skip to main content
research-article

Displaced signed distance fields for additive manufacturing

Published: 19 July 2021 Publication History

Abstract

We propose displaced signed distance fields, an implicit shape representation to accurately, efficiently and robustly 3D-print finely detailed and smoothly curved surfaces at native device resolution. As the resolution and accuracy of 3D printers increase, accurate reproduction of such surfaces becomes increasingly realizable from a hardware perspective. However, representing such surfaces with polygonal meshes requires high polygon counts, resulting in excessive storage, transmission and processing costs. These costs increase with print size, and can become exorbitant for large prints. Our implicit formulation simultaneously allows the augmentation of low-polygon meshes with compact meso-scale topographic information, such as displacement maps, and the realization of curved polygons, while leveraging efficient, streaming-compatible, discrete voxel-wise algorithms. Critical for this is careful treatment of the input primitives, their voxel approximation and the displacement to the true surface. We further propose a robust sign estimation to allow for incomplete, non-manifold input, whether human-made for onscreen rendering or directly out of a scanning pipeline. Our framework is efficient both in terms of time and space. The running time is independent of the number of input polygons, the amount of displacement, and is constant per voxel. The storage costs grow sub-linearly with the number of voxels, making our approach suitable for large prints. We evaluate our approach for efficiency and robustness, and show its advantages over standard techniques.

Supplementary Material

VTT File (3450626.3459827.vtt)
ZIP File (a179-brunton.zip)
a179-brunton.zip
AVI File (3450626.3459827.avi)
Presentation.

