skip to main content
10.1145/2145694.2145710acmconferencesArticle/Chapter ViewAbstractPublication PagesfpgaConference Proceedingsconference-collections
research-article

Limit study of energy & delay benefits of component-specific routing

Published: 22 February 2012 Publication History

Abstract

As feature sizes scale toward atomic limits, parameter variation continues to increase, leading to increased margins in both delay and energy. The possibility of very slow devices on critical paths forces designers to increase transistor sizes, reduce clock speed and operate at higher voltages than desired in order to meet timing. With post-fabrication configurability, FPGAs have the opportunity to use slow devices on non-critical paths while selecting fast devices for critical paths. To understand the potential benefit we might gain from component-specific mapping, we quantify the margins associated with parameter variation in FPGAs over a wide range of predictive technologies (45nm-12nm) and gate sizes and show how these margins can be significantly reduced by delay-aware, component-specific routing. For the Toronto 20 benchmark set, we show that component-specific routing can eliminate delay margins induced by variation and reduce energy for energy minimal designs by 1.42-1.98×. We further show that these benefits increase as technology scales.

References

[1]
International technology roadmap for semiconductors. linkhttp://www.itrs.net/Links/2010ITRS/Home2010.htm, 2010.
[2]
F. Bacon. Meditationes Sacræ. De Hæ resibus. 1597.
[3]
K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer. High-performance CMOS variability in the 65-nm regime and beyond. IBM J. Res. and Dev., 50(4/5):433--449, July/September 2006.
[4]
V. Betz and J. Rose. FPGA Place-and-Route Challenge. http://www.eecg.toronto.edu/ vaughn/challenge/challenge.html, 1999.
[5]
S. Bijansky and A. Aziz. TuneFPGA: post-silicon tuning of dual-Vdd FPGAs. In DAC, 2008.
[6]
D. Bol, R. Ambroise, D. Flandre, and J.-D. Legat. Interests and limitations of technology scaling for subthreshold logic. IEEE Trans. VLSI Syst., 17(10):1508--1519, 2009.
[7]
D. Bol, R. F. Ambroise, and J.-D. D. Legat. Impact of technology scaling on digital subthreshold circuits. In ISVLSI, pages 179--184, 2008.
[8]
L. Cheng, J. Xiong, L. He, and M. Hutton. FPGA performance optimization via chipwise placement considering process variations. In FPL, pages 1--6, 2006.
[9]
C. Chow, L. Tsui, P. Leong, W. Luk, and S. Wilton. Dynamic voltage scaling for commercial FPGAs. ICFPT, pages 173--180, Dec. 2005.
[10]
W. B. Culbertson, R. Amerson, R. Carter, P. Kuekes, and G. Snider. Defect tolerance on the TERAMAC custom computer. In FCCM, pages 116--123, April 1997.
[11]
B. Gojman and A. DeHon. VMATCH: Using Logical Variation to Counteract Physical Variation in Bottom-Up, Nanoscale Systems. In ICFPT, pages 78--87. IEEE, December 2009.
[12]
S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K. K. Das, W. Haensch, E. J. Nowak, and D. M. Sylvester. Ultralow-voltage, minimum-energy CMOS. IBM J. Res. and Dev., 50(4-5):469--490, July/September 2006.
[13]
K. Katsuki, M. Kotani, K. Kobayashi, and H. Onodera. A yield and speed enhancement scheme under within-die variations on 90nm LUT array. In CICC, pages 601--604, 2005.
[14]
M. Klein. The Virtex-4 power play. Xcell Journal, (52):16--19, Spring 2005.
[15]
A. Kumar and M. Anis. FPGA Design for Timing Yield Under Process Variations. IEEE Trans. VLSI Syst., 18(3):423--435, March 2010.
[16]
J. Kwong and A. P. Chandrakasan. Variation-Driven device sizing for minimum energy sub-threshold circuits. In ISLPED, pages 8--13, 2006.
[17]
J. Lamoureux and S. Wilton. Activity estimation for field-programmable gate arrays. FPL, pages 1--8, Aug. 2006.
[18]
G. Lemieux, E. Lee, M. Tom, and A. Yu. Directional and single-driver wires in fpga interconnect. In ICFPT, pages 41--48, December 2004.
