skip to main content
survey

The Landscape of User-centered Misinformation Interventions - A Systematic Literature Review

Published: 22 July 2024 Publication History

Abstract

Misinformation is one of the key challenges facing society today. User-centered misinformation interventions as digital countermeasures that exert a direct influence on users represent a promising means to deal with the large amounts of information available. While an extensive body of research on this topic exists, researchers are confronted with a diverse research landscape spanning multiple disciplines. This review systematizes the landscape of user-centered misinformation interventions to facilitate knowledge transfer, identify trends, and enable informed decision-making. Over 6,000 scholarly publications were screened, and a systematic literature review (N=172) was conducted. A taxonomy was derived regarding intervention design (e.g., labels, showing indicators of misinformation, corrections, removal, or visibility reduction of content), user interaction (active or passive), and timing (e.g., pre or post exposure to misinformation or on request of the user). We provide a structured overview of approaches across multiple disciplines and derive six overarching challenges for future research regarding transferability of approaches to (1) novel platforms and (2) emerging video- and image-based misinformation, the sensible combination of automated mechanisms with (3) human experts and (4) user-centered feedback to facilitate comprehensibility, (5) encouraging media literacy without misinformation exposure, and (6) adequately addressing particularly vulnerable users such as older people or adolescents.

Supplementary Material

3674724.supp (3674724.supp.pdf)
Supplementary material

References

[1]
Zhila Aghajari, Eric Baumer, and Dominic Difranzo. 2023. Reviewing interventions to address misinformation: The need to expand our vision beyond an individualistic focus. Proceedings of the ACM on Human-Computer Interaction 7, CSCW1 (Jan.2023), 1–34. DOI:DOI:
[2]
Jon Agley, Yunyu Xiao, Esi Thompson, Xiwei Chen, and Lilian Golzarri-Arroyo. 2021. Intervening on trust in science to reduce belief in COVID-19 misinformation and increase COVID-19 preventive behavioral intentions: Randomized controlled trial. Journal of Medical Internet Research 23, 10 (Oct.2021), e32425. DOI:DOI:
[3]
Michael Aird, Ulrich Ecker, Briony Swire, Adam Berinsky, and Stephan Lewandowsky. 2018. Does truth matter to voters? The effects of correcting political misinformation in an Australian sample. Royal Society Open Science 5, 12 (Dec.2018), 180593. DOI:DOI:
[4]
Malik Almaliki. 2019. Misinformation-aware social media: A software engineering perspective. IEEE Access 7, 12 (2019), 182451–182458. DOI:DOI:.
[5]
Malik Almaliki. 2019. Online misinformation spread: A systematic literature map. In Proceedings of the 2019 3rd International Conference on Information System and Data Mining (ICISDM 2019). ACM, New York, NY, USA, 171–178. DOI:DOI:
[6]
Zaid Amin, Nazlena Mohamad Ali, and Alan F. Smeaton. 2021. Visual selective attention system to intervene user attention in sharing COVID-19 misinformation. International Journal of Advanced Computer Science and Applications 12, 10 (2021), 36–41. DOI:DOI:
[7]
Simge Andi and Jesper Akesson. 2020. Nudging away false news: Evidence from a social norms experiment. Digital Journalism 9, 1 (Nov.2020), 106–125. DOI:DOI:
[8]
Alberto Ardevol-Abreu, Patricia Delponti, and Carmen Rodriguez-Wanguemert. 2020. Intentional or inadvertent fake news sharing? Fact-checking warnings and users’ interaction with social media content. Profesional de la Informacion 29, 5 (Sept.2020), 1–13. DOI:DOI:
[9]
Kevin Aslett, Andrew M. Guess, Richard Bonneau, Jonathan Nagler, and Joshua A. Tucker. 2022. News credibility labels have limited average effects on news diet quality and fail to reduce misperceptions. Science Advances 8, 18 (May2022), eabl3844. DOI:DOI:
[10]
Shubham Atreja, Libby Hemphill, and Paul Resnick. 2023. Remove, reduce, inform: What actions do people want social media platforms to take on potentially misleading content? Proceedings of the ACM on Human-Computer Interaction 7, CSCW2, Article 291 (Oct.2023), 33 pages. DOI:DOI:
[11]
Kevin Autry and Shea Duarte. 2021. Correcting the unknown: Negated corrections may increase belief in misinformation. Applied Cognitive Psychology 35, 4 (July2021), 960–975. DOI:DOI:
[12]
Carl-Anton Werner Axelsson, Mona Guath, and Thomas Nygren. 2021. Learning how to separate fake from real news: Scalable digital tutorials promoting students’ civic online reasoning. Future Internet 13, 3 (Mar.2021), 60. DOI:DOI:
[13]
Jackie Ayoub, X. Jessie Yang, and Feng Zhou. 2021. Combat COVID-19 infodemic using explainable natural language processing models. Information Processing & Management 58, 4 (July2021), 102569. DOI:DOI:
[14]
Ingrid Bachmann and Sebastian Valenzuela. 2023. Studying the downstream effects of fact-checking on social media: Experiments on correction formats, belief accuracy, and media trust. Social Media + Society 9, 20563051231179694 (June2023), 1–13. DOI:DOI:
[15]
Joseph B. Bak-Coleman, Ian Kennedy, Morgan Wack, Andrew Beers, Joseph S. Schafer, Emma S. Spiro, Kate Starbird, and Jevin D. West. 2022. Combining interventions to reduce the spread of viral misinformation. Nature Human Behaviour 6, 10 (Oct.2022), 1372–+. DOI:DOI:
[16]
Dipto Barman and Owen Colan. 2023. Does explanation matter? An exploratory study on the effects of Covid–19 misinformation warning flags on social media. In Proceedings of the 2023 10th International Conference on Behavioural and Social Computing (BESC). IEEE, 1–7. DOI:DOI:
[17]
Ranojoy Barua, Rajdeep Maity, Dipankar Minj, Tarang Barua, and Ashish Kumar Layek. 2019. F-NAD: An application for fake news article detection using machine learning techniques. In Proceedings of the 2019 IEEE Bombay Section Signature Conference (IBSSC). IEEE, 1–6. DOI:DOI:
[18]
Md Momen Bhuiyan, Michael Horning, Sang Won Lee, and Tanushree Mitra. 2021. NudgeCred: Supporting news credibility assessment on social media through nudges. Proceedings of the ACM on Human-Computer Interaction 5, CSCW2 (Oct.2021), 427:1–427:30. DOI:DOI:
[19]
MD Momen Bhuiyan, Hayden Whitley, Michael Horning, Sang Won Lee, and Tanushree Mitra. 2021. Designing transparency cues in online news platforms to promote trust: Journalists’ & consumers’ perspectives. Proceedings of the ACM on Human-Computer Interaction 5, CSCW2 (Oct.2021), 395:1–395:31. DOI:DOI:
[20]
Md Momen Bhuiyan, Kexin Zhang, Kelsey Vick, Michael A. Horning, and Tanushree Mitra. 2018. FeedReflect: A tool for nudging users to assess news credibility on Twitter. In Companion of the 2018 ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW ’18). ACM, New York, NY, USA, 205–208. DOI:DOI:
[21]
Robert A. Blair, Jessica Gottlieb, Brendan Nyhan, Laura Paler, Pablo Argote, and Charlene J. Stainfield. 2024. Interventions to counter misinformation: Lessons from the global north and applications to the global south. Current Opinion in Psychology 55, 101732 (Feb. 2024), 1–10. DOI:DOI:
[22]
Leticia Bode and Emily K. Vraga. 2015. In related news, that was wrong: The correction of misinformation through related stories functionality in social media. Journal of Communication 65, 4 (Aug.2015), 619–638. DOI:DOI:
