skip to main content
research-article

FlexScale: Modeling and Characterization of Flexible Scaled Sheets

Published: 19 July 2024 Publication History

Abstract

We present a computational approach for modeling the mechanical behavior of flexible scaled sheet materials---3D-printed hard scales embedded in a soft substrate. Balancing strength and flexibility, these structured materials find applications in protective gear, soft robotics, and 3D-printed fashion. To unlock their full potential, however, we must unravel the complex relation between scale pattern and mechanical properties. To address this problem, we propose a contact-aware homogenization approach that distills native-level simulation data into a novel macromechanical model. This macro-model combines piecewise-quadratic uniaxial fits with polar interpolation using circular harmonics, allowing for efficient simulation of large-scale patterns. We apply our approach to explore the space of isohedral scale patterns, revealing a diverse range of anisotropic and nonlinear material behaviors. Through an extensive set of experiments, we show that our models reproduce various scale-level effects while offering good qualitative agreement with physical prototypes on the macro-level.

Supplementary Material

ZIP File (papers_525.zip)
supplemental

References

[1]
Moritz Bächer, Bernd Bickel, Doug L. James, and Hanspeter Pfister. 2012. Fabricating Articulated Characters from Skinned Meshes. ACM Trans. Graph. 31, 4, Article 47 (jul 2012), 9 pages.
[2]
Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou. 1978. Studies in Mathematics and its Applications.
[3]
Katia Bertoldi, Vincenzo Vitelli, Johan Christensen, and Martin Van Hecke. 2017. Flexible mechanical metamaterials. Nature Reviews Materials 2, 11 (2017), 1--11.
[4]
Bernd Bickel, Moritz Bächer, Miguel A Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. Design and fabrication of materials with desired deformation behavior. ACM Transactions on Graphics (TOG) 29, 4 (2010), 1--10.
[5]
Duygu Ceylan, Wilmot Li, Niloy J Mitra, Maneesh Agrawala, and Mark Pauly. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Transactions on Graphics (TOG) 32, 6 (2013), 1--11.
[6]
Irene H. Chen, James H. Kiang, Victor Correa, Maria I. Lopez, Po Yu Chen, Joanna McKittrick, and Marc A. Meyers. 2011. Armadillo armor: Mechanical testing and micro-structural evaluation. Journal of the Mechanical Behavior of Biomedical Materials 4 (7 2011), 713--722. Issue 5.
[7]
Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational Design of Mechanical Characters. ACM Trans. Graph. 32, 4, Article 83 (jul 2013), 12 pages.
[8]
Yotam Gingold, Adrian Secord, Han Jefferson, Eitan Grinspun, and Dennis Zorin. 2004. A Discrete Model for Inelastic Deformation of Thin Shells. In Proc. of the ACM/Eurographics Symposium on Computer Animation (SCA) 2004 (Posters track).
[9]
Eitan Grinspun, Yotam Gingold, Jason Reisman, and Denis Zorin. 2006. Computing discrete shape operators on general meshes. In Computer Graphics Forum, Vol. 25. Wiley Online Library, 547--556.
[10]
Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps: Shaping Objects from Flat Plates with Tension-Actuated Curvature. ACM Trans. Graph. 36, 4, Article 64 (jul 2017), 12 pages.
[11]
Craig S Kaplan and David H Salesin. 2000. Escherization. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques. 499--510.
[12]
Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Transactions on graphics (TOG) 28, 3 (2009), 1--8.
[13]
Kurt Leimer and Przemyslaw Musialski. 2020. Reduced-Order Simulation of Flexible Meta-Materials. Proceedings - SCF 2020: ACM Symposium on Computational Fabrication.
[14]
Samuel Lensgraf, Karim Itani, Yinan Zhang, Zezhou Sun, Yijia Wu, Alberto Quattrini Li, Bo Zhu, Emily Whiting, Weifu Wang, and Devin J. Balkcom. 2020. PuzzleFlex: kinematic motion of chains with loose joints. In 2020 IEEE International Conference on Robotics and Automation, ICRA 2020, Paris, France, May 31 - August 31, 2020. IEEE, 6730--6737.
