skip to main content
research-article

Reducing Ambiguities in Line-Based Density Plots by Image-Space Colorization

Published: 01 January 2024 Publication History

Abstract

Line-based density plots are used to reduce visual clutter in line charts with a multitude of individual lines. However, these traditional density plots are often perceived ambiguously, which obstructs the user's identification of underlying trends in complex datasets. Thus, we propose a novel image space coloring method for line-based density plots that enhances their interpretability. Our method employs color not only to visually communicate data density but also to highlight similar regions in the plot, allowing users to identify and distinguish trends easily. We achieve this by performing hierarchical clustering based on the lines passing through each region and mapping the identified clusters to the hue circle using circular MDS. Additionally, we propose a heuristic approach to assign each line to the most probable cluster, enabling users to analyze density and individual lines. We motivate our method by conducting a small-scale user study, demonstrating the effectiveness of our method using synthetic and real-world datasets, and providing an interactive online tool for generating colored line-based density plots.

References

[1]
Acis web services. [Online]. Available: http://www.rcc-acis.org/docs_webservices.html, 2017. Accessed: 2023-06-30. 5.
[2]
New york stock exchange. [Online]. Available: https://www.nyse.com/market-data/historical, 2023. Accessed: 2023-06-30. 7.
[3]
A. Artero, M. de Oliveira, and H. Levkowitz. Uncovering clusters in crowded parallel coordinates visualizations. In IEEE Symposium on Information Visualization, pp. 81–88, 2004. 2.
[4]
L. Bergman, B. Rogowitz, and L. Treinish. A rule-based tool for assisting colormap selection. In Proceedings Visualization '95, pp. 118–125, 1995. 3.
[5]
C. A. Brewer. “Chapter 7 - color use guidelines for mapping and visualization”. In A. M. Maceachren and D. F. Taylor, eds., Visualization in Modern Cartography, vol. 2 of Modern Cartography Series, pp. 123–147. Academic Press, 1994. 3.
[6]
C. A. Brewer. Guidelines for use of the perceptual dimensions of color for mapping and visualization. In J. Bares, ed., Color Hard Copy and Graphic Arts III, vol. 2171, pp. 54–63. International Society for Optics and Photonics, SPIE, 1994. 3.
[7]
C. A. Brewer et al. Color use guidelines for data representation. In Proceedings of the Section on Statistical Graphics, American Statistical Association, pp. 55–60, 1999. 3.
[8]
D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield. Scatterplot matrix techniques for large n. Journal of the American Statistical Association, 82 (398): pp. 424–436, 1987. 2.
[9]
C.-K. Chen, S. Yan, H. Yu, N. Max, and K.-L. Ma. An illustrative visualization framework for 3d vector fields. Computer Graphics Forum, 30 (7): pp. 1941–1951, 2011. 2.
[10]
W. Chen, F. Guo, and F.-Y. Wang. A survey of traffic data visualization. IEEE Transactions on Intelligent Transportation Systems, 16 (6): pp. 2970–2984, 2015. 1.
[11]
Y. Chen, J. Cohen, and J. Krolik. Similarity-guided streamline placement with error evaluation. IEEE Transactions on Visualization and Computer Graphics, 13 (6): pp. 1448–1455, 2007. 2.
[12]
D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, and Y.-Q. Xu. Color harmonization. ACM Trans. Graph., 25 (3): pp. 624–630, 2006. 3, 8.
[13]
M. A. A. Cox and T. F. Cox. Multidimensional Scaling, pp. 315–347. Berlin, Heidelberg: Springer, 2008. 5.
[14]
T. F. Cox and M. A. Cox. Multidimensional scaling on a sphere. Communications in Statistics - Theory and Methods, 20 (9): pp. 2943–2953, 1991. 5.
[15]
W. H. Day and H. Edelsbrunner. Efficient algorithms for agglomerative hierarchical clustering methods. Journal of classification, 1 (1): pp. 7–24, 1984. 4.
[16]
D. Feng, L. Kwock, Y. Lee, and R. Taylor. Matching visual saliency to confidence in plots of uncertain data. IEEE Transactions on Visualization and Computer Graphics, 16 (6): pp. 980–989, 2010. 2.
[17]
F. Ferstl, K. Bürger, and R. Westermann. Streamline variability plots for characterizing the uncertainty in vector field ensembles. IEEE Transactions on Visualization and Computer Graphics, 22 (1): pp. 767–776, 2016. 1, 2, 7.