[23]
L. Bode and E.K. Vraga. 2018. See something, say something: Correction of global health misinformation on social media. Health Communication 33, 9 (2018), 1131–1140. DOI:DOI:
[24]
Lia Bozarth, Jane Im, Christopher Quarles, and Ceren Budak. 2023. Wisdom of two crowds: Misinformation moderation on reddit and how to improve this process—a case study of COVID-19. Proceedings of the ACM on Human-Computer Interaction 7, CSCW1, Article 155 (Apr.2023), 33 pages. DOI:DOI:
[25]
Nadia M. Brashier, Gordon Pennycook, Adam J. Berinsky, and David G. Rand. 2021. Timing matters when correcting fake news. Proceedings of the National Academy of Science of the United States of America 118, 5 (Feb.2021), e2020043118. DOI:DOI:
[26]
Adrian M. P. Braşoveanu and Răzvan Andonie. 2019. Semantic fake news detection: A machine learning perspective. In Advances in Computational Intelligence. Ignacio Rojas, Gonzalo Joya, and Andreu Catala (Eds.), Vol. 11506, Springer International Publishing, Cham, 656–667. DOI:DOI:
[27]
Sonja Buchegger and Jean-Yves Le Boudec. 2003. The effect of rumor spreading in reputation systems for mobile ad-hoc networks. In Proceedings of the WiOpt’03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks. IEEE, 1–10.
[28]
Klara Austeja Buczel, Adam Siwiak, Malwina Szpitalak, and Romuald Polczyk. 2024. How do forewarnings and post-warnings affect misinformation reliance? The impact of warnings on the continued influence effect and belief regression. Memory & Cognition 52, 2 (2024), 1–17. DOI:DOI:
[29]
Danielle Caled and Mário J. Silva. 2021. Digital media and misinformation: An outlook on multidisciplinary strategies against manipulation. Journal of Computational Social Science 5, 1 (May2021), 123–159. DOI:DOI:
[30]
Valerio Capraro and Tatiana Celadin. 2022. ”I think this news is accurate”: Endorsing accuracy decreases the sharing of fake news and increases the sharing of real news. Personality and Social Psychology Bulletin 0, 0 (2022), 1–11. DOI:DOI:
[31]
Kevin Matthe Caramancion. 2022. Quantification of infographic intervention effect on mis/disinformation vulnerability. In Proceedings of the 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT). IEEE, 297–300. DOI:DOI:
[32]
Aimee Challenger, Petroc Sumner, and Lewis Bott. 2022. COVID-19 myth-busting: An experimental study. BMC Public Health 22, 1 (Jan.2022), 131. DOI:DOI:
[33]
Man-pui Sally Chan and Dolores Albarracin. 2023. A meta-analysis of correction effects in science-relevant misinformation. Nature Human Behaviour 7, 9 (Sep. 2023), 1514–1525. DOI:DOI:
[34]
Guangyu Chen, Paolo Ciuccarelli, and Sara Colombo. 2022. VisualBubble: Exploring how reflection-oriented user experiences affect users’ awareness of their exposure to misinformation on social media. In Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems (CHI EA ’22). ACM, New York, NY, USA, Article 289, 7 pages. DOI:DOI:
[35]
Liang Chen and Hongjie Tang. 2022. Examining the persuasion process of narrative fear appeals on health misinformation correction. Information, Communication & Society 26, 15 (Oct.2022), 1–19. DOI:DOI:
[36]
Sijing Chen, Lu Xiao, and Akit Kumar. 2022. Spread of misinformation on social media: What contributes to it and how to combat it. Computers in Human Behavior 141, 2023 (Dec.2022), 107643. DOI:DOI:
[37]
Tosti H. C. Chiang, Chih-Shan Liao, and Wei-Ching Wang. 2022. Impact of artificial intelligence news source credibility identification system on effectiveness of media literacy education. Sustainability 14, 8 (Apr.2022), 4830. DOI:DOI:
[38]
Katherine Clayton, Spencer Blair, Jonathan A. Busam, Samuel Forstner, John Glance, Guy Green, Anna Kawata, Akhila Kovvuri, Jonathan Martin, Evan Morgan, Morgan Sandhu, Rachel Sang, Rachel Scholz-Bright, Austin T. Welch, Andrew G. Wolff, Amanda Zhou, and Brendan Nyhan. 2020. Real solutions for fake news? Measuring the effectiveness of general warnings and fact-check tags in reducing belief in false stories on social media. Political Behavior 42, 4 (Dec.2020), 1073–1095. DOI:DOI:
[39]
Michael Craig and Santosh Vijaykumar. 2023. One dose is not enough: The beneficial effect of corrective COVID-19 information is diminished if followed by misinformation. Social Media + Society 9, 20563051231161298 (Apr.2023), 1–14. DOI:DOI:
[40]
Shih-Chieh Dai, Yi-Li Hsu, Aiping Xiong, and Lun-Wei Ku. 2022. Ask to know more: Generating counterfactual explanations for fake claims. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’22). ACM, New York, NY, USA, 2800–2810. DOI:DOI:
[41]
Yue Dai. 2021. The effects of message order and debiasing information in misinformation correction. International Journal of Communication 15, 2021 (2021), 1039–1059.
[42]
Valdemar Danry, Pat Pataranutaporn, Yaoli Mao, and Pattie Maes. 2020. Wearable reasoner: Towards enhanced human rationality through a wearable device with an explainable AI assistant. In Proceedings of the Augmented Humans International Conference (AHs ’20). ACM, New York, NY, USA, 1–12. DOI:DOI:
[43]
Nora Denner, Benno Viererbl, and Thomas Koch. 2023. Effects of repeated corrections of misinformation on organizational trust: More is not always better. International Journal of Strategy Communication 17, 1 (Jan.2023), 39–53. DOI:DOI:
[44]
Saoirse Connor Desai and Stian Reimers. 2023. Does explaining the origins of misinformation improve the effectiveness of a given correction? Memory & Cognition 51, 2 (2023), 422–436. DOI:DOI:
[45]
Tom Dobber, Sanne Kruikemeier, Fabio Votta, Natali Helberger, and Ellen P. Goodman. 2023. The effect of traffic light veracity labels on perceptions of political advertising source and message credibility on social media. Journal of Information Technology and Politics 20, 6 (2023), 1–16. DOI:DOI:.
[46]
Shawn Domgaard and Mina Park. 2021. Combating misinformation: The effects of infographics in verifying false vaccine news. Health Education Journal 80, 8 (Dec.2021), 974–986. DOI:DOI:
[47]
Chiara Patricia Drolsbach and Nicolas Pröllochs. 2023. Diffusion of community fact-checked misinformation on Twitter. Proceedings of the ACM on Human-Computer Interaction 7, CSCW2, Article 267 (Oct.2023), 22 pages. DOI:DOI:
[48]
Megan Duncan. 2020. What’s in a label? Negative credibility labels in partisan news. Journalism & Mass Communication Quarterly 99, 2 (Oct.2020), 390–413. DOI:DOI:
[49]
Ulrich K. H. Ecker, Lucy H. Butler, and Anne Hamby. 2020. You don’t have to tell a story! A registered report testing the effectiveness of narrative versus non-narrative misinformation corrections. Cognitive Research: Principles and Implications 5, 1 (Dec.2020), 1–26. DOI:DOI:
[50]
Ullrich K. H. Ecker, Joshua L. Hogan, and Stephan Lewandowsky. 2017. Reminders and repetition of misinformation: Helping or hindering its retraction?: Journal of applied research in memory and cognition. Journal of Applied Research in Memory and Cognition 6, 2 (June2017), 185–192. DOI:DOI:
[51]
U.K.H. Ecker, S. Lewandowsky, and M. Chadwick. 2020. Can corrections spread misinformation to new audiences? Testing for the elusive familiarity backfire effect. Cognitive Research: Principles and Implications 5, 1 (Aug.2020), 1–25. DOI:DOI:
[52]