[19]
Y. Lin, L. He, and M. Hutton. Stochastic physical synthesis considering prerouting interconnect uncertainty and process variation for FPGAs. IEEE Trans. VLSI Syst., 16(2):124, 2008.
[20]
Y. Lin, M. Hutton, and L. He. Placement and timing for FPGAs considering variations. In FPL, 2006.
[21]
G. Lucas, C. Dong, and D. Chen. Variation-aware placement for FPGAs with multi-cycle statistical timing analysis. In FPGA, pages 177--180, New York, New York, USA, 2010. ACM.
[22]
J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, and J. Rose. VPR 5.0: Fpga cad and architecture exploration tools with single-driver routing, heterogeneity and process scaling. In FPGA, pages 133--142, 2009.
[23]
M. Majzoobi, E. Dyer, A. Elnably, and F. Koushanfar. Rapid FPGA delay characterization using clock synthesis and sparse sampling. In Proc. Intl. Test Conf., 2010.
[24]
Y. Matsumoto, M. Hioki, T. Kawanami, T. Tsutsumi, T. Nakagawa, T. Sekigawa, and H. Koike. Performance and yield enhancement of FPGAs with within-die variation using multiple configurations. In FPGA, pages 169--177, 2007.
[25]
G. Nabaaz, N. Aziziy, and F. N. Najm. An adaptive FPGA architecture with process variation compensation and reduced leakage. In DAC, pages 624--629, 2006.
[26]
S. R. Nassif, N. Mehta, and Y. Cao. A resilience roadmap. In DATE, March 2010.
[27]
R. Rubin and A. DeHon. Choose-Your-Own-Adventure Routing: Lightweight Load-Time Defect Avoidance. In FPGA, pages 23--32, 2009.
[28]
R. Rubin and A. DeHon. Timing-Driven Pathfinder Pathology and Remediation: Quantifying and Reducing Delay Noise in VPR-Pathfinder. In FPGA, pages 173--176, 2011.
[29]
P. Sedcole and P. Y. K. Cheung. Within-die delay variability in 90nm FPGAs and beyond. In ICFPT, pages 97--104, 2006.
[30]
P. Sedcole and P. Y. K. Cheung. Parametric yield in FPGAs due to within-die delay variations: A quantitative analysis. In FPGA, pages 178--187, 2007.
[31]
S. Sivaswamy and K. Bazargan. Variation-aware routing for FPGAs. In FPGA, pages 71--79, 2007.
[32]
S. M. Trimberger. Utilizing multiple test bitstreams to avoid localized defects in partially defective programmable integrated circuits. United States Patent Number: 7,424,655, September 9 2008.
[33]
T. Tuan, A. Lesea, C. Kingsley, and S. Trimberger. Analysis of within-die process variation in 65nm FPGAs. In ISQED, pages 1--5, March 2011.
[34]
T. Tuan, A. Rahman, S. Das, S. Trimberger, and S. Kao. A 90-nm Low-Power FPGA for Battery-Powered applications. IEEE Trans. Computer-Aided Design, 26(2):296--300, 2007.
[35]
J. S. J. Wong, P. Sedcole, and P. Y. K. Cheung. Self-measurement of combinatorial circuit delays in FPGAs. ACM Tr. Reconfig. Tech. and Sys., 2(2):1--22, 2009.
[36]
W. Zhao and Y. Cao. New generation of predictive technology model for sub-45 nm early design exploration. IEEE Trans. Electron Dev., 53(11):2816--2823, 2006.

Cited By

View all

Index Terms

  1. Limit study of energy & delay benefits of component-specific routing

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      FPGA '12: Proceedings of the ACM/SIGDA international symposium on Field Programmable Gate Arrays
      February 2012
      352 pages
      ISBN:9781450311557
      DOI:10.1145/2145694
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 22 February 2012

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. component-specific mapping
      2. minimum energy
      3. variation tolerance

      Qualifiers

      • Research-article

      Conference

      FPGA '12
      Sponsor:

      Acceptance Rates

      FPGA '12 Paper Acceptance Rate 20 of 87 submissions, 23%;
      Overall Acceptance Rate 125 of 627 submissions, 20%

      Upcoming Conference

      FPGA '25

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)5
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 28 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media