References

[1]
M. Alexa, K. Hildebrand, and S. Lefebvre. 2017. Optimal Discrete Slicing. ACM TOG 36, 1, Article 12 (Jan. 2017), 16 pages.
[2]
M. Attene. 2010. A lightweight approach to repairing digitized polygon meshes. The Visual Computer 26, 11 (2010), 1393--1406.
[3]
M. Atzmon and Y. Lipman. 2020. SAL: Sign Agnostic Learning of Shapes from Raw Data. In Proc. CVPR.
[4]
M. Atzmon and Y. Lipman. 2021. SALD: Sign Agnostic Learning with Derivatives. In Proc. ICLR.
[5]
G. Barill, N. Dickson, R. Schmidt, D.I.W. Levin, and A. Jacobson. 2018. Fast Winding Numbers for Soups and Clouds. ACM TOG (Proc. SIGGRAPH) (2018).
[6]
M. Berger, A. Tagliasacchi, L.M. Seversky, P. Alliez, G. Guennebaud, J.A. Levineand A. Sharf, and C.T. Silva. 2017. A Survey of Surface Reconstruction from Point Clouds. Computer Graphics Forum 36, 1 (2017), 301--329.
[7]
J.-P. Berrut and L.N. Trefethen. 2004. Barycentric Lagrange Interpolation. SIAM Rev. 46, 3 (2004), 501--517.
[8]
S. Bischoff, D. Pavic, and L. Kobbelt. 2005. Automatic restoration of polygonal models. ACM TOG 24, 4 (2005).
[9]
Blender Online Community. 2020. Blender - a 3D modelling and rendering package. http://www.blender.org
[10]
A. Brunton, C. A. Arikan, T. M. Tanksale, and P. Urban. 2018. 3D Printing Spatially Varying Color and Translucency. ACM TOG (Proc. SIGGRAPH) 37, 4 (2018), 157:1--157:13.
[11]
D. Cohen-Or and A. Kaufman. 1995. Fundamentals of Surface Voxelization. Graphical Models and Image Processing 57, 6 (November 1995), 453--461.
[12]
R.L. Cook. 1984. Shade Trees. In Proc. SIGGRAPH 1984. 223--231.
[13]
R.L. Cook, L. Carpenter, and E. Catmull. 1987. The Reyes Rendering Architecture. In Proc. SIGGRAPH 1987. 95--102.
[14]
T. Davies, D. Nowrouzezahrai, and A. Jacobson. 2021. On the Effectiveness of Weight-Encoded Neural Implicit 3D Shapes. arXiv:2009.09808 [cs.GR]
[15]
P. de Casteljau. 1959. Outillage méthodes calcul. Technical Report.
[16]
E. Eisemann and X. Decoret. 2008. Single-pass gpu solid voxelization and applications. In Proc. of Graphics Interface (GI). 73--80.
[17]
P. Erler, P. Guerrero, S. Ohrhallinger, N.J. Mitra, and M. Wimmer. 2020. Points2Surf Learning Implicit Surfaces from Point Clouds. In Proc. ECCV. 108--124.
[18]
G. Farin. 1986. Triangular Bernstein-Bézier patches. Computer Aided Geometric Design 3, 2 (1986), 83--127.
[19]
M. Garland and P.S. Heckbert. 1995. Fast polygonal approximation of terrains and height fields. Technical Report CMU-CS-95-181.
[20]
H. Gohari, A. Barari, and H. Kishawy. 2018. An efficient methodology for slicing NURBS surfaces using multi-step methods. International Journal of Advanced Manufacturing Technology 95 (2018), 3111--3125.
[21]
A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman. 2020. Implicit Geometric Regularization for Learning Shapes. In Proc. ICML.
[22]
A. Guéziec, G. Taubin, F. Lazarus, and B. Hom. 2001. Cutting and stitching: converting sets of polygons into manifold surfaces. IEEE TVCG 7, 2 (2001).
[23]
H. Hoppe, T. Derose, T. Duchamp, J. McDonald, and W. Stuetzle. 1993. Mesh optimization. In Proc. ACM SIGGRAPH.
[24]
Fraunhofer IGD. 2020. Cuttlefish SDK. https://www.cuttlefish.de/.
[25]
Intel. 2020. Intel Threading Building Blocks. https://software.intel.com/content/www/us/en/develop/tools/threading-building-blocks.html.
[26]
A. Jacobson, L. Kavan, and O. Sorkine-Hornung. 2013. Robust inside-outside segmentation using generalized winding numbers. ACM TOG (Proc. SIGGRAPH) 32, 4 (2013).
[27]
T. Ju. 2004. Robust repair of polygonal models. ACM TOG 23, 3 (2004).
[28]
M. Kazhdan, M. Bolitho, and H. Hoppe. 2006. Poisson Surface Reconstruction. In Proc. SGP.
[29]
M. Kazhdan and H. Hoppe. 2013. Screened Poisson surface reconstruction. ACM TOG 32, 3 (2013).
[30]
R. Kolluri. 2005. Provably Good Moving Least Squares. In Symposium on Discrete Algorithms.
[31]
V. Kraevoy, A. Sheffer, and C. Gotsman. 2003. Matchmaker: constructing constrained texture maps. ACM TOG 22, 3 (2003).
[32]
B. Krayer and S. Müller. 2019. Generating signed distance fields on the GPU with raymaps. The Visual Computer 35 (2019), 961--971.
[33]
W.E. Lorensen and H.E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 163--169.
[34]
J. Martinez, S. Hornus, F. Claux, and Sylvain Lefebvre. 2015. Chained segment offsetting for ray-based solid representations. Computers & Graphics 46 (2015), 36--47.
[35]
Mimaki. 2017. 3DUJ-553. https://mimaki.com/product/3d/3d-inkjet/3duj-553/.
[36]
D. Nehab and H. Hoppe. 2008. Random-Access Rendering of General Vector Graphics. ACM TOG 27, 5, Article 135 (Dec. 2008), 10 pages.
[37]
F.S. Nooruddin and G. Turk. 2003. Simplication and Repair of Polygonal Models Using Volumetric Techniques. IEEE TVCG 9, 2 (2003), 191--205.
[38]