U.K.H. Ecker, S. Lewandowsky, B. Swire, and D. Chang. 2011. Correcting false information in memory: Manipulating the strength of misinformation encoding and its retraction. Psychonomic Bulletin & Review 18, 3 (June2011), 570–578. DOI:DOI:
[53]
Rob Ennals, Beth Trushkowsky, and John Mark Agosta. 2010. Highlighting disputed claims on the web. In Proceedings of the 19th International Conference on World Wide Web. ACM, 341–350. DOI:DOI:
[54]
Ziv Epstein, Gordon Pennycook, and David Gertler Rand. 2020. Will the crowd game the algorithm? Using layperson judgments to combat misinformation on social media by downranking distrusted sources. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA. DOI:DOI:
[55]
K. J. Kevin Feng, Nick Ritchie, Pia Blumenthal, Andy Parsons, and Amy X. Zhang. 2023. Examining the impact of provenance-enabled media on trust and accuracy perceptions. Proceedings of the ACM on Human-Computer Interaction 7, CSCW2, Article 270 (Oct.2023), 42 pages. DOI:DOI:
[56]
Kathrin Figl, Samuel Kiessling, and Ulrich Remus. 2023. Do symbol and device matter? The effects of symbol choice of fake news flags and device on human interaction with fake news on social media platforms. Computers in Human Behavior 144, 107704 (2023), 1–16. DOI:DOI:
[57]
Frans Folkvord, Freek Snelting, Doeschka Anschutz, Tilo Hartmann, Alexandra Theben, Laura Gunderson, Ivar Vermeulen, and Francisco Lupiáñez-Villanueva. 2022. Effect of source type and protective message on the critical evaluation of news messages on Facebook: Randomized controlled trial in the Netherlands. Journal of Medical Internet Research 24, 3 (Mar.2022), e27945. DOI:DOI:
[58]
Anjuli Franz, Verena Zimmermann, Gregor Albrecht, Katrin Hartwig, Christian Reuter, Alexander Benlian, and Joachim Vogt. 2021. SoK: Still plenty of phish in the sea — a taxonomy of user-oriented phishing interventions and avenues for future research. In Proceedings of the 17th Symposium on Usable Privacy and Security (SOUPS 2021). USENIX, Virtual Event, 339–358.
[59]
Melanie Freeze, Mary Baumgartner, Peter Bruno, Jacob R. Gunderson, Joshua Olin, Morgan Quinn Ross, and Justine Szafran. 2021. Fake claims of fake news: Political misinformation, warnings, and the tainted truth effect. Political Behavior 43, 4 (Dec.2021), 1433–1465. DOI:DOI:
[60]
Tomoya Furuta and Yu Suzuki. 2021. A fact-checking assistant system for textual documents. In Proceedings of the 2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE, 243–246. DOI:DOI:
[61]
Vijaya Gadde and Matt Derella. 2020. An Update on Our Continuity Strategy during COVID-19. (March2020). https://blog.x.com/en_us/topics/company/2020/An-update-on-our-continuity-strategy-during-COVID-19
[62]
Mingkun Gao, Ziang Xiao, Karrie Karahalios, and Wai-Tat Fu. 2018. To label or not to label: The effect of stance and credibility labels on readers’ selection and perception of news articles. Proceedings of the ACM on Human-Computer Interaction 2, CSCW (Nov.2018), 55:1–55:16. DOI:DOI:
[63]
Anat Gesser-Edelsburg, Alon Diamant, Rana Hijazi, and Gustavo S. Mesch. 2018. Correcting misinformation by health organizations during measles outbreaks: A controlled experiment. PloS One 13, 12 (Dec.2018), e0209505. DOI:DOI:
[64]
Rebecca Hofstein Grady, Peter Ditto, and Elizabeth Loftus. 2021. Nevertheless, partisanship persisted: Fake news warnings help briefly, but bias returns with time. Cognitive Research-Principles and Implications 6, 1 (July2021), 1–16. DOI:DOI:
[65]
Sukeshini Grandhi, Linda Plotnick, and Starr Roxanne Hiltz. 2021. By the crowd and for the crowd: Perceived utility and willingness to contribute to trustworthiness indicators on social media. Proceedings of the ACM on Human-Computer Interaction 5, GROUP (July2021), 1–24. DOI:DOI:
[66]
Brian Guay, Adam J. Berinsky, Gordon Pennycook, and David Rand. 2023. How to think about whether misinformation interventions work. Nature Human Behaviour 7, 8 (Aug. 2023), 1231–1233. DOI:DOI:
[67]
Andrew M. Guess, Michael Lerner, Benjamin Lyons, Jacob M. Montgomery, Brendan Nyhan, Jason Reifler, and Neelanjan Sircar. 2020. A digital media literacy intervention increases discernment between mainstream and false news in the United States and India. Proceedings of the Nationale Academy of Science of the United States of America 117, 27 (July2020), 15536–15545. DOI:DOI:
[68]
Bin Guo, Yasan Ding, Lina Yao, Yunji Liang, and Zhiwen Yu. 2021. The future of false information detection on social media: New perspectives and trends. ACM Computing Surveys 53, 4 (July2021), 1–36. DOI:DOI:
[69]
Chen Guo, Nan Zheng, and Chengqi (John) Guo. 2023. Seeing is not believing: A nuanced view of misinformation warning efficacy on video-sharing social media platforms. Proceedings of the ACM on Human-Computer Interaction 7, CSCW2, Article 294 (Oct.2023), 35 pages. DOI:DOI:
[70]
Michael Hameleers. 2022. Separating truth from lies: Comparing the effects of news media literacy interventions and fact-checkers in response to political misinformation in the US and Netherlands. Information, Communication & Society 25, 1 (Jan.2022), 110–126. DOI:DOI:
[71]
Michael Hameleers, Thomas E. Powell, Toni G.L.A. Van Der Meer, and Lieke Bos. 2020. A picture paints a thousand lies? The effects and mechanisms of multimodal disinformation and rebuttals disseminated via social media. Political Communication 37, 2 (Mar.2020), 281–301. DOI:DOI:
[72]
Michael Hameleers and Toni van der Meer. 2023. Striking the balance between fake and real: Under what conditions can media literacy messages that warn about misinformation maintain trust in accurate information? Behaviour & Information Technology 42, 9 (2023), 1–14. DOI:DOI:
[73]
Aniko Hannak, Drew Margolin, Brian Keegan, and Ingmar Weber. 2014. Get back! You don’t know me like that: The social mediation of fact-checking interventions in Twitter conversations. In Proceedings of the International AAAI Conference on Web and Social Media, Vol. 8. AAAI, Michigan, USA, 187–196.
[74]
Katrin Hartwig, Tom Biselli, Franziska Schneider, and Christian Reuter. 2024. From adolescents’ eyes: Assessing an indicator-based intervention to combat misinformation on TikTok. In Proceedings of the CHI Conference on Human Factors in Computing Systems. ACM, 1–20. DOI:DOI:
[75]
Katrin Hartwig and Christian Reuter. 2022. Nudging users towards better security decisions in password creation using whitebox-based multidimensional visualisations. Behaviour & Information Technology 41, 7 (May2022), 1357–1380. DOI:DOI:
[76]
Katrin Hartwig, Ruslan Sandler, and Christian Reuter. 2024. Navigating misinformation in voice messages: Identification of user-centered features for digital interventions. Risk, Hazards & Crisis in Public Policy 0, 0 (2024), 1–33. DOI:DOI:
[77]
Katrin Hartwig, Stefka Schmid, Tom Biselli, Helene Pleil, and Christian Reuter. 2024. Misleading information in crises: Exploring content-specific indicators on Twitter from a user perspective. Behaviour & Information Technology (2024), 1–45.
[78]
Sarah Hawa, Lanita Lobo, Unnati Dogra, and Vijaya Kamble. 2021. Combating misinformation dissemination through verification and content driven recommendation. In Proceedings of the 2021 3rd International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). Curran Associates, 917–924. DOI:DOI:
[79]
