skip to main content
article

Orthogonal Hessenberg Reduction and Orthogonal Krylov Subspace Bases

Published: 01 May 2004 Publication History

Abstract

We study necessary and sufficient conditions that a nonsingular matrix A can be B-orthogonally reduced to upper Hessenberg form with small bandwidth. By this we mean the existence of a decomposition AV=VH, where H is upper Hessenberg with few nonzero bands, and the columns of V are orthogonal in an inner product generated by a hermitian positive definite matrix B. The classical example for such a decomposition is the matrix tridiagonalization performed by the hermitian Lanczos algorithm, also called the orthogonal reduction to tridiagonal form. Does there exist such a decomposition when A is nonhermitian? In this paper we completely answer this question. The related (but not equivalent) question of necessary and sufficient conditions on A for the existence of short-term recurrences for computing B-orthogonal Krylov subspace bases was completely answered by the fundamental theorem of Faber and Manteuffel [SIAM J. Numer. Anal.}, 21 (1984), pp. 352--362]. We give a detailed analysis of B-normality, the central condition in both the Faber--Manteuffel theorem and our main theorem, and show how the two theorems are related. Our approach uses only elementary linear algebra tools. We thereby provide new insights into the principles behind Krylov subspace methods, that are not provided when more sophisticated tools are employed.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis  Volume 42, Issue 5
2004
456 pages

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 May 2004

Author Tags

  1. B-normality
  2. Hessenberg reduction
  3. Krylov subspace methods
  4. linear systems
  5. matrix decomposition
  6. normal matrices
  7. short-term recurrences

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media