[15]
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy R Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020. Incremental potential contact: intersection-and inversion-free, large-deformation dynamics. ACM Trans. Graph. 39, 4 (2020), 49.
[16]
Yue Li, Stelian Coros, and Bernhard Thomaszewski. 2023. Neural Metamaterial Networks for Nonlinear Material Design. ACM Trans. Graph. 42, 6, Article 186 (dec 2023), 13 pages.
[17]
Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-Last: Strength to Weight 3D Printed Objects. ACM Trans. Graph. 33, 4, Article 97 (jul 2014), 10 pages.
[18]
Jonàs Martínez, Jérémie Dumas, and Sylvain Lefebvre. 2016. Procedural voronoi foams for additive manufacturing. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1--12.
[19]
Jonàs Martínez, Mélina Skouras, Christian Schumacher, Samuel Hornus, Sylvain Lefebvre, and Bernhard Thomaszewski. 2019. Star-shaped metrics for mechanical metamaterial design. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--13.
[20]
Jonàs Martínez, Haichuan Song, Jérémie Dumas, and Sylvain Lefebvre. 2017. Orthotropic k-nearest foams for additive manufacturing. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--12.
[21]
Roberto Martini, Yanis Balit, and Francois Barthelat. 2017. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing. Acta Biomaterialia 55 (6 2017), 360--372.
[22]
Juan Montes, Yinwei Du, Ronan Hinchet, Stelian Coros, and Bernhard Thomaszewski. 2023. Differentiable Stripe Patterns for Inverse Design of Structured Surfaces. ACM Transactions on Graphics (TOG) (2023).
[23]
Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (2e ed.). Springer, New York, NY, USA.
[24]
Julian Panetta, Abtin Rahimian, and Denis Zorin. 2017. Worst-case stress relief for microstructures. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--16.
[25]
Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic textures for additive fabrication. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--12.
[26]
Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational design and automated fabrication of kirchhoff-plateau surfaces. ACM Trans. Graph. 36, 4, Article 62 (jul 2017), 12 pages.
[27]
Emmanuel Rodriguez, Georges-Pierre Bonneau, Stefanie Hahmann, and Mélina Skouras. 2022. Computational Design of Laser-Cut Bending-Active Structures. Computer-Aided Design 151 (2022), 103335.
[28]
Stephan Rudykh, Christine Ortiz, and Mary C. Boyce. 2015. Flexibility and protection by design: Imbricated hybrid microstructures of bio-inspired armor. Soft Matter 11 (4 2015), 2547--2554. Issue 13.
[29]
Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to control elasticity in 3D printing. ACM Transactions on Graphics (Tog) 34, 4 (2015), 1--13.
[30]
Christian Schumacher, Steve Marschner, Markus Gross, and Bernhard Thomaszewski. 2018. Mechanical characterization of structured sheet materials. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--15.
[31]
Ali Shafiei and Francois Barthelat. 2022. 3D mechanics of scaled membranes. International Journal of Solids and Structures 241 (4 2022).
[32]
Ali Shafiei, J. William Pro, Roberto Martini, and Francois Barthelat. 2021. The very hard and the very soft: Modeling bio-inspired scaled skins using the discrete element method. Journal of the Mechanics and Physics of Solids 146 (1 2021), 104176.
[33]
Mélina Skouras, Stelian Coros, Eitan Grinspun, and Bernhard Thomaszewski. 2015. Interactive Surface Design with Interlocking Elements. ACM Trans. Graph. 34, 6, Article 224 (nov 2015), 7 pages.
[34]
Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus Gross. 2013. Computational design of actuated deformable characters. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--10.
[35]
Peng Song, Chi-Wing Fu, and Daniel Cohen-Or. 2012. Recursive Interlocking Puzzles. ACM Trans. Graph. 31, 6, Article 128 (nov 2012), 10 pages.