Stefan Helmstetter and Heiko Paulheim. 2018. Weakly supervised learning for fake news detection on Twitter. In Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 274–277. DOI:DOI:
[80]
Hendrik Heuer and Elena Leah Glassman. 2022. A comparative evaluation of interventions against misinformation: Augmenting the WHO checklist. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (CHI ’22). ACM, New York, NY, USA, Article 241, 21 pages. DOI:DOI:
[81]
Benjamin D. Horne, Mauricio Gruppi, and Sibel Adali. 2019. Trustworthy misinformation mitigation with soft information nudging. In Proceedings of the 2019 1st IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). IEEE, 245–254. DOI:DOI:
[82]
Yan Huang and Weirui Wang. 2022. When a story contradicts: Correcting health misinformation on social media through different message formats and mechanisms. Information Communication & Society 25, 8 (2022), 1192–1209.
[83]
Dulcie Irving, Robbie W. A. Clark, Stephan Lewandowsky, and Peter J. Allen. 2022. Correcting statistical misinformation about scientific findings in the media: Causation versus correlation. Journal of Experimental Psychology-Applied 28, 1 (2022), 1–9. DOI:DOI:
[84]
Matthew O. Jackson, Suraj Malladi, and David McAdams. 2022. Learning through the grapevine and the impact of the breadth and depth of social networks. Proceedings of the National Academy of Sciences 119, 34 (Aug.2022), e2205549119. DOI:DOI:
[85]
Farnaz Jahanbakhsh and David R. Karger. 2024. A browser extension for in-place signaling and assessment of misinformation. In Proceedings of the CHI Conference on Human Factors in Computing Systems. ACM, 1–21. DOI:DOI:
[86]
Farnaz Jahanbakhsh, Yannis Katsis, Dakuo Wang, Lucian Popa, and Michael Muller. 2023. Exploring the use of personalized AI for identifying misinformation on social media. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23). ACM, New York, NY, USA, Article 105, 27 pages. DOI:DOI:
[87]
Farnaz Jahanbakhsh, Amy X. Zhang, Adam J. Berinsky, Gordon Pennycook, David G. Rand, and David R. Karger. 2021. Exploring lightweight interventions at posting time to reduce the sharing of misinformation on social media. Proceedings of the ACM on Human-Computer Interaction 5, CSCW1 (Apr.2021), 18:1–18:42. DOI:DOI:
[88]
Farnaz Jahanbakhsh, Amy X. Zhang, Karrie Karahalios, and David R. Karger. 2022. Our browser extension lets readers change the headlines on news articles, and you won’t believe what they did! Proceedings of the ACM on Human-Computer Interaction 6, CSCW2, Article 530 (Nov.2022), 33 pages. DOI:DOI:
[89]
Farnaz Jahanbakhsh, Amy X. Zhang, and David R. Karger. 2022. Leveraging structured trusted-peer assessments to combat misinformation. Proceedings of the ACM on Human-Computer Interaction 6, CSCW2 (Nov.2022), 524:1–524:40. DOI:DOI:
[90]
M. Rosie Jahng, Elizabeth Stoycheff, and Annisa Rochadiat. 2021. They said it’s “fake“: Effects of discounting cues in online comments on information quality judgments and information authentication. Mass Communication and Society 24, 4 (July2021), 527–552. DOI:DOI:
[91]
Kamila Janmohamed, Nathan Walter, Kate Nyhan, Kaveh Khoshnood, Joseph D. Tucker, Natalie Sangngam, Frederick L. Altice, Qinglan Ding, Allie Wong, Zachary M. Schwitzky, Chris T. Bauch, Munmun De Choudhury, Orestis Papakyriakopoulos, and Navin Kumar. 2021. Interventions to mitigate COVID-19 misinformation: A systematic review and meta-analysis. Journal of Health Communication 26, 12 (Dec 2 2021), 846–857. DOI:DOI:
[92]
Jay Jennings and Natalie Jomini Stroud. 2021. Asymmetric adjustment: Partisanship and correcting misinformation on facebook. New Media & Society 0, 0 (June2021), 146144482110217. DOI:DOI:
[93]
Youngseung Jeon, Jaehoon Kim, Sohyun Park, Yunyong Ko, Seongeun Ryu, Sang-Wook Kim, and Kyungsik Han. 2024. HearHere: Mitigating echo chambers in news consumption through an AI-based web system. Proceedings of the ACM on Human-Computer Interaction 8, CSCW1 (Apr.2024), 1–34. DOI:DOI:
[94]
Jennifer Jerit and Yangzi Zhao. 2020. Political misinformation. Annual Review of Political Science 23, 1 (May2020), 77–94. DOI:DOI:
[95]
Chenyan Jia, Alexander Boltz, Angie Zhang, Anqing Chen, and Min Kyung Lee. 2022. Understanding effects of algorithmic vs. community label on perceived accuracy of hyper-partisan misinformation. Proceedings of the ACM on Human-Computer Interaction 6, CSCW2 (Nov.2022), 371:1–371:27. DOI:DOI:
[96]
Gargi Joshi, Ananya Srivastava, Bhargav Yagnik, Mohammed Hasan, Zainuddin Saiyed, Lubna A. Gabralla, Ajith Abraham, Rahee Walambe, and Ketan Kotecha. 2023. Explainable misinformation detection across multiple social media platforms. IEEE Access : Practical Innovations, Open Solutions 11, 3 (2023), 23634–23646. DOI:DOI:
[97]
Alireza Karduni, Isaac Cho, Ryan Wesslen, Sashank Santhanam, Svitlana Volkova, Dustin L. Arendt, Samira Shaikh, and Wenwen Dou. 2019. Vulnerable to misinformation? Verifi!. In Proceedings of the 24th International Conference on Intelligent User Interfaces (IUI ’19). ACM, New York, NY, USA, 312–323. DOI:DOI:
[98]
Sabrina Heike Kessler and Eva Bachmann. 2022. Debunking health myths on the internet: The persuasive effect of (visual) online communication. Journal of Public Health-Heidelberg 30, 8 (Aug.2022), 1823–1835. DOI:DOI:
[99]
Yash Khivasara, Yash Khare, and Tejas Bhadane. 2020. Fake news detection system using web-extension. In Proceedings of the 2020 IEEE Pune Section International Conference (PuneCon). IEEE, 119–123. DOI:DOI:
[100]
Antino Kim, Patricia L. Moravec, and Alan R. Dennis. 2019. Combating fake news on social media with source ratings: The effects of user and expert reputation ratings. Journal of Managment Information Systems 36, 3 (July2019), 931–968. DOI:DOI:
[101]
Paul Kim, Ziyu Fan, Lance Fernando, Jacques Sham, Crystal Sun, Yixin Sun, Brian Wright, Xi Yang, Nicholas Ross, and Diane Myung-kyung Woodbridge. 2019. Controversy score calculation for news articles. In Proceedings of the 2019 1st International Conference on Transdisciplinary AI (TransAI). IEEE, 56–63. DOI:DOI:
[102]
Sojung Claire Kim, Emily K. Vraga, and John Cook. 2021. An eye tracking approach to understanding misinformation and correction strategies on social media: The mediating role of attention and credibility to reduce HPV vaccine misperceptions. Health Communication 36, 13 (Nov.2021), 1687–1696. DOI:DOI:
[103]
Yeongdae Kim, Takane Ueno, Katie Seaborn, Hiroki Oura, Jacqueline Urakami, and Yuto Sawa. 2023. Exoskeleton for the mind: Exploring strategies against misinformation with a metacognitive agent. In Proceedings of the Augmented Humans International Conference 2023 (AHs ’23). ACM, New York, NY, USA, 209–220. DOI:DOI:
[104]
Jan Kirchner and Christian Reuter. 2020. Countering fake news: A comparison of possible solutions regarding user acceptance and effectiveness. Proceedings of the ACM on Human-Computer Interaction 4, CSCW2 (Oct.2020), 1–27. DOI:DOI:
[105]
Timo K. Koch, Lena Frischlich, and Eva Lermer. 2023. Effects of fact-checking warning labels and social endorsement cues on climate change fake news credibility and engagement on social media. Journal of Applied Social Psychology 53, 6 (2023), 495–507. DOI:DOI:
[106]