A.C. Oeztireli, G. Guenneband, and M. Gross. 2008. Feature Preserving Point Set Surfaces based on Non-Linear Kernel Regression. Computer Graphics Forum (Proc. Eurographics) (2008).
[39]
J. Podolak and S. Rusinkiewicz. 2005. Atomic volumes for mesh completion. In Proc. SGP.
[40]
Z. Qin, M.D. McCool, and C.S. Kaplan. 2006. Real-Time Texture-Mapped Vector Glyphs. In Proc. I3D 2006. 125--132.
[41]
J. Reinhard. 2017. Discrete Medial Axis Transform and Applications for 3D Printing. Bachelor Thesis. Technische Universität Darmstadt.
[42]
J. Rodrigues, M. Gazziro, N. Goncalves, O. Neto, Y. Fernandes, A. Gimenes, C. Alegre, and R. Assis. 2014. The 12 prophets dataset. Technical Report ICMC-USP-400. ICMC, University of Sao Paulo. 1--9 pages. www.aleijadinho3d.icmc.usp.br
[43]
R. Sawhney and K. Crane. 2020. Monte Carlo Geometry Processing: A Grid-Free Approach to PDE-Based Methods on Volumetric Domains. ACM TOG (Proc. SIGGRAPH) 39, 4 (2020).
[44]
M.-P. Schmidt. 2019. Additive Manufacturing of A 3D Part. Patent Application US20190134915A1. https://patents.google.com/patent/US20190134915A1/
[45]
M. Schwarz and H.-P. Seidel. 2010. Fast Parallel Surface and Solid Voxelization on GPUs. ACM Transaction on Graphics (Proc. SIGGRAPH Asia) 29, 6 (2010).
[46]
J. Shade, S. Gortler, L.-W. He, and R. Szeliski. 1998. Layered Depth Images. In Proc. SIGGRAPH 1998 (SIGGRAPH '98). 231--242.
[47]
V. Sitzmann, J.N.P. Martel, A.W. Bergman, D.B. Lindell, and G. Wetzstein. 2020. Implicit Neural Representations with Periodic Activation Functions. In Proc. NeurIPS.
[48]
Stanford Computer Graphics Laboratory. 2014. The Stanford 3D Scanning Repository. https://graphics.stanford.edu/data/3Dscanrep/.
[49]
B. Starly, A. Lau, W. Sun, W. Lau, and T. Bradbury. 2005. Direct slicing of STEP based NURBS models for layered manufacturing. Computer Aided Design 37 (2005), 387--397.
[50]
J.P. Stevens and D.J. McKenna. 2018. Preparing a polygon mesh for printing. Patent US10137646B2. https://patents.google.com/patent/US10137646B2/
[51]
Stratasys. 2016. J750. http://www.stratasys.com/3d-printers/production-series/stratasys-j750.
[52]
Stratasys. 2020. Design for Additive Manufacturing with PolyJet. https://my.stratasys.com/SupportCenter/HTML5UserGuides/Design_DFAM_Guide_July_2020/Responsive%20HTML5/index.html#t=DOC-01103_x_Design-PJ-AM-Guide-HTML%2FDfAM_Guide-Chapter%2FDfAM_Guide-Chapter.htm%23TOC_Additional_Resourcesbc-1&rhtocid=_1_0.
[53]
L. Szirmay-Kalos and T. Umenhoffer. 2006. Displacement Mapping on the GPU-State of the Art. Computer Graphics Forum 25, 3 (2006), 1--24.
[54]
T. Tricard, F. Claux, and S. Lefebvre. 2020. Ribbed Support Vaults for 3D Printing of Hollowed Objects. Computer Graphics Forum 39, 1 (2020), 147--159.
[55]
K. Vidimče, S.-P. Wang, J. Ragan-Kelley, and W. Matusik. 2013. OpenFab: A Programmable Pipeline for Multi-Material Fabrication. ACM TOG (Proc. SIGGRAPH) 32, 4 (2013).
[56]
A. Vlachos, J. Peters, C. Boyd, and J.L. Mitchell. 2001. Curved PN Triangles. In Proceedings of the 2001 Symposium on Interactive 3D Graphics (I3D '01). Association for Computing Machinery, New York, NY, USA, 159--166.
[57]
M. Waechter, N. Moehrle, and M. Goesele. 2014. Let There Be Color! Large-Scale Texturing of 3D Reconstructions. In Proc. ECCV. 836--850.
[58]
T. Wohlers, I. Campbell, O. Diegel, R. Huff, and J. Kowen. 2020. Wohlers Report 2020: 3D Printing and Additive Manufacturing Global State of the Industry. Wohlers Associates, Inc.
[59]
S. Yamakawa and K. Shimada. 2009. Removing self intersections of a triangular mesh by edge-swapping, edge hammering, and face lifting. In Proc. IMR.
[60]
Q. Zhou and A. Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing Models. arXiv:2009.09808 [cs.GR]
[61]
O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. 2013. Chapter 6 - Shape Functions, Derivatives, and Integration. In The Finite Element Method: its Basis and Fundamentals (seventh edition ed.), O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu (Eds.). Butterworth-Heinemann, Oxford, 151 -- 209.

Cited By

View all

Index Terms

  1. Displaced signed distance fields for additive manufacturing

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 40, Issue 4
    August 2021
    2170 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3450626
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 19 July 2021
    Published in TOG Volume 40, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. 3D printing
    2. displacement
    3. distance field
    4. robust voxelization

    Qualifiers

    • Research-article

    Funding Sources

    • European Union Horizon 2020 research and innovation programme

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)79
    • Downloads (Last 6 weeks)7
    Reflects downloads up to 27 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media