skip to main content
research-article

HiRegEx: Interactive Visual Query and Exploration of Multivariate Hierarchical Data

Published: 01 January 2025 Publication History

Abstract

When using exploratory visual analysis to examine multivariate hierarchical data, users often need to query data to narrow down the scope of analysis. However, formulating effective query expressions remains a challenge for multivariate hierarchical data, particularly when datasets become very large. To address this issue, we develop a declarative grammar, HiRegEx (Hierarchical data Regular Expression), for querying and exploring multivariate hierarchical data. Rooted in the extended multi-level task topology framework for tree visualizations (e-MLTT), HiRegEx delineates three query targets (node, path, and subtree) and two aspects for querying these targets (features and positions), and uses operators developed based on classical regular expressions for query construction. Based on the HiRegEx grammar, we develop an exploratory framework for querying and exploring multivariate hierarchical data and integrate it into the TreeQueryER prototype system. The exploratory framework includes three major components: top-down pattern specification, bottom-up data-driven inquiry, and context-creation data overview. We validate the expressiveness of HiRegEx with the tasks from the e-MLTT framework and showcase the utility and effectiveness of TreeQueryER system through a case study involving expert users in the analysis of a citation tree dataset.

References

[2]
R. Angles, M. Arenas, P. Barceló, P. Boncz, G. Fletcher, C. Gutierrez, T. Lindaaker, M. Paradies, S. Plantikow, J. Sequeda et al., G-CORE: A core for future graph query languages. In Proc. Int. Conf. Management of Data, pp. 1421–1432, 2018. 1, 2, 3, 9.
[3]
L. Battle and J. Heer. Characterizing exploratory visual analysis: A literature review and evaluation of analytic provenance in tableau. Computer Graphics Forum, 38 (3): pp. 145–159, 2019. 1, 5, 6.
[4]
K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.-C. Kanne, F. Ozcan, and E. J. Shekita. Jaql: A scripting language for large scale semistructured data analysis. in Proc. the VLDB Endowment, 4 (12): pp. 1272–1283, 2011. 1, 2, 3, 9.
[5]
S. S. Bhowmick, B. Choi, and S. Zhou. VOGUE: Towards a visual interaction-aware graph query processing framework. In Proc. Conf. Innovative Data Systems Research. Citeseer, 2013. 2.
[6]
S. S. Bhowmick, K. Huang, H. E. Chua, Z. Yuan, B. Choi, and S. Zhou. AURORA: Data-driven construction of visual graph query interfaces for graph databases. In Proc. Int. ACM Conf. Management of Data (SIGMOD), pp. 2689–2692, 2020. 2.
[7]
M. Brehmer and T. Munzner. A multi-level typology of abstract visualization tasks. IEEE Transactions on Visualization and Computer Graphics, 19 (12): pp. 2376–2385, 2013. 3.
[8]
P. Buono, A. Aris, C. Plaisant, A. Khella, and B. Shneiderman. Interactive pattern search in time series. Visualization and Data Analysis, 5669: pp. 175–186, 2005. 2.
[9]
P. Buono and A. L. Simeone. Interactive shape specification for pattern search in time series. In Proc. Conf. Advanced Visual Interfaces, pp. 480–481, 2008. 2.
[10]
B. C. Cappers and J. J. van Wijk. Exploring multivariate event sequences using rules, aggregations, and selections. IEEE Transactions on Visualization and Computer Graphics, 24 (1): pp. 532–541, 2018. 2, 6.
[11]
D. H. Chau, C. Faloutsos, H. Tong, J. I. Hong, B. Gallagher, and T. Eliassi-Rad. Graphite: A visual query system for large graphs. In Proc. IEEE Int. Conf. Data Mining Workshops, pp. 963–966, 2008. 2.
[12]
M. P. Consens and A. O. Mendelzon. GraphLog: a visual formalism for real life recursion. In Proc. ACM SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems, pp. 404–416, 1990. 2.