Nadejda Komendantova, Love Ekenberg, Mattias Svahn, Aron Larsson, Syed Iftikhar Hussain Shah, Myrsini Glinos, Vasilis Koulolias, and Mats Danielson. 2021. A value-driven approach to addressing misinformation in social media. Humanities and Social Sciences Communications 8, 1 (Jan.2021), 1–12. DOI:DOI:
[107]
Sarah E. Kreps and Douglas L. Kriner. 2022. The COVID-19 infodemic and the efficacy of interventions intended to reduce misinformation. Public Opinion Quarterly 86, 1 (Mar.2022), 162–175. DOI:DOI:
[108]
Jiyoung Lee. 2022. The effect of web add-on correction and narrative correction on belief in misinformation depending on motivations for using social media. Behaviour & Information Technology 41, 3 (2022), 629–643.
[109]
Jiyoung Lee and Kim Bissell. 2023. User agency-based versus machine agency-based misinformation interventions: The effects of commenting and AI fact-checking labeling on attitudes toward the COVID-19 vaccination. New Media & Society 25, 4 (2023), 1–21. DOI:DOI:
[110]
Jiyoung Lee and Kim Bissell. 2024. Correcting vaccine misinformation on social media: The inadvertent effects of repeating misinformation within such corrections on COVID-19 vaccine misperceptions. Current Psychology 43, 1 (2024), 1–13. DOI:DOI:
[111]
Seongmin Lee, Sadia Afroz, Haekyu Park, Zijie J. Wang, Omar Shaikh, Vibhor Sehgal, Ankit Peshin, and Duen Horng Chau. 2022. MisVis: Explaining web misinformation connections via visual summary. In Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems (CHI EA ’22). ACM, New York, NY, USA, Article 228, 6 pages. DOI:DOI:
[112]
Yang-Jun Li, Jens Marga, Christy Cheung, Xiao-Liang Shen, and Matthew Lee. 2022. Health misinformation on social media: A systematic literature review and future research directions. AIS Transactions on Human-Computer Interaction 14, 2 (June2022), 116–149. DOI:DOI:
[113]
Raymond Liaw, Ari Zilnik, Mark Baldwin, and Stephanie Butler. 2013. Maater: Crowdsourcing to improve online journalism. In CHI ’13 Extended Abstracts on Human Factors in Computing Systems on - CHI EA ’13. ACM, 2549. DOI:DOI:
[114]
Helen M. Lillie, Chelsea L. Ratcliff, Andy J. King, Manusheela Pokharel, and Jakob D. Jensen. 2024. Using narratives to correct politically charged health misinformation and address affective belief echoes. Journal of Public Health 32, 4 (Apr.2024), 1–7. DOI:DOI:
[115]
Gionnieve Lim and Simon T. Perrault. 2023. Effects of automated misinformation warning labels on the intents to like, comment and share posts. In Proceedings of the 11th International Conference on Human-Agent Interaction (HAI ’23). ACM, New York, NY, USA, 299–305. DOI:DOI:
[116]
Gionnieve Lim and Simon T. Perrault. 2023. Intents and motivations to like, comment and share posts with warnings of misinformation. In Proceedings of the 35th Australian Computer-Human Interaction Conference. ACM, 108–113. DOI:DOI:
[117]
Xingyu Liu, Li Qi, Laurent Wang, and Miriam J. Metzger. 2023. Checking the fact-checkers: The role of source type, perceived credibility, and individual differences in fact-checking effectiveness. Communication Research 50, 7 (2023), 1–28. DOI:DOI:
[118]
Kuan-Chieh Lo, Shih-Chieh Dai, Aiping Xiong, Jing Jiang, and Lun-Wei Ku. 2021. All the wiser: Fake news intervention using user reading preferences. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining. ACM, 1069–1072. DOI:DOI:
[119]
Zhuoran Lu, Patrick Li, Weilong Wang, and Ming Yin. 2022. The effects of AI-based credibility indicators on the detection and spread of misinformation under social influence. Proceedings of the ACM on Human-Computer Interaction 6, CSCW2 (Nov.2022), 1–27. DOI:DOI:
[120]
Cameron Martel, Mohsen Mosleh, and David G. Rand. 2021. You’re definitely wrong, maybe: Correction style has minimal effect on corrections of misinformation online. Media and Communication 9, 1 (2021), 120–133. DOI:DOI:
[121]
Giovanni Da San Martino, Shaden Shaar, Yifan Zhang, Seunghak Yu, Alberto Barrón-Cedeño, and Preslav Nakov. 2020. Prta: A system to support the analysis of propaganda techniques in the news. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Association for Computational Linguistics, Online, 287–293. arxiv:2005.05854
[122]
Paul Mena. 2020. Cleaning up social media: The effect of warning labels on likelihood of sharing false news on Facebook. Policy and Internet 12, 2 (June2020), 165–183. DOI:DOI:
[123]
Martin Mende, Valentina O. Ubal, Marina Cozac, Beth Vallen, and Christopher Berry. 2024. Fighting infodemics: Labels as antidotes to mis- and disinformation?! Journal of Public Policy and Marketing 43, 1, SI (Jan. 2024), 31–52. DOI:DOI:
[124]
Yisroel Mirsky and Wenke Lee. 2022. The creation and detection of deepfakes: A survey. ACM Computing Surveys 54, 1 (Jan.2022), 1–41. DOI:DOI:
[125]
Won-Ki Moon, Myojung Chung, and S. Mo. Jones-Jang. 2023. How can we fight partisan biases in the COVID-19 pandemic? AI source labels on fact-checking messages reduce motivated reasoning. Mass Communication and Society 26, 4 (2023), 646–670. DOI:DOI:
[126]
Patricia L. Moravec, Antino Kim, and Alan R. Dennis. 2020. Appealing to sense and sensibility: System 1 and system 2 interventions for fake news on social media. Information Systems Research 31, 3 (Sept.2020), 987–1006. DOI:DOI:
[127]
Elmie Nekmat. 2020. Nudge effect of fact-check alerts: Source influence and media skepticism on sharing of news misinformation in social media. Social Media + Society 6, 1 (Jan.2020), 8–14. DOI:DOI:
[128]
Brendan Nyhan and Jason Reifler. 2010. When corrections fail: The persistence of political misperceptions. Political Behavior 32, 2 (June2010), 303–330. DOI:DOI:
[129]
Pinar Ozturk, Huaye Li, and Yasuaki Sakamoto. 2015. Combating rumor spread on social media: The effectiveness of refutation and warning. In Proceedings of the 2015 48th Hawaii International Conference on System Sciences. IEEE, 2406–2414. DOI:DOI:
[130]
Matthew J. Page, Joanne E. McKenzie, Patrick M. Bossuyt, Isabelle Boutron, Tammy C. Hoffmann, Cynthia D. Mulrow, Larissa Shamseer, Jennifer M. Tetzlaff, Elie A. Akl, Sue E. Brennan, Roger Chou, Julie Glanville, Jeremy M. Grimshaw, Asbjørn Hróbjartsson, Manoj M. Lalu, Tianjing Li, Elizabeth W. Loder, Evan Mayo-Wilson, Steve McDonald, Luke A. McGuinness, Lesley A. Stewart, James Thomas, Andrea C. Tricco, Vivian A. Welch, Penny Whiting, and David Moher. 2021. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews 10, 1 (Mar.2021), 89. DOI:DOI:
[131]
Orestis Papakyriakopoulos and Ellen Goodman. 2022. The impact of Twitter labels on misinformation spread and user engagement: Lessons from Trump’s election tweets. In Proceedings of the ACM Web Conference 2022 (WWW ’22). ACM, New York, NY, USA, 2541–2551. DOI:DOI:
[132]
Saumya Pareek and Jorge Goncalves. 2024. Peer-supplied credibility labels as an online misinformation intervention. International Journal of Human-Computer Studies 188, 8 (Aug.2024), 1–17. DOI:DOI:
[133]
Sungkyu Park, Jamie Yejean Park, Hyojin Chin, Jeong-han Kang, and Meeyoung Cha. 2021. An experimental study to understand user experience and perception bias occurred by fact-checking messages. In Proceedings of the Web Conference 2021. ACM,2769–2780. DOI:DOI:
[134]
Irene V. Pasquetto, Eaman Jahani, Shubham Atreja, and Matthew Baum. 2022. Social debunking of misinformation on WhatsApp: The case for strong and in-group ties. Proceedings of the ACM on Human-Computer Interaction 6, CSCW1 (Mar.2022), 1–35. DOI:DOI:
