & Irfan, D. A. (2022). A metaphoric design of electronic medical record (EMR) for periodic health examination reports: An initiative to cloud’s medical data analysis. International Journal of Cloud Applications and Computing, 12(1), 1–18.
[3]
Atutornu, J., & Hayre, C. M. (2018). Personalised medicine and medical imaging: Opportunities and challenges for contemporary health care. Journal of Medical Imaging and Radiation Sciences, 49(4), 352–359. 30514550.
[4]
Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., & Kalinin, A. A. (2020). Albumentations: Fast and flexible image augmentations. Information (Basel), 11(2), 125. Advance online publication.
[5]
Chen, C., Liu, X., Ding, M., Zheng, J., & Li, J. (2019). 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI. In Lecture notes in computer science: Vol. 11766. Medical image computing and computer assisted intervention–MICCAI 2019 (pp. 184–192). Springer.
[6]
Gao, S., Cheng, Y., Mao, S., Fan, X., & Deng, X. (2024). SSVEP-enhanced threat detection and its impact on image segmentation. International Journal on Semantic Web and Information Systems, 20(1), 1–20.
[7]
Guo, Z., Xu, L., Si, Y., & Razmjooy, N. (2021). Novel computer-aided lung cancer detection based on convolutional neural network-based and feature-based classifiers using metaheuristics. International Journal of Imaging Systems and Technology, 31(4), 1954–1969.
[8]
Gupta, B. B., Gaurav, A., & Arya, V. (2024). Deep CNN based brain tumor detection in intelligent systems. International Journal of Intelligent Networks, 5, 30–37.
[9]
Hassanpour, H., Samadiani, N., & Salehi, S. M. (2015). Using morphological transforms to enhance the contrast of medical images. The Egyptian Journal of Radiology and Nuclear Medicine, 46(2), 481–489.
[10]
Hidalgo, A., Pérez, N., & Lemus-Aguilar, I. (2022). Factors determining the success of ehealth innovation projects. International Journal of Software Science and Computational Intelligence, 14(1), 1–22.
[11]
Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V., & Adam, H. (2019). Searching for MobileNetV3. In 2019 IEEE/CVF international conference on computer vision. ICCV.
[12]
Huang, Q., Ding, H., & Razmjooy, N. (2023). Optimal deep learning neural network using ISSA for diagnosing the oral cancer. Biomedical Signal Processing and Control, 84, 104749. Advance online publication.
[13]
Kaushik, S., Gandhi, C., & Gandhi, C. (2022). Capability-based access control with trust for effective healthcare systems. International Journal of Cloud Applications and Computing, 12(1), 1–28.
[14]
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization [Conference presentation]. 3rd International Conference for Learning Representations, San Diego, CA, USA. 10.48550/arXiv.1412.6980
[15]
Li, D., Deng, L., Gupta, B. B., Wang, H., & Choi, C. (2019). A novel CNN based security guaranteed image watermarking generation scenario for smart city applications. Information Sciences, 479, 432–447.
[16]
Li, L., Wei, M., Liu, B., Atchaneeyasakul, K., Zhou, F., Pan, Z., Kumar, S., Zhang, J., Pu, Y., Liebeskind, D. S., & Scalzo, F. (2020). Deep learning for hemorrhagic lesion detection and segmentation on brain CT images. IEEE Journal of Biomedical and Health Informatics, 25(5), 1646–1659. 33001810.
[17]
Li, R., Zheng, S., Duan, C., Su, J., & Zhang, C. (2021). Multistage attention ResU-Net for semantic segmentation of fine-resolution remote sensing images. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.
[18]
Litjens, G., Ciompi, F., Wolterink, J. M., de Vos, B. D., Leiner, T., Teuwen, J., & Išgum, I. (2019). State-of-the-art deep learning in cardiovascular image analysis. JACC: Cardiovascular Imaging, 12(8), 1549–1565. 31395244.
[19]
Loshchilov, I., & Hutter, F. (2017, April 24–26). SGDR: Stochastic gradient descent with warm restarts [Conference presentation]. ICLR 2017 5th International Conference on Learning Representations, Toulon, France. https://openreview.net/forum?id=Skq89Scxx
[20]
Nguyen, G. N., Viet, N. H., Elhoseny, M., Shankar, K., Gupta, B., & Abd El-Latif, A. A. (2021). Secure blockchain enabled Cyber–physical systems in healthcare using deep belief network with ResNet model. Journal of Parallel and Distributed Computing, 153, 150–160.
[21]
Nhi, N. V., Le, T. M., & Van, T. T. (2022). A model of semantic-based image retrieval using C-tree and neighbor graph. International Journal on Semantic Web and Information Systems, 18(1), 1–23.
[22]
Onyebuchi, A., Matthew, U. O., Kazaure, J. S., Okafor, N. U., Okey, O. D., Okochi, P. I., Taiwo, J. F., & Matthew, A. O. (2022). Business demand for a cloud enterprise data warehouse in electronic healthcare computing: Issues and developments in e-healthcare cloud computing. International Journal of Cloud Applications and Computing, 12(1), 1–22.
[23]
PedrazaL.VargasC.NarváezF.DuránO.MuñozE.RomeroE. (2015). An open access thyroid ultrasound image database. In RomeroE.LeporeN. (Eds.), Proceedings of the 10th international symposium on medical information processing and analysis (Vol. 9287, pp. 188–193). SPIE. 10.1117/12.2073532
[24]
Qian, W., Li, H., & Mu, H. (2022). Circular LBP prior-based enhanced GAN for image style transfer. International Journal on Semantic Web and Information Systems, 18(2), 1–15.
[25]