[18]
A. Frantzis, R. Leaper, P. Alexiadou, A. Prospathopoulos, and D. Lekkas. Hellenic trench ais data. 2018. 5, 6, 7.
[19]
A. Frantzis, R. Leaper, P. Alexiadou, A. Prospathopoulos, and D. Lekkas. Shipping routes through core habitat of endangered sperm whales along the hellenic trench, greece:Can we reduce collision risks? PLOS ONE, 14 (2): pp. 1–21, 2019. 7.
[20]
B. D. Fulcher, M. A. Little, and N. S. Jones. Highly comparative time-series analysis: the empirical structure of time series and their methods. Journal of the Royal Society Interface, 10 (83): p. 20130048, 2013. 1.
[21]
S. Gaffney and P. Smyth. Joint probabilistic curve clustering and alignment. In Proceedings of the 17th International Conference on Neural Information Processing Systems, NIPS'04, pp. 473–480. MIT Press, Cambridge, MA, USA, 2004. 2.
[22]
C. Healey. Choosing effective colours for data visualization. In Proceedings of Seventh Annual IEEE Visualization '96, pp. 263–270, 1996. 3.
[23]
H. Hochheiser and B. Shneiderman. Dynamic query tools for time series data sets: Timebox widgets for interactive exploration. Information Visualization, 3 (1): pp. 1–18, 2004. 1, 2.
[24]
D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions on Visualization and Computer Graphics, 12 (5): pp. 741–748, 2006. 2.
[25]
D. Holten and J. J. Van Wijk. Force-directed edge bundling for graph visualization. Computer Graphics Forum, 28 (3): pp. 983–990, 2009. 2.
[26]
M.-H. Hong, J. K. Witt, and D. A. Szafir. The weighted average illusion: Biases in perceived mean position in scatterplots. IEEE Transactions on Visualization and Computer Graphics, 28 (1): pp. 987–997, 2022. 2.
[27]
C. Hurter, B. Tissoires, and S. Conversy. Fromdady: Spreading aircraft trajectories across views to support iterative queries. IEEE Transactions on Visualization and Computer Graphics, 15 (6): pp. 1017–1024, 2009. 2.
[28]
R. Ihaka. Colour for presentation graphics. In Proceedings of DSC, vol. 2, 2003. 3, 5.
[29]
A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Comput. Surv., 31 (3): pp. 264–323, 1999. 4.
[30]
W. Javed, B. McDonnel, and N. Elmqvist. Graphical perception of multiple time series. IEEE Transactions on Visualization and Computer Graphics, 16 (6): pp. 927–934, 2010. 1.
[31]
D. F. Jerding and J. T. Stasko. The information mural: a technique for displaying and navigating large information spaces. IEEE Transactions on Visualization and Computer Graphics, 4 (3): pp. 257–271, 1998. 2.
[32]
G. Kindlmann, E. Reinhard, and S. Creem. Face-based luminance matching for perceptual colormap generation. In IEEE Visualization, pp. 299–306, 2002. 3.
[33]
G. Kindlmann and C. Scheidegger. An algebraic process for visualization design. IEEE Transactions on Visualization and Computer Graphics, 20 (12): pp. 2181–2190, 2014. 2.
[34]
O. D. Lampe and H. Hauser. Curve Density Estimates. Computer Graphics Forum, 30 (3): pp. 633–642, 2011. 1, 2.
[35]
S. Lee, M. Sips, and H.-P. Seidel. Perceptually driven visibility optimization for categorical data visualization. IEEE Transactions on Visualization and Computer Graphics, 19 (10): pp. 1746–1757, 2013. 3.
[36]
A. Lhuillier, C. Hurter, and A. Telea. State of the art in edge and trail bundling techniques. Computer Graphics Forum, 36 (3): pp. 619–645, 2017. 5.
[37]
T. Liu, X. Li, C. Bao, M. Correll, C. Tu, O. Deussen, and Y. Wang. Data-driven mark orientation for trend estimation in scatterplots. In Proceedings of the CHI Conference on Human Factors in Computing Systems, CHI '21. ACM, New York, 2021. 2.
[38]
K. Lu, M. Feng, X. Chen, M. Sedlmair, O. Deussen, D. Lischinski, Z. Cheng, and Y. Wang. Palettailor: Discriminable colorization for categorical data. IEEE Transactions on Visualization and Computer Graphics, 27 (2): pp. 475–484, 2021. 3.
[39]
J. Matejka, F. Anderson, and G. Fitzmaurice. Dynamic opacity optimization for scatter plots. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI'15, pp. 2707–2710. ACM, New York, 2015. 2.
[40]
A. Mayorga and M. Gleicher. Splatterplots: Overcoming overdraw in scatter plots. IEEE Transactions on Visualization and Computer Graphics, 19 (9): pp. 1526–1538, 2013. 3.
[41]