[135]
Gordon Pennycook, Adam Bear, Evan T. Collins, and David G. Rand. 2020. The implied truth effect: Attaching warnings to a subset of fake news headlines increases perceived accuracy of headlines without warnings. Management Science 66, 11 (Nov.2020), 4944–4957. DOI:DOI:
[136]
Gordon Pennycook, Ziv Epstein, Mohsen Mosleh, Antonio A. Arechar, Dean Eckles, and David G. Rand. 2021. Shifting attention to accuracy can reduce misinformation online. Nature 592, 7855 (Apr.2021), 590–595. DOI:DOI:
[137]
Gordon Pennycook, Jonathon McPhetres, Yunhao Zhang, Jackson J. Lu, and David G. Rand. 2020. Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention. Psychological Science 31, 7 (July2020), 770–780. DOI:DOI:
[138]
Gordon Pennycook and David G. Rand. 2022. Accuracy prompts are a replicable and generalizable approach for reducing the spread of misinformation. Nature Communications 13, 2333 (Apr.2022), 1–12. DOI:DOI:
[139]
Raunak M. Pillai and Lisa K. Fazio. 2023. Explaining why headlines are true or false reduces intentions to share false information. Collabra-Psychology 9, 87617 (2023), 1–11. DOI:DOI:
[140]
Sara Pluviano, Caroline Watt, and Sergio Della Sala. 2017. Misinformation lingers in memory: Failure of three pro-vaccination strategies. PLOS One 12, 7 (July2017), e0181640. DOI:DOI:
[141]
Ethan Porter, Yamil Velez, and Thomas J. Wood. 2022. Factual corrections eliminate false beliefs about COVID-19 vaccines. Public Opinion Quarterly 86, 3 (2022), 762–773. DOI:DOI:
[142]
Ethan Porter and Thomas J. Wood. 2022. Political misinformation and factual corrections on the Facebook news feed: Experimental evidence. Journal of Politics 84, 3 (July2022), 1812–1817. DOI:DOI:
[143]
Martin Potthast, Johannes Kiesel, Kevin Reinartz, Janek Bevendorff, and Benno Stein. 2018. A stylometric inquiry into hyperpartisan and fake news. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, Australia, 231–240. DOI:DOI:
[144]
Pardis Pourghomi, Fadi Safieddine, Wassim Masri, and Milan Dordevic. 2017. How to stop spread of misinformation on social media: Facebook plans vs. right-click authenticate approach. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS). IEEE, 1–8. DOI:DOI:
[145]
Clara Pretus, Ali M. Javeed, Diana Hughes, Kobi Hackenburg, Manos Tsakiris, Oscar Vilarroya, and Jay J. Van Bavel. 2024. The ¡¿misleading¡ count: An identity-based intervention to counter partisan misinformation sharing. Philisophical Transactions of the Royal Society B- Biological Sciences 379, 20230040 (2024), 1–9. DOI:DOI:
[146]
Toby Prike, Lucy H. Butler, and Ullrich K. H. Ecker. 2024. Source-credibility information and social norms improve truth discernment and reduce engagement with misinformation online. Scientific Reports 14, 1 (Mar.2024), 1–11. DOI:DOI:
[147]
Toby Prike and Ullrich K. H. Ecker. 2023 DEC 2023. Effective correction of misinformation. Current Opinion in Psychology 54, 101712 (Dec. 2023), 1–6. DOI:DOI:
[148]
Sijia Qian, Cuihua Shen, and Jingwen Zhang. 2023. Fighting cheapfakes: Using a digital media literacy intervention to motivate reverse search of out-of-context visual misinformation. Journal of Computer-Mediated Communication 28, 1 (Jan.2023), 1–12. DOI:DOI:
[149]
Dipti P. Rana, Isha Agarwal, and Anjali More. 2018. A review of techniques to combat the peril of fake news. In Proceedings of the 2018 4th International Conference on Computing Communication and Automation (ICCCA). 1–7. DOI:DOI:
[150]
Patrick R. Rich and Maria S. Zaragoza. 2020. Correcting misinformation in news stories: An investigation of correction timing and correction durability. Journal of Applied Research in Memory and Cognition 9, 3 (Sept.2020), 310–322. DOI:DOI:
[151]
Jon Roozenbeek, Eileen Culloty, and Jane Suiter. 2023. Countering misinformation evidence, knowledge gaps, and implications of current interventions. European Psychologist 28, 3 (July2023), 189–205. DOI:DOI:
[152]
Jon Roozenbeek and Sander van der Linden. 2019. Fake news game confers psychological resistance against online misinformation. Palgrave Communications 5, 1 (Dec.2019), 65. DOI:DOI:
[153]
Margie Ruffin, Gang Wang, and Kirill Levchenko. 2022. Explaining why fake photos are fake: Does it work? Proceedings of the ACM on Human-Computer Interaction 7, GROUP, Article 8 (Dec.2022), 22 pages. DOI:DOI:
[154]
Fadi Safieddine, Wassim Masri, and Pardis Pourghomi. 2016. Corporate responsibility in combating online misinformation. International Journal of Advanced Computer Science and Applications 7, 2 (2016), 126–132. DOI:DOI:
[155]
Nina Sakhnini and Debaleena Chattopadhyay. 2022. A review of smartphone fact-checking apps and their (non) use among older adults. In Adjunct Publication of the 24th International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI ’22). ACM, New York, NY, USA, 1–8. DOI:DOI:
[156]
Emily Saltz, Soubhik Barari, Claire Leibowicz, and Claire Wardle. 2021. Misinformation interventions are common, divisive, and poorly understood. Harvard Kennedy School Misinformation Review 2, 5 (Oct.2021), 1–25. DOI:DOI:
[157]
Emily Saltz, Claire R Leibowicz, and Claire Wardle. 2021. Encounters with visual misinformation and labels across platforms: An interview and diary study to inform ecosystem approaches to misinformation interventions. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. ACM, 1–6. DOI:DOI:
[158]
Jasmyne A. Sanderson, Vanessa Bowden, Briony Swire-Thompson, Stephan Lewandowsky, and Ullrich K. H. Ecker. 2023. Listening to misinformation while driving: Cognitive load and the effectiveness of (repeated) corrections. Journal of Applied Research in Memory and Cognition 12, 3 (Sep. 2023), 325–334. DOI:DOI:
[159]
Angeline Sangalang, Yotam Ophir, and Joseph N. Cappella. 2019. The potential for narrative correctives to combat misinformation. Journal of Communication 69, 3 (June2019), 298–319. DOI:DOI:
[160]
Leonie Schaewitz and Nicole Kramer. 2020. Combating disinformation: Effects of timing and correction format on factual knowledge and personal beliefs. In Multidisciplinary International Symposium on Disinformation in Open Online Media. Max VanDuijn, Mike Preuss, Viktoria Spaiser, Frank Takes, and Suzan Verberne (Eds.), Vol. 12259. Springer, Cham, 233–245. DOI:DOI:
[161]
Lisa Scharrer, Vanessa Pape, and Marc Stadtler. 2022. Watch out: Fake! How warning labels affect laypeople’s evaluation of simplified scientific misinformation. Discourse Processes 59, 8 (Sept.2022), 575–590. DOI:DOI:
[162]
Philipp Schmid and Cornelia Betsch. 2022. Benefits and pitfalls of debunking interventions to counter mRNA vaccination misinformation during the COVID-19 pandemic. Science Communication 44, 5 (Oct.2022), 531–558. DOI:DOI:
[163]
Stefka Schmid, Katrin Hartwig, Robert Cieslinski, and Christian Reuter. 2024. Digital resilience in dealing with misinformation on social media during COVID-19 a web application to assist users in crises. Information Systems Frontiers 26, 2 (2024), 1–23. DOI:DOI:
[164]
Guido Schryen, Gerit Wagner, Alexander Benlian, and Guy Paré. 2020. A knowledge development perspective on literature reviews: Validation of a new typology in the is field. Communications of the Association for Information Systems 46, 7 (2020), 134–186. DOI:DOI:
[165]