Qin, D., Bu, J. J., Liu, Z., Shen, X., Zhou, S., Gu, J. J., Wang, Z. H., Wu, L., & Dai, H. F. (2021). Efficient medical image segmentation based on knowledge distillation. IEEE Transactions on Medical Imaging, 40(12), 3820–3831. 34283713.
[26]
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In N. Navab, J. Hornegger, W. Wells, & A. Frangi (Eds.), Lecture notes in computer science: Vol. 9351. MICCAI: International Conference on Medical image computing and computer-assisted intervention (pp. 234–241). Springer. 10.1007/978-3-319-24574-4_28
[27]
SandlerM.HowardA.ZhuM.ZhmoginovA.ChenL. C. (2018). MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510–4520). IEEE. 10.1109/CVPR.2018.00474
[28]
Sarivougioukas, J., & Vagelatos, A. (2022). Fused contextual data with threading technology to accelerate processing in home UbiHealth. International Journal of Software Science and Computational Intelligence, 14(1), 1–14.
[29]
Schlemper, J., Oktay, O., Schaap, M., Heinrich, M., Kainz, B., Glocker, B., & Rueckert, D. (2019). Attention gated networks: Learning to leverage salient regions in medical images. Medical Image Analysis, 53, 197–207. 30802813.
[30]
Sedik, A., Hammad, M., Abd El-Samie, F. E., Gupta, B. B., & Abd El-Latif, A. A. (2021). Efficient deep learning approach for augmented detection of Coronavirus disease. Neural Computing & Applications, 34(14), 11423–11440. 33487885.
[31]
Srivastava, A. M., Rotte, P. A., Jain, A., & Prakash, S. (2022). Handling data scarcity through data augmentation in training of deep neural networks for 3D data processing. International Journal on Semantic Web and Information Systems, 18(1), 1–16.
[32]
Sun, L., Wang, P., Liu, P., & Nie, Z. (2023). Image processing method of a visual communication system based on convolutional neural network. International Journal on Semantic Web and Information Systems, 19(1), 1–19.
[33]
Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Keysers, D., Uszkoreit, J., Lucic, M., & Dosovitskiy, A. (2021). MLP-mixer: An all-MLP architecture for vision. Advances in Neural Information Processing Systems, 34, 24261–24272.
[34]
Valanarasu, J. M. J., Oza, P., Hacihaliloglu, I., & Patel, V. M. (2021). Medical transformer: Gated axial-attention for medical image segmentation. In M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, & C. Essert (Eds.), Lecture notes in computer science: Vol.12901. MICCAI: International Conference on Medical image computing and computer-assisted intervention. (pp. 36–46). Springer. 10.1007/978-3-030-87193-2_4
[35]
Wang, H., Li, Z., Li, Y., Gupta, B. B., & Choi, C. (2020). Visual saliency guided complex image retrieval. Pattern Recognition Letters, 130, 64–72.
[36]
Wang, M. (2022). TNSCUI2020-SEG-rank1st: 1st place solution for segmentation task in MICCAI 2020 TN-SCUI Challenge. GitHub. https://github.com/WAMAWAMA/TNSCUI2020-Seg-Rank1st
[37]
Xu, G., Zhang, X., He, X., & Wu, X. (2023). LeVit-UNet: Make faster encoders with transformer for medical image segmentation. In Q. Liu, H. Wang, Z. Ma, W. Zheng, H. Zha, X.Chen, L. Wang, & R. Ji (Eds.), 6th Chinese Conference on Pattern Recognition and Computer Vision (PRCV) (pp. 42–53). Springer Nature Singapore. 10.1007/978-981-99-8543-2_4
[38]
Xu, Z., He, D., Vijayakumar, P., Gupta, B., & Shen, J. (2021). Certificateless public auditing scheme with data privacy and dynamics in group user model of cloud-assisted medical WSNs. IEEE Journal of Biomedical and Health Informatics, 27(5), 2334–2344. 34788225.
[39]
Yoon, J. H., & Kim, E. K. (2021). Deep learning-based artificial intelligence for mammography. Korean Journal of Radiology, 22(8), 1225–1239. 33987993.
[40]
Yu, C., Li, J., Li, X., Ren, X., & Gupta, B. B. (2018). Four-image encryption scheme based on quaternion Fresnel transform, chaos and computer generated hologram. Multimedia Tools and Applications, 77(4), 4585–4608.
[41]
Yu, H. Q., & Reiff-Marganiec, S. (2022). Learning disease causality knowledge from the web of health data. International Journal on Semantic Web and Information Systems, 18(1), 1–19.
[42]
Zhang, Z., Liu, Q., & Wang, Y. (2018). Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters, 15(5), 749–753.
[43]
Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., & Liang, J. (2018). Unet++: A nested U-net architecture for medical image segmentation. In Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein, L., Manuel, J., Tavares, R. S., Bradley, A., Paulo Papa, J., Belagiannis, V., Nascimento, J. C., Lu, Z., Conjeti, S., Moradi, M., Greenspan, H., & Madabhushi, A. (Eds.), Deep learning in medical image analysis and multimodal learning for clinical decision support (pp. 3–11). Springer.

Index Terms

  1. Semantic-Based Optimization of Deep Learning for Efficient Real-Time Medical Image Segmentation
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image International Journal on Semantic Web & Information Systems
    International Journal on Semantic Web & Information Systems  Volume 20, Issue 1
    May 2024
    1336 pages

    Publisher

    IGI Global

    United States

    Publication History

    Published: 09 April 2024

    Author Tags

    1. Computational Efficiency
    2. Convolutional Neural Networks
    3. Deep Learning Optimization
    4. Healthcare System
    5. Magnetic Resonance Imaging
    6. Multilayer Perceptron

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 06 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media