[13]
I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query language supporting recursion. in Proc. Int. ACM Conf. Management of Data (SIGMOD), 16 (3): pp. 323–330, 1987. 2.
[14]
E. Cuenca, A. Sallaberry, D. Ienco, and P. Poncelet. VERTIGo: A visual platform for querying and exploring large multilayer networks. IEEE Transactions on Visualization and Computer Graphics, 28 (3): pp. 1634–1647, 2022. 2.
[15]
I. Curz. G+: Recursive queries without recursion. In Proc. Int. Conf. Expert Database Systems, pp. 355–368, 1988. 2.
[16]
T. Diefenbach and J. A. Sillince. Formal and informal hierarchy in different types of organization. Organization studies, 32 (11): pp. 1515–1537, 2011. 1.
[17]
M. Fowler. Domain-specific Languages. Pearson Education, 2010. 3.
[18]
N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor. Cypher: An evolving query language for property graphs. In Proc. Int. Conf. Management of Data, pp. 1433–1445, 2018. 1, 2, 3, 9.
[19]
D. Gotz and M. X. Zhou. Characterizing users' visual analytic activity for insight provenance. In Proc. IEEE Symp. Visual Analytics Science And Technology (VAST), pp. 123–130, 2008. 3.
[20]
P. Hanrahan. VizQL: a language for query, analysis and visualization. In Proc. Int. ACM Conf. Management of Data (SIGMOD), pp. 721–721, 2006. 3.
[21]
H. Hochheiser and B. Shneiderman. Interactive exploration of time series data. In Proc. The Craft of Information Visualization, pp. 313–315. Elsevier, 2003. 2.
[22]
H. Hochheiser and B. Shneiderman. Dynamic query tools for time series data sets: timebox widgets for interactive exploration. Information Visualization, 3 (1): pp. 1–18, 2004. 2.
[23]
K. Huang, H. E. Chua, S. S. Bhowmick, B. Choi, and S. Zhou. MIDAS: towards efficient and effective maintenance of canned patterns in visual graph query interfaces. In Proc. Int. Conf. Management of Data, pp. 764–776, 2021. 2.
[24]
S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview of data exploration techniques. In Proc. Int. ACM Conf. Management of Data (SIGMOD), pp. 277–281, 2015. 6.
[25]
D. A. Keim. Visual exploration of large data sets. Communications of the ACM, 44 (8): pp. 38–44, 2001. 6.
[26]
Y. Kim and J. Heer. Gemini: A grammar and recommender system for animated transitions in statistical graphics. IEEE Transactions on Visualization and Computer Graphics, 27 (2): pp. 485–494, 2021. 3.
[27]
J. Krause, A. Perer, and H. Stavropoulos. Supporting iterative cohort construction with visual temporal queries. IEEE Transactions on Visualization and Computer Graphics, 22 (1): pp. 91–100, 2016. 2, 6.
[28]
R. Krueger, T. Tremel, and D. Thom. VESPa 2.0: data-driven behavior models for visual analytics of movement sequences. In Proc. Int. Symp. Big Data Visual Analytics (BDVA), pp. 1–8, 2017. 2, 6.
[29]
P.-M. Law, Z. Liu, S. Malik, and R. C. Basole. MAQUI: Interweaving queries and pattern mining for recursive event sequence exploration. IEEE Transactions on Visualization and Computer Graphics, 25 (1): pp. 396–406, 2019. 2.
[30]
D. J.-L. Lee, J. Lee, T. Siddiqui, J. Kim, K. Karahalios, and A. Parameswaran. You can't always sketch what you want: Understanding sensemaking in visual query systems. IEEE Transactions on Visualization and Computer Graphics, 26 (1): pp. 1267–1277, 2020. 1, 2, 5.
[31]
F. Lekschas, B. Peterson, D. Haehn, E. Ma, N. Gehlenborg, and H. Pfister. Peax: Interactive visual pattern search in sequential data using unsupervised deep representation learning. Computer Graphics Forum, 39 (3): pp. 167–179, 2020. 2.
[32]
R. Levy and G. Andrew. Tregex and Tsurgeon: Tools for querying and manipulating tree data structures. In Proc. Int. Conf. Language Resources and Evaluation (LREC), pp. 2231–2234, 2006. 1, 2, 3, 9.
[33]