Haeseung Seo, Aiping Xiong, and Dongwon Lee. 2019. Trust it or not: Effects of machine-learning warnings in helping individuals mitigate misinformation. In Proceedings of the 10th ACM Conference on Web Science. ACM, 265–274. DOI:DOI:
[166]
Filipo Sharevski, Amy Devine, Peter Jachim, and Emma Pieroni. 2022. Meaningful context, a red flag, or both? Preferences for enhanced misinformation warnings among US Twitter users. In Proceedings of the 2022 European Symposium on Usable Security (EuroUSEC ’22). ACM, New York, NY, USA, 189–201. DOI:DOI:
[167]
Filipo Sharevski and Donald Gover. 2021. Two truths and a lie: Exploring soft moderation of COVID-19 misinformation with Amazon Alexa. In Proceedings of the 16th International Conference on Availability, Reliability and Security. ACM, 1–9. DOI:DOI:
[168]
Filipo Sharevski and Aziz N. Zeidieh. 2023. “I just didn’t notice it:” Experiences with misinformation warnings on social media amongst users who are low vision or blind. In Proceedings of the 2023 New Security Paradigms Workshop (NSPW ’23). ACM, New York, NY, USA, 17–33. DOI:DOI:
[169]
Zien Sheikh Ali, Watheq Mansour, Fatima Haouari, Maram Hasanain, Tamer Elsayed, and Abdulaziz Al-Ali. 2023. Tahaqqaq: A real-time system for assisting Twitter users in arabic claim verification. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’23). ACM, New York, NY, USA, 3170–3174. DOI:DOI:
[170]
Imani N. Sherman, Jack W. Stokes, and Elissa M. Redmiles. 2021. Designing media provenance indicators to combat fake media. In Proceedings of the 24th International Symposium on Research in Attacks, Intrusions and Defenses. ACM, 324–339. DOI:DOI:
[171]
Anu Shrestha and Francesca Spezzano. 2020. Online misinformation: From the deceiver to the victim. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM ’19). ACM, New York, NY, USA, 847–850. DOI:DOI:
[172]
Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. Fake news detection on social media: A data mining perspective. ACM SIGKDD Explorations Newsletter 19, 1 (Sept.2017), 15.
[173]
Yvonne Skipper, Daniel Jolley, and Joseph Reddington. 2023. ‘But wait, that isn’t real’: A proof-of-concept study evaluating ‘project real’, a co-created intervention that helps young people to spot fake news online. British Journal of Development Psychology 41, 4 (Nov. 2023), 371–384. DOI:DOI:
[174]
Ciarra N. Smith and Holly H. Seitz. 2019. Correcting misinformation about neuroscience via social media. Science Communication 41, 6 (Dec.2019), 790–819. DOI:DOI:
[175]
Yunya Song, Sai Wang, and Qian Xu. 2022. Fighting misinformation on social media: Effects of evidence type and presentation mode. Health Education Research 37, 3 (2022), 185–198. DOI:DOI:
[176]
Catherine Sotirakou, Theodoros Paraskevas, and Constantinos Mourlas. 2022. Toward the design of a gamification framework for enhancing motivation among journalists, experts, and the public to combat disinformation: The case of CALYPSO platform. In HCI in Games.Xiaowen Fang (Ed.), Lecture Notes in Computer Science, Springer International Publishing, Cham, 542–554. DOI:DOI:
[177]
M. Connor Sullivan. 2019. Leveraging library trust to combat misinformation on social media. Library & Information Science Research 41, 1 (Jan.2019), 2–10. DOI:DOI:
[178]
Yuko Tanaka and Rumi Hirayama. 2019. Exposure to countering messages online: Alleviating or strengthening false belief? Cyberpsychology, Behavior, and Social Networking 22, 11 (Nov.2019), 742–746. DOI:DOI:
[179]
Yuko Tanaka, Yasuaki Sakamoto, and Toshihiko Matsuka. 2013. Toward a social-technological system that inactivates false rumors through the critical thinking of crowds. In Proceedings of the 2013 46th Hawaii International Conference on System Sciences. IEEE, 649–658. DOI:DOI:
[180]
Ran Tao, Jianing Li, Liwei Shen, and Sijia Yang. 2023. Hope over fear: The interplay between threat information and hope appeal corrections in debunking early COVID-19 misinformation. Social Science & Medicine 333, 116132 (2023), 1–11. DOI:DOI:.
[181]
Thaler, Richard H. and Sunstein, Cass R.2009. Nudge: Improving Decisions about Health, Wealth, and Happiness. Penguin Books, London, United Kingdom.
[182]
Calum Thornhill, Quentin Meeus, Jeroen Peperkamp, and Bettina Berendt. 2019. A digital nudge to counter confirmation bias. Frontiers in Big Data 2, 6 (June2019), 11. DOI:DOI:
[183]
Yu-Chia Tseng, Nanyi Bi, Yung-Ju Chang, and Chien Wen (Tina) Yuan. 2022. Investigating correction effects of different modalities for misinformation about COVID-19. In Companion Publication of the 2022 Conference on Computer Supported Cooperative Work and Social Computing (CSCW’22 Companion). ACM, New York, NY, USA, 54–58. DOI:DOI:
[184]
Gleb Tsipursky, Fabio Votta, and Kathryn M. Roose. 2018. Fighting fake news and post-truth politics with behavioral science: The pro-truth pledge. Behavior and Social Issues 27, 1 (2018), 47–70.
[185]
Marina Tulin, Michael Hameleers, Claes de Vreese, Michael Opgenhaffen, and Ferre Wouters. 2024. Beyond belief correction: Effects of the truth sandwich on perceptions of fact-checkers and verification intentions. Journalism Practice 16, 2 (2024), 1–21. DOI:DOI:
[186]
Melissa Tully, Leticia Bode, and Emily K. Vraga. 2020. Mobilizing users: Does exposure to misinformation and its correction affect users’ responses to a health misinformation post? Social Media + Society 6, 4 (Oct.2020), 1–12. DOI:DOI:
[187]
Melissa Tully, Emily K. Vraga, and Leticia Bode. 2020. Designing and testing news literacy messages for social media. Mass Communication and Society 23, 1 (Jan.2020), 22–46. DOI:DOI:
[188]
Toni G. L. A. van der Meer, Michael Hameleers, and Jakob Ohme. 2023. Can fighting misinformation have a negative spillover effect? How warnings for the threat of misinformation can decrease general news credibility. Journalism Studies 24, 6 (2023), 803–823. DOI:DOI:
[189]
Tony G. L. A. van der Meer and Yan Jin. 2020. Seeking formula for misinformation treatment in public health crises: The effects of corrective information type and source. Health Communication 35, 5 (Apr.2020), 560–575. DOI:DOI:
[190]
Abigail T. Velasco, Allen Roi C. Cortez, John Meynard B. Camay, Ian Michael C. Giba, and Marlon A. Diloy. 2023. Factit: A fact-checking browser extension. In Proceedings of the 2023 IEEE 12th International Conference on Educational and Information Technology (ICEIT). IEEE, 342–347. DOI:DOI:
[191]
Yamil R. Velez, Ethan Porter, and Thomas J. Wood. 2023. Latino-targeted misinformation and the power of factual corrections. Journal of Politics 85, 2 (2023), 1–6. DOI:DOI:
[192]
Christian von der Weth, Jithin Vachery, and Mohan Kankanhalli. 2020. Nudging users to slow down the spread of fake news in social media. In Proceedings of the 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 1–6. DOI:DOI:
[193]
Emily K. Vraga and Leticia Bode. 2018. I do not believe you: How providing a source corrects health misperceptions across social media platforms. Information, Communication & Society 21, 10 (Oct.2018), 1337–1353. DOI:DOI:
[194]
Emily K. Vraga, Leticia Bode, and Melissa Tully. 2021. The effects of a news literacy video and real-time corrections to video misinformation related to sunscreen and skin cancer. Health Communication 37, 13 (2021), 1622–1630.
[195]