T. McLoughlin, M. W. Jones, R. S. Laramee, R. Malki, I. Masters, and C. D. Hansen. Similarity measures for enhancing interactive streamline seeding. IEEE Transactions on Visualization and Computer Graphics, 19 (8): pp. 1342–1353, 2013. 2.
[42]
M. Mirzargar, R. T. Whitaker, and R. M. Kirby. Curve boxplot: Generalization of boxplot for ensembles of curves. IEEE Transactions on Visualization and Computer Graphics, 20 (12): pp. 2654–2663, 2014. 1, 2, 3.
[43]
K. Moreland. Diverging color maps for scientific visualization. In International Symposium on Visual Computing, pp. 92–103. Springer, 2009. 3.
[44]
D. Moritz and D. Fisher. Visualizing a million time series with the density line chart, 2018. 1, 2, 3, 5.
[45]
M. Müller. Dynamic Time Warping, pp. 69–84. Berlin, Heidelberg: Springer, 2007. 2.
[46]
M. Novotny and H. Hauser. Outlier-preserving focus+context visualization in parallel coordinates. IEEE Transactions on Visualization and Computer Graphics, 12 (5): pp. 893–900, 2006. 2.
[47]
OpenStreetMap contributors. Planet dump retrieved from [Online]. Available: https://planet.osm.org.https://www.openstreetmap.org, 2017. 10.
[48]
G. Palmas, M. Bachynskyi, A. Oulasvirta, H. P. Seidel, and T. Weinkauf. An edge-bundling layout for interactive parallel coordinates. In 2014 IEEE Pacific Visualization Symposium, pp. 57–64, 2014. 2.
[49]
F. Petitjean, A. Ketterlin, and P. Gançarski, A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn., 44 (3): pp. 678–693, 2011. 2.
[50]
B. Pham. Spline-based color sequences for univariate, bivariate and trivariate mapping. In Proceedings of the First IEEE Conference on Visualization: Visualization '90, pp. 202–208, 1990. 3.
[51]
D. Pomerenke, F. L. Dennig, D. A. Keim, J. Fuchs, and M. Blumenschein. Slope-dependent rendering of parallel coordinates to reduce density distortion and ghost clusters. In 2019 IEEE Visualization Conference (VIS), pp. 86–90, 2019. 2, 3.
[52]
P. L. Rheingans. Task-based color scale design. In W. R. Oliver, ed., 28th AIPR Workshop: 3D Visualization for Data Exploration and Decision Making, vol. 3905, pp. 35–43. International Society for Optics and Photonics, SPIE, 2000. 3.
[53]
P. K. Robertson and J. F. O'Callaghan. The generation of color sequences for univariate and bivariate mapping. IEEE Computer Graphics and Applications, 6 (2): pp. 24–32, 1986. 3.
[54]
B. Rogowitz and A. Kalvin. The “which blair project”: a quick visual method for evaluating perceptual color maps. In Proceedings Visualization, 2001. VIS '01. pp. 183–556, 2001. 3.
[55]
C. Rossl and H. Theisel. Streamline embedding for 3d vector field exploration. IEEE Transactions on Visualization and Computer Graphics, 18 (3): pp. 407–420, 2012. 2.
[56]
T. Salzbrunn and G. Scheuermann. Streamline predicates. IEEE Transactions on Visualization and Computer Graphics, 12 (6): pp. 1601–1612, 2006. 2.
[57]
R. Scheepens, N. Willems, H. van de Wetering, G. Andrienko, N. Andrienko, and J. J. van Wijk. Composite density maps for multivariate trajectories. IEEE Transactions on Visualization and Computer Graphics, 17 (12): pp. 2518–2527, 2011. 2.
[58]
R. Scheepens, N. Willems, H. van de Wetering, and J. J. van Wijk. Interactive visualization of multivariate trajectory data with density maps. In 2011 IEEE Pacific Visualization Symposium, pp. 147–154, 2011. 2.
[59]
B. W. Silverman. Density estimation for statistics and data analysis, vol. 26. CRC press, 1986. 2.
[60]
M. Tennekes and E. de Jonge. Tree colors: Color schemes for tree-structured data. IEEE Transactions on Visualization and Computer Graphics, 20 (12): pp. 2072–2081, 2014. 3.
[61]
D. Thompson, J. Bennett, C. Seshadhri, and A. Pinar. A provably-robust sampling method for generating colormaps of large data. In 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV), pp. 77–84, 2013. 3.
[62]
M. Thöny and R. Pajarola. Vector map constrained path bundling in 3d environments. In Proceedings of the 6th ACM SIGSPATIAL International Workshop on GeoStreaming, IWGS '15, pp. 33–42. ACM, New York, 2015. 2.
[63]
C. Tominski, G. Fuchs, and H. Schumann. Task-driven color coding. In 2008 12th International Conference Information Visualisation, pp. 373–380, 2008. 3.
[64]