[36]
Peng Song, Chi-Wing Fu, Yueming Jin, Hongfei Xu, Ligang Liu, Pheng-Ann Heng, and Daniel Cohen-Or. 2017. Reconfigurable Interlocking Furniture. ACM Trans. Graph. 36, 6, Article 174 (nov 2017), 14 pages.
[37]
Georg Sperl, Rahul Narain, and Chris Wojtan. 2020. Homogenized yarn-level cloth. ACM Trans. Graph. 39, 4 (2020), 48.
[38]
Georg Sperl, Rahul Narain, and Chris Wojtan. 2021. Mechanics-Aware Deformation of Yarn Pattern Geometry. ACM Trans. Graph. 40, 4, Article 168 (jul 2021), 11 pages.
[39]
Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. 2012. Stress relief: improving structural strength of 3D printable objects. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--11.
[40]
Pengbin Tang, Stelian Coros, and Bernhard Thomaszewski. 2023. Beyond Chainmail: Computational Modeling of Discrete Interlocking Materials. ACM Trans. Graph. 42, 4, Article 84 (jul 2023), 12 pages.
[41]
Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grinspun, and Markus Gross. 2014. Computational Design of Linkage-Based Characters. ACM Trans. Graph. 33, 4, Article 64 (jul 2014), 9 pages.
[42]
Davi Colli Tozoni, Jérémie Dumas, Zhongshi Jiang, Julian Panetta, Daniele Panozzo, and Denis Zorin. 2020. A low-parametric rhombic microstructure family for irregular lattices. ACM Transactions on Graphics (TOG) 39, 4 (2020), 101--1.
[43]
Franck J. Vernerey, Kamtornkiat Musiket, and Francois Barthelat. 2014. Mechanics of fish skin: A computational approach for bio-inspired flexible composites. International Journal of Solids and Structures 51 (1 2014), 274--283. Issue 1.
[44]
Ziqi Wang, Peng Song, Florin Isvoranu, and Mark Pauly. 2019. Design and Structural Optimization of Topological Interlocking Assemblies. ACM Trans. Graph. 38, 6, Article 193 (nov 2019), 13 pages.
[45]
Ziqi Wang, Peng Song, and Mark Pauly. 2018. DESIA: A General Framework for Designing Interlocking Assemblies. ACM Trans. Graph. 37, 6, Article 191 (dec 2018), 14 pages.
[46]
Shiqing Xin, Chi-Fu Lai, Chi-Wing Fu, Tien-Tsin Wong, Ying He, and Daniel Cohen-Or. 2011. Making Burr Puzzles from 3D Models. ACM Trans. Graph. 30, 4, Article 97 (jul 2011), 8 pages.
[47]
Wen Yang, Irene H Chen, Bernd Gludovatz, Elizabeth A Zimmermann, Robert O Ritchie, Marc A Meyers, W Yang, I H Chen, M A Meyers, B Gludovatz, E A Zimmermann, and R O Ritchie. 2013. Natural Flexible Dermal Armor. Advanced Materials 25 (1 2013), 31--48. Issue 1.
[48]
Jiaxian Yao, Danny M. Kaufman, Yotam Gingold, and Maneesh Agrawala. 2017. Interactive Design and Stability Analysis of Decorative Joinery for Furniture. ACM Trans. Graph. 36, 2, Article 20 (mar 2017), 16 pages.
[49]
Zhan Zhang, Christopher Brandt, Jean Jouve, Yue Wang, Tian Chen, Mark Pauly, and Julian Panetta. 2023. Computational Design of Flexible Planar Microstructures. ACM Trans. Graph. 42, 6, Article 185 (dec 2023), 16 pages.
[50]
Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case structural analysis. ACM Trans. Graph. 32, 4 (2013), 137--1.
[51]
Bo Zhu, Mélina Skouras, Desai Chen, and Wojciech Matusik. 2017. Two-Scale Topology Optimization with Microstructures. ACM Trans. Graph. 36, 4, Article 120b (jul 2017), 16 pages.
[52]
Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and Baining Guo. 2012. Motion-guided mechanical toy modeling. ACM Transactions on Graphics (TOG) 31, 6 (2012), 1--10.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 43, Issue 4
July 2024
1774 pages
EISSN:1557-7368
DOI:10.1145/3675116
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 July 2024
Published in TOG Volume 43, Issue 4

Check for updates

Author Tags

  1. homogenization
  2. mechanical characterization
  3. bi-phasic materials
  4. data-driven macromechanical model

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 193
    Total Downloads
  • Downloads (Last 12 months)193
  • Downloads (Last 6 weeks)21
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media