G. Li, P. He, X. Wang, R. Li, C. H. Liu, C. Ou, D. He, and G. Wang. InsigHTable: Insight-driven hierarchical table visualization with reinforcement learning. IEEE Transactions on Visualization and Computer Graphics, pp. 1–18, 2024. 1.
[34]
G. Li, R. Li, Y. Feng, Y. Zhang, Y. Luo, and C. H. Liu. CoInsight: Visual storytelling for hierarchical tables with connected insights. IEEE Transactions on Visualization and Computer Graphics, 30 (6): pp. 3049–3061, 2024. 1.
[35]
G. Li, R. Li, Z. Wang, C. H. Liu, M. Lu, and G. Wang. HiTailor: Interactive transformation and visualization for hierarchical tabular data. IEEE Transactions on Visualization and Computer Graphics, 29 (1): pp. 139–148, 2023. 1.
[36]
G. Li, M. Tian, Q. Xu, M. J. McGuffin, and X. Yuan. GoTree: A grammar of tree visualizations. In Proc. ACM Conf. Human Factors in Computing Systems (CHI), pp. 170:1–170:13, 2020. 1, 4.
[37]
G. Li, X. Wang, G. Aodeng, S. Zheng, Y. Zhang, C. Ou, S. Wang, and H. C. Liu. Visualization generation with large language models: An evaluation. arXiv preprint arXiv:, 2024. 9.
[38]
G. Li and X. Yuan. GoTreeScape: Navigate and explore the tree visualization design space. IEEE Transactions on Visualization and Computer Graphics, 29 (12): pp. 5451–5467, 2023. 3.
[39]
G. Li, Y. Zhang, Y. Dong, J. Liang, J. Zhang, J. Wang, M. J. McGuffin, and X. Yuan. BarcodeTree: Scalable comparison of multiple hierarchies. IEEE Transactions on Visualization and Computer Graphics, 26 (1): pp. 1022–1032, 2020. 3.
[40]
M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu. Analyzing the training processes of deep generative models. IEEE Transactions on Visualization and Computer Graphics, 24 (1): pp. 77–87, 2017. 8.
[41]
M. Mannino and A. Abouzied. Qetch: Time series querying with expressive sketches. In Proc. Int. Conf. Management of Data, pp. 1741–1744, 2018. 2.
[42]
A. Pandey, U. Syeda, C. Shah, J. Guerra-Gomez, and M. Borkin. A state-of-the-art survey of tasks for tree design and evaluation with a curated task dataset. IEEE Transactions on Visualization and Computer Graphics, 28 (10): pp. 3563–3584, 2022. 1, 3.
[43]
D. Park, S. M. Drucker, R. Fernandez, and N. Elmqvist. ATOM: A grammar for unit visualizations. IEEE Transactions on Visualization and Computer Graphics, 24 (12): pp. 3032–3043, 2018. 3.
[44]
R. Pienta, F. Hohman, A. Endert, A. Tamersoy, K. Roundy, C. Gates, S. Navathe, and D. H. Chau. VIGOR: Interactive visual exploration of graph query results. IEEE Transactions on Visualization and Computer Graphics, 24 (1): pp. 215–225, 2018. 2.
[45]
R. Pienta, A. Tamersoy, A. Endert, S. Navathe, H. Tong, and D. H. Chau. Visage: Interactive visual graph querying. In Proc. Int. Conf. Advanced Visual Interfaces, pp. 272–279, 2016. 2.
[46]
P. Pirolli and S. Card. The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In Proc. Int. Conf. Intelligence Analysis, vol. 5, pp. 2–4, 2005. 1.
[47]
D. Ren, X. Zhang, Z. Wang, J. Li, and X. Yuan. WeiboEvents: A crowd sourcing weibo visual analytic system. In Proc. IEEE Pacific Visualization Symposium (PacificVis), pp. 330–334, 2014. 1.
[48]
M. A. Rodriguez. The gremlin graph traversal machine and language. In Proc. Symp. Database Programming Languages, pp. 1–10, 2015. 1, 2, 3, 9.
[49]
K. Ryall, N. Lesh, T. Lanning, D. Leigh, H. Miyashita, and S. Makino. Querylines: approximate query for visual browsing. In Extended Abstracts on Human Factors in Computing Systems, pp. 1765–1768, 2005. 2.
[50]
A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite: A grammar of interactive graphics. IEEE Transactions on Visualization and Computer Graphics, 23 (1): pp. 341–350, 2017. 3.
[51]
H.-J. Schulz. Treevis. net: A tree visualization reference. IEEE Computer Graphics and Applications, 31 (6): pp. 11–15, 2011. 1.
[52]
