Learning-based Artificial Intelligence Artwork: Methodology Taxonomy and Quality Evaluation
Abstract
1 Introduction
2 Conventional Stroke-Based AI Artworks
3 Learning-Based AI Artworks
3.1 Style-Transform AI Artworks
3.1.1 Neural Style Transfer.
3.1.2 GAN-Based Style Transfer.
3.1.3 Diffusion Model Style Transfer.
3.2 Art-Style-Reconstruction AI Artworks
3.2.1 Line Drawing.
3.2.2 Oil Painting and Watercolor Painting.
3.2.3 Ink Wash Painting.
3.2.4 Robotic Painting.
4 Methods Comparison
4.1 NST Method
4.2 GAN Method
4.2.1 Per-Model-Per-Style.
4.2.2 Per-Model Multi-Style.
4.3 DM Method
4.4 Art-Style-Reconstruction Algorithm
4.4.1 Line Drawings.
4.4.2 Oil Painting.
4.4.3 Ink Wash Painting.
4.4.4 Pastel-Like Painting.
4.4.5 Robotic Painting.
5 Evaluation
5.1 Evaluation Metrics
Item | Explanation |
---|---|
Beauty | The aesthetic evaluation of the entire artwork |
Line | The expression and smoothness of the lines in the artwork |
Texture | The stroke texture expressed in the artwork |
Color | The treatment of light and shade in the artwork |
Contents | The features of the whole artwork, including the details |
Style | The art style of the artwork—for example, oil-painting style |
5.2 Experiments and Analysis
5.2.1 Visual Comparison.
5.2.2 User Study.
Two-Way Mixed/Random Consistency | ICC | 95% CI |
---|---|---|
Single measure ICC (C,1) | 0.437 | 0.373 \(\sim\) 0.513 |
Average measure ICC (C,K) | 0.985 | 0.980 \(\sim\) 0.989 |
Two-Way Mixed/Random Consistency | ICC | 95% CI |
---|---|---|
Single measure ICC (C,1) | 0.498 | 0.432 \(\sim\) 0.5740.437 |
Average measure ICC (C,K) | 0.988 | 0.985 \(\sim\) 0.991 |
Methods | Beauty (50%) | Line (10%) | Texture (10%) | Color (10%) | Content (10%) | Style (10%) | MixedTotal |
---|---|---|---|---|---|---|---|
AAMS [159] | 3.756 | 3.532 | 3.582 | 3.677 | 3.587 | 3.613 | 3.677 |
ASTSAN [110] | 3.095 | 2.935 | 3.069 | 3.069 | 3.000 | 3.185 | 3.073 |
URUST [144] | 3.164 | 3.000 | 3.224 | 3.086 | 3.125 | 3.267 | 3.152 |
SID [21] | 3.741 | 3.444 | 3.504 | 3.478 | 3.483 | 3.586 | 3.620 |
AesPA-Net [60] | 3.836 | 3.612 | 3.716 | 3.556 | 3.746 | 3.716 | 3.753 |
CAST [168] | 3.625 | 3.444 | 3.608 | 3.526 | 3.483 | 3.539 | 3.572 |
StyTR2 [23] | 3.884 | 3.591 | 3.711 | 3.591 | 3.716 | 3.651 | 3.768 |
EFDM [167] | 3.595 | 3.323 | 3.341 | 3.418 | 3.487 | 3.448 | 3.499 |
MAST [24] | 3.108 | 3.004 | 2.918 | 2.996 | 3.116 | 3.065 | 3.064 |
AdaAttN [95] | 3.582 | 3.358 | 3.371 | 3.293 | 3.379 | 3.362 | 3.467 |
AdaIN [63] | 3.685 | 3.405 | 3.565 | 3.466 | 3.440 | 3.539 | 3.584 |
DiffuseIT [80] | 3.233 | 2.978 | 3.185 | 3.082 | 3.065 | 3.151 | 3.163 |
InST [166] | 3.496 | 3.216 | 3.353 | 3.233 | 3.341 | 3.388 | 3.401 |
DiffStyle [67] | 3.246 | 2.892 | 3.125 | 2.978 | 3.121 | 3.043 | 3.139 |
CycleGAN [170] | 3.543 | 3.188 | 3.338 | 3.297 | 3.358 | 3.345 | 3.424 |
Gated-GAN [14] | 3.853 | 3.491 | 3.591 | 3.690 | 3.634 | 3.763 | 3.744 |
StarGAN [18] | 3.353 | 3.168 | 3.250 | 3.134 | 3.297 | 3.254 | 3.287 |
StarGAN v2 [19] | 3.366 | 3.134 | 3.190 | 3.095 | 3.233 | 3.216 | 3.270 |
H-SRC [72] | 2.961 | 2.845 | 2.901 | 2.884 | 2.836 | 2.940 | 2.921 |
MSC [10] | 3.522 | 3.203 | 3.280 | 3.306 | 3.315 | 3.224 | 3.394 |
U-GAT-IT [77] | 3.670 | 3.391 | 3.460 | 3.432 | 3.485 | 3.460 | 3.558 |
WBC [147] | 3.432 | 3.263 | 3.319 | 3.235 | 3.310 | 3.262 | 3.355 |