T. Trautner, F. Bolte, S. Stoppel, and S. Bruckner. Sunspot Plots: Model-based Structure Enhancement for Dense Scatter Plots. Computer Graphics Forum, 2020. 2.
[65]
B. E. Trumbo. A theory for coloring bivariate statistical maps. The American Statistician, 35 (4): pp. 220–226, 1981. 3.
[66]
M. van der Zwan, V. Codreanu, and A. Telea. Cubu: Universal real-time bundling for large graphs. IEEE Transactions on Visualization and Computer Graphics, 22 (12): pp. 2550–2563, 2016. 2.
[67]
M. Vijaymeena and K. Kavitha. A survey on similarity measures in text mining. Machine Learning and Applications: An International Journal, 3: pp. 19–28, 03 2016. 4.
[68]
M. Wallinger, D. Archambault, D. Auber, M. Nöllenburg, and J. Peltonen. Edge-path bundling: A less ambiguous edge bundling approach. IEEE Transactions on Visualization and Computer Graphics, 28 (1): pp. 313–323, 2022. 2.
[69]
M. Wallinger, D. Archambault, D. Auber, M. Nöllenburg, and J. Peltonen. Faster edge-path bundling through graph spanners. Computer Graphics Forum, 2023. 2.
[70]
L. Wang and A. Kaufman. Importance driven automatic color design for direct volume rendering. Computer Graphics Forum, 31 (3): pp. 1305–1314, 2012. 3.
[71]
M. Wattenberg. Sketching a graph to query a time-series database. In CHI '01 Extended Abstracts on Human Factors in Computing Systems, CHI EA '01, pp. 381–382. ACM, New York, 2001. 2.
[72]
M. Wertheimer. Laws of organization in perceptual forms. A source book of Gestalt psychology, pp. 71–88, 1938. 3.
[73]
R. T. Whitaker, M. Mirzargar, and R. M. Kirby. Contour boxplots: A method for characterizing uncertainty in feature sets from simulation ensembles. IEEE Transactions on Visualization and Computer Graphics, 19 (12): pp. 2713–2722, 2013. 1.
[74]
H. Wickham. Bin-summarise-smooth: a framework for visualising large data. [Online]. Available: had.co.nz, Tech. Rep. 2013. 2, 3, 4.
[75]
H. Yu, C. Wang, C.-K. Shene, and J. H. Chen. Hierarchical streamline bundles. IEEE Transactions on Visualization and Computer Graphics, 18 (8): pp. 1353–1367, 2012. 2.
[76]
J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with knowledge from the physical world. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '11, pp. 316–324. ACM, New York, 2011. 5, 7.
[77]
J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-drive: Driving directions based on taxi trajectories. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS'10, pp. 99–108. ACM, New York, 2010. 5, 7.
[78]
A. Zeileis, K. Hornik, and P. Murrell. Escaping rgbland: Selecting colors for statistical graphics. Computational Statistics & Data Analysis, 53 (9): pp. 3259–3270, 2009. 3, 5.
[79]
W. Zeng, Q. Shen, Y. Jiang, and A. Telea. Route-aware edge bundling for visualizing origin-destination trails in urban traffic. Computer Graphics Forum, 38 (3): pp. 581–593, 2019. 2.
[80]
Z. Zhang, K. Huang, and T. Tan. Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. In 18th International Conference on Pattern Recognition (ICPR'06), vol. 3, pp. 1135–1138, 2006. 2.
[81]
Y. Zhao, Y. Wang, J. Zhang, C.-W. Fu, M. Xu, and D. Moritz. Kd-box: Line-segment-based kd-tree for interactive exploration of large-scale time-series data. IEEE Transactions on Visualization and Computer Graphics, 28 (1): pp. 890–900, 2022. 1, 2, 5.
[82]
L. Zhou and C. D. Hansen. A survey of colormaps in visualization. IEEE Transactions on Visualization and Computer Graphics, 22 (8): pp. 2051–2069, 2016. 3.
[83]
M. Zinsmaier, U. Brandes, O. Deussen, and H. Strobelt. Interactive level-of-detail rendering of large graphs. IEEE Transactions on Visualization and Computer Graphics, 18 (12): pp. 2486–2495, 2012. 2.

Index Terms

  1. Reducing Ambiguities in Line-Based Density Plots by Image-Space Colorization
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image IEEE Transactions on Visualization and Computer Graphics
      IEEE Transactions on Visualization and Computer Graphics  Volume 30, Issue 1
      Jan. 2024
      1456 pages

      Publisher

      IEEE Educational Activities Department

      United States

      Publication History

      Published: 01 January 2024

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 02 Feb 2025

      Other Metrics

      Citations

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media