H.-J. Schulz, S. Hadlak, and H. Schumann. The design space of implicit hierarchy visualization: A survey. IEEE Transactions on Visualization and Computer Graphics, 17 (4): pp. 393–411, 2011. 1.
[53]
B. Shneiderman. The eyes have it: a task by data type taxonomy for information visualizations. In Proc. IEEE Symp. Visual Languages (VL), pp. 336–343, 1996. 5.
[54]
T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. Parameswaran. Effort-less data exploration with zenvisage: an expressive and interactive visual analytics system. in Proc. VLDB Endow., 10 (4): pp. 457–468, 2016. 3.
[55]
T. Siddiqui, P. Luh, Z. Wang, K. Karahalios, and A. G. Parameswaran. Expressive querying for accelerating visual analytics. Communications of the ACM, 65 (7): pp. 85–94, 10 pages, 2022. 1.
[56]
A. Slingsby, J. Dykes, and J. Wood. Configuring hierarchical layouts to address research questions. IEEE Transactions on Visualization and Computer Graphics, 15 (6): pp. 977–984, 2009. 1, 2, 3, 9.
[57]
C. Stolte, D. Tang, and P. Hanrahan. Polaris: a system for query, analysis, and visualization of multidimensional relational databases. IEEE Transactions on Visualization and Computer Graphics, 8 (1): pp. 52–65, 2002. 3.
[58]
M. Tian, G. Li, and X. Yuan. LitVis: a visual analytics approach for managing and exploring literature. Journal of Visualization, 26 (6): pp. 1445–1458, 2023. 1.
[59]
J. Troidl, S. Warchol, J. Choi, J. Matelsky, N. Dhanyasi, X. Wang, B. Wester, D. Wei, J. W. Lichtman, H. Pfister, and J. Beyer. ViMO-visual analysis of neuronal connectivity motifs. IEEE Transactions on Visualization and Computer Graphics, 30 (1): pp. 748–758, 2024. 2, 6.
[60]
L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of machine learning research, 9 (86): pp. 2579–2605, 2008. 6.
[61]
O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi. PGQL: a property graph query language. In Proc. Int. Conf. Graph Data Management Experiences and Systems, pp. 1–6, 2016. 1, 2, 9.
[62]
M. Wattenberg. Sketching a graph to query a time-series database. In Extended Abstracts on Human factors in Computing Systems, pp. 381–382, 2001. 2.
[63]
H. Wickham. A layered grammar of graphics. Journal of Computational and Graphical Statistics, 19 (1): pp. 3–28, 2010. 3.
[64]
K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and J. Heer. Voyager: Exploratory analysis via faceted browsing of visualization recommendations. IEEE Transactions on Visualization and Computer Graphics, 22 (1): pp. 649–658, 2016. 3, 6.
[65]
P. Xu, H. Mei, L. Ren, and W. Chen. ViDX: Visual diagnostics of assembly line performance in smart factories. IEEE Transactions on Visualization and Computer Graphics, 23 (1): pp. 291–300, 2017. 8.
[66]
Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph contrastive learning with augmentations. In Proc. Advances in Neural Information Processing Systems, vol. 33, pp. 5812–5823, 2020. 6.
[67]
Z. Yuan, H. E. Chua, S. S. Bhowmick, Z. Ye, W.-S. Han, and B. Choi. Towards plug-and-play visual graph query interfaces: data-driven selection of canned patterns for large networks. in Proc. VLDB Endow., 14 (11): pp. 1979–1991, 13 pages, 2021. 2.
[68]
E. Zgraggen, S. M. Drucker, D. Fisher, and R. Deline. (slqu)eries: Visual regular expressions for querying and exploring event sequences. In Proc. ACM Conf. Human Factors in Computing Systems (CHI), pp. 2683–2692, 2015. 2.
[69]
B. Zheng and F. Sadlo. On the visualization of hierarchical multivariate data. In Proc. IEEE Pacific Visualization Symposium (PacificVis), pp. 136–145, 2021. 1.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics  Volume 31, Issue 1
Jan. 2025
1353 pages

Publisher

IEEE Educational Activities Department

United States

Publication History

Published: 01 January 2025

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media