CartoonGAN [15] | 3.358 | 3.172 | 3.315 | 3.284 | 3.263 | 3.280 | 3.310 |
MSCartoonGAN [125] | 3.457 | 3.272 | 3.379 | 3.241 | 3.366 | 3.379 | 3.392 |
GANs N’ Roses [20] | 3.865 | 3.553 | 3.585 | 3.586 | 3.658 | 3.726 | 3.743 |
LGLD [13] | 3.862 | 3.625 | 3.595 | 3.366 | 3.603 | 3.828 | 3.733 |
APDrawingGAN++ [162] | 3.565 | 3.504 | 3.582 | 3.220 | 3.526 | 3.608 | 3.526 |
APDrawingGAN [161] | 3.875 | 3.694 | 3.642 | 3.302 | 3.612 | 3.741 | 3.728 |
Photo-sketching [85] | 2.849 | 2.784 | 2.845 | 2.828 | 2.853 | 3.194 | 2.875 |
DoodlerGAN [41] | 3.000 | 3.022 | 2.970 | 2.918 | 2.927 | 3.263 | 3.010 |
NP [109] | 3.427 | 3.190 | 3.310 | 3.241 | 3.379 | 3.397 | 3.365 |
MDRLP [64] | 3.534 | 3.310 | 3.418 | 3.448 | 3.418 | 3.474 | 3.474 |
SNP [171] | 3.659 | 3.392 | 3.491 | 3.547 | 3.445 | 3.582 | 3.576 |
Stroke-GAN Painter [145] | 3.613 | 3.430 | 3.516 | 3.521 | 3.456 | 3.453 | 3.544 |
PaintTransformer [94] | 3.621 | 3.512 | 3.447 | 3.342 | 3.452 | 3.567 | 3.543 |
Intelli-paint [127] | 3.653 | 3.521 | 3.522 | 3.601 | 3.485 | 3.587 | 3.598 |
Im2Oil [137] | 3.732 | 3.311 | 3.554 | 3.663 | 3.512 | 3.601 | 3.630 |
RST [79] | 3.712 | 3.344 | 3.558 | 3.628 | 3.523 | 3.612 | 3.623 |
PST [98] | 4.112 | 3.603 | 3.823 | 3.892 | 3.884 | 3.974 | 3.983 |
Average | 3.529 | 3.299 | 3.389 | 3.337 | 3.383 | 3.443 | 3.450 |
Category | Methods | Beauty (50%) | Line (10%) | Texture (10%) | Color (10%) | Content (10%) | Style (10%) | CategorizedTotal |
---|---|---|---|---|---|---|---|---|
Style Transfer/TransformNew Style | AAMS [159] | 3.910 | 3.637 | 3.672 | 3.706 | 3.682 | 3.881 | 3.813 |
ASTSAN [110] | 3.378 | 3.328 | 3.308 | 3.318 | 3.338 | 3.373 | 3.356 | |
URUST [144] | 3.244 | 3.104 | 3.234 | 3.164 | 3.209 | 3.239 | 3.217 | |
SID [21] | 3.602 | 3.318 | 3.423 | 3.323 | 3.498 | 3.473 | 3.504 | |
AesPA-Net [60] | 3.861 | 3.448 | 3.622 | 3.493 | 3.537 | 3.552 | 3.696 | |
CAST [168] | 3.741 | 3.433 | 3.562 | 3.488 | 3.512 | 3.562 | 3.626 | |
StyTR2 [23] | 3.811 | 3.532 | 3.602 | 3.582 | 3.562 | 3.642 | 3.698 | |
EFDM [167] | 3.692 | 3.353 | 3.567 | 3.443 | 3.522 | 3.493 | 3.584 | |
MAST [24] | 3.478 | 3.119 | 3.174 | 3.219 | 3.164 | 3.343 | 3.341 | |
AdaAttN [95] | 3.736 | 3.343 | 3.438 | 3.403 | 3.398 | 3.463 | 3.573 | |
AdaIN [63] | 3.746 | 3.373 | 3.537 | 3.502 | 3.488 | 3.612 | 3.624 | |
DiffuseIT [80] | 3.388 | 3.139 | 3.279 | 3.159 | 3.184 | 3.214 | 3.292 | |
InST [166] | 3.493 | 3.229 | 3.323 | 3.279 | 3.289 | 3.428 | 3.401 | |
DiffStyle [67] | 3.458 | 3.065 | 3.323 | 3.119 | 3.164 | 3.149 | 3.311 | |
CycleGAN [170] | 3.674 | 3.378 | 3.376 | 3.453 | 3.398 | 3.425 | 3.540 | |
Gated-GAN [14] | 3.881 | 3.532 | 3.597 | 3.542 | 3.542 | 3.776 | 3.739 | |
StarGAN [18] | 3.537 | 3.164 | 3.363 | 3.358 | 3.333 | 3.249 | 3.415 | |
StarGAN v2 [19] | 3.493 | 3.204 | 3.333 | 3.224 | 3.289 | 3.388 | 3.390 | |
H-SRC [72] | 3.224 | 2.945 | 3.085 | 3.025 | 3.070 | 3.055 | 3.130 | |
MSC [10] | 3.562 | 3.249 | 3.483 | 3.284 | 3.378 | 3.423 | 3.463 | |
Photo-to-Cartoon | GANs N’ Roses [20] | 3.826 | 3.458 | 3.653 | 3.522 | 3.595 | 3.784 | 3.714 |
U-GAT-IT [77] | 3.690 | 3.378 | 3.530 | 3.439 | 3.479 | 3.464 | 3.574 | |
WBC [147] | 3.578 | 3.362 | 3.453 | 3.374 | 3.408 | 3.311 | 3.480 | |
CartoonGAN [15] | 3.577 | 3.179 | 3.507 | 3.338 | 3.224 | 3.373 | 3.451 | |