Emily K. Vraga, Sojung Claire Kim, John Cook, and Leticia Bode. 2020. Testing the effectiveness of correction placement and type on Instagram. The International Journal of Press/Politics 25, 4 (Oct.2020), 632–652. DOI:DOI:
[196]
Emily K. Vraga, Melissa Tully, and Leticia Bode. 2021. Assessing the relative merits of news literacy and corrections in responding to misinformation on Twitter. New Media & Society 24, 10 (2021), 2354–2371. DOI:DOI:
[197]
E. K. Vraga and Leticia Bode. 2017. Using expert sources to correct health misinformation in social media. Science Communication 39, 5 (Oct.2017), 621–645. DOI:DOI:
[198]
E. K. Vraga, L. Bode, and M. Tully. 2022. Creating news literacy messages to enhance expert corrections of misinformation on Twitter. Communication Research and Practice 49, 2 (2022), 245–267.
[199]
E. K. Vraga, S. C. Kim, and J. Cook. 2019. Testing logic-based and humor-based corrections for science, health, and political misinformation on social media. Journal of Broadcasting & Electronic Media 63, 3 (July2019), 393–414. DOI:DOI:
[200]
Christopher N. Wahlheim, Timothy R. Alexander, and Carson D. Peske. 2020. Reminders of everyday misinformation statements can enhance memory for and beliefs in corrections of those statements in the short term. Psychological Science 31, 10 (Oct.2020), 1325–1339. DOI:DOI:
[201]
Franz Waltenberger, Simon Höferlin, and Michael Froehlich. 2023. Reddit insights: Improving online discussion culture by contextualizing user profiles. In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems (CHI EA ’23). ACM, New York, NY, USA, Article 245, 6 pages. DOI:DOI:
[202]
Austin Horng-En Wang. 2022. PM me the truth? The conditional effectiveness of fact-checks across social media sites. Social Media + Society 8, 098347 (Apr.2022), 1–16. DOI:DOI:
[203]
Ran Wang, Kehan Du, Qianhe Chen, Yifei Zhao, Mojie Tang, Hongxi Tao, Shipan Wang, Yiyao Li, and Yong Wang. 2022. RumorLens: Interactive analysis and validation of suspected rumors on social media. In Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems (CHI EA ’22). ACM, New York, NY, USA, Article 232, 7 pages. DOI:DOI:
[204]
Weirui Wang and Yan Huang. 2021. Countering the ”harmless e-cigarette” myth: The interplay of message format, message sidedness, and prior experience with e-cigarette use in misinformation correction. Science Communication 43, 2 (Apr.2021), 170–198. DOI:DOI:
[205]
Yuxi Wang, Martin McKee, Aleksandra Torbica, and David Stuckler. 2019. Systematic literature review on the spread of health-related misinformation on social media. Social Science & Medicine 240, 11 (Nov.2019), 112552. DOI:DOI:
[206]
Colin Ware. 2012. Information Visualization: Perception for Design (4th ed.). Elsevier, Cambridge.
[207]
Victoria Westbrook, Duane T. Wegener, and Mark W. Susmann. 2023. Mechanisms in continued influence: The impact of misinformation corrections on source perceptions. Memory & Cognition 51, 6 (2023), 1317–1330. DOI:DOI:
[208]
Winnifred Wijnker, Ionica Smeets, Peter Burger, and Sanne Willems. 2022. Debunking strategies for misleading bar charts. JCOM - Journal of Science Communication 21, 7 (2022), 1–27. DOI:DOI:
[209]
Tom Wilson, Kaitlyn Zhou, and Kate Starbird. 2018. Assembling strategic narratives: Information operations as collaborative work within an online community. Proceedings of the ACM on Human-Computer Interaction 2, CSCW (Nov.2018), 1–26. DOI:DOI:
[210]
Reed M. Wood, Marie Juanchich, Mark Ramirez, and Shenghao Zhang. 2023. Promoting COVID-19 vaccine confidence through public responses to misinformation: The joint influence of message source and message content. Social Science & Medicine 324, 115863 (May2023), 1–11. DOI:DOI:
[211]
Thomas Wood and Ethan Porter. 2019. The elusive backfire effect: Mass attitudes’ steadfast factual adherence. Political Behavior 41, 1 (Mar.2019), 135–163. DOI:DOI:
[212]
Fan Xu, Victor S. Sheng, and Mingwen Wang. 2021. A unified perspective for disinformation detection and truth discovery in social sensing: A survey. ACM Computing Surveys 55, 1 (Nov.2021), 6:1–6:33. DOI:DOI:
[213]
Wan Yit Yong, Rajesh Jaiswal, and Fernando Perez Tellez. 2023. Explainability in NLP model: Detection of Covid-19 Twitter fake news. In Proceedings of the 2023 Conference on Human Centered Artificial Intelligence: Education and Practice (HCAIep ’23). ACM, New York, NY, USA, 1–7. DOI:DOI:
[214]
Himanshu Zade, Megan Woodruff, Erika Johnson, Mariah Stanley, Zhennan Zhou, Minh Tu Huynh, Alissa Elizabeth Acheson, Gary Hsieh, and Kate Starbird. 2023. Tweet trajectory and AMPS-based contextual cues can help users identify misinformation. Proceedings of the ACM on Human-Computer Interaction 7, CSCW1, Article 103 (Apr.2023), 27 pages. DOI:DOI:
[215]
Amy X. Zhang, Martin Robbins, Ed Bice, Sandro Hawke, David Karger, An Xiao Mina, Aditya Ranganathan, Sarah Emlen Metz, Scott Appling, Connie Moon Sehat, Norman Gilmore, Nick B. Adams, Emmanuel Vincent, and Jennifer Lee. 2018. A structured response to misinformation: Defining and annotating credibility indicators in news articles. In Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW ’18. ACM, 603–612. DOI:DOI:
[216]
Yuqi Zhang, Bin Guo, Yasan Ding, Jiaqi Liu, Chen Qiu, Sicong Liu, and Zhiwen Yu. 2022. Investigation of the determinants for misinformation correction effectiveness on social media during COVID-19 pandemic. Information Processing & Management 59, 102935 (2022), 1–16. DOI:DOI:
[217]
Wenqing Zhao. 2019. Misinformation correction across social media platforms. In Proceedings of the 2019 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 1371–1376. DOI:DOI:
[218]
Chengbo Zheng and Xiaojuan Ma. 2022. Evaluating the effect of enhanced text-visualization integration on combating misinformation in data story. In Proceedings of the 2022 IEEE 15th Pacific Visualization Symposium (PacificVis). IEEE, 141–150. DOI:DOI:
[219]
Xinyi Zhou and Reza Zafarani. 2021. A survey of fake news: Fundamental theories, detection methods, and opportunities. ACM Computing Surveys 53, 5 (Sept.2021), 1–40. DOI:DOI:
[220]
Arkaitz Zubiaga, Ahmet Aker, Kalina Bontcheva, Maria Liakata, and Rob Procter. 2019. Detection and resolution of rumours in social media: A survey. ACM Computing Surveys 51, 2 (Mar.2019), 1–36. DOI:DOI:

Cited By

View all

Index Terms

  1. The Landscape of User-centered Misinformation Interventions - A Systematic Literature Review

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Computing Surveys
    ACM Computing Surveys  Volume 56, Issue 11
    November 2024
    977 pages
    EISSN:1557-7341
    DOI:10.1145/3613686
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 July 2024
    Online AM: 25 June 2024
    Accepted: 18 June 2024
    Revised: 08 June 2024
    Received: 16 January 2023
    Published in CSUR Volume 56, Issue 11

    Check for updates

    Author Tags

    1. Misinformation
    2. disinformation
    3. fake news
    4. user intervention
    5. countermeasure
    6. media literacy

    Qualifiers

    • Survey

    Funding Sources

    • German Federal Ministry for Education and Research (BMBF) in the project NEBULA

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1,201
    • Downloads (Last 6 weeks)292
    Reflects downloads up to 24 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media