MSCartoonGAN [125] | 3.552 | 3.299 | 3.393 | 3.343 | 3.328 | 3.358 | 3.448 | |
Line Drawing | LGLD [13] | 3.831 | 3.532 | 3.577 | 3.368 | 3.662 | 3.697 | 3.699 |
APDrawingGAN++ [162] | 3.682 | 3.353 | 3.612 | 3.348 | 3.468 | 3.597 | 3.579 | |
APDrawingGAN [161] | 3.905 | 3.537 | 3.617 | 3.418 | 3.572 | 3.796 | 3.747 | |
Photo-sketching [85] | 3.109 | 2.900 | 2.960 | 2.771 | 2.950 | 3.279 | 3.041 | |
DoodlerGAN [41] | 3.308 | 3.144 | 3.134 | 2.905 | 3.119 | 3.279 | 3.212 | |
Stroke-by-Stroke Painting | NP [109] | 3.776 | 3.338 | 3.527 | 3.433 | 3.473 | 3.408 | 3.606 |
MDRLP [64] | 3.627 | 3.318 | 3.393 | 3.363 | 3.423 | 3.498 | 3.513 | |
SNP [171] | 3.697 | 3.343 | 3.488 | 3.403 | 3.463 | 3.602 | 3.578 | |
Stroke-GAN Painter [145] | 3.893 | 3.433 | 3.513 | 3.423 | 3.664 | 3.725 | 3.722 | |
PaintTransformer [94] | 3.653 | 3.375 | 3.443 | 3.378 | 3.491 | 3.564 | 3.552 | |
Intelli-paint [127] | 3.985 | 3.226 | 3.586 | 3.441 | 3.786 | 3.786 | 3.775 | |
Im2Oil [137] | 3.901 | 3.315 | 3.688 | 3.412 | 3.878 | 3.823 | 3.762 | |
RST [79] | 3.866 | 3.443 | 3.557 | 3.389 | 3.927 | 3.886 | 3.753 | |
PST [98] | 3.987 | 3.586 | 3.732 | 3.443 | 3.998 | 3.923 | 3.862 | |
Average | 3.650 | 3.318 | 3.453 | 3.349 | 3.448 | 3.510 | 3.533 |
6 Challenges and Opportunities
6.1 Challenges
6.1.1 Fidelity vs. Creativity.
6.1.2 Creation Order.
6.1.3 Abstract Art.
6.1.4 Multi-Style.
6.1.5 Aesthetic Evaluation.
6.2 Technological Advancement
6.3 Opportunities
6.3.1 Social Media Requirements.
6.3.2 Education Requirements.
6.3.3 Art Diversity.
6.3.4 Commercial Values.
6.3.5 AI Evaluation for AI Artworks.
7 Conclusion
Supplemental Material
- Download
- 368.04 KB
References
Index Terms
- Learning-based Artificial Intelligence Artwork: Methodology Taxonomy and Quality Evaluation
Recommendations
Keep Running - AI Paintings of Horse Figure and Portrait
MM '20: Proceedings of the 28th ACM International Conference on Multimedia"Keep Running" is a collection of human and machine generated paintings using a generative adversarial network technology. The horse artworks are produced during the lockdown period in the Middle East due to the Covid-19. Many recent AI artworks are ...
The Impact of Generative AI on Artists
C&C '24: Proceedings of the 16th Conference on Creativity & CognitionGenerative AI has the potential to augment artists’ creative expression, while simultaneously harming their professions through unethical data collection practices and replacement of human labor. We conducted a thematic analysis of social media posts to ...
Does human–AI collaboration lead to more creative art? Aesthetic evaluation of human-made and AI-generated haiku poetry
AbstractWith the development of technology, the quality of AI-generated text has improved. This is relevant in the AI art field, where AI generates literature or poetry that is appreciated. This study compared human-made and AI-generated haiku ...
Highlights- Human-made and AI-generated poetry were examined using haiku poetry.
- The beauty ...
Comments
Information & Contributors
Information
Published In
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Survey
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 760Total Downloads
- Downloads (Last 12 months)760
- Downloads (Last 6 weeks)612
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in