skip to main content
research-article

Building semantic trees from XML documents

Published: 01 March 2016 Publication History

Abstract

The distributed nature of the Web, as a decentralized system exchanging information between heterogeneous sources, has underlined the need to manage interoperability, i.e., the ability to automatically interpret information in Web documents exchanged between different sources, necessary for efficient information management and search applications. In this context, XML was introduced as a data representation standard that simplifies the tasks of interoperation and integration among heterogeneous data sources, allowing to represent data in (semi-) structured documents consisting of hierarchically nested elements and atomic attributes. However, while XML was shown most effective in exchanging data, i.e., in syntactic interoperability, it has been proven limited when it comes to handling semantics, i.e., semantic interoperability, since it only specifies the syntactic and structural properties of the data without any further semantic meaning. As a result, XML semantic-aware processing has become a motivating challenge in Web data management, requiring dedicated semantic analysis and disambiguation methods to assign well-defined meaning to XML elements and attributes. In this context, most existing approaches: (i) ignore the problem of identifying ambiguous XML elements/nodes, (ii) only partially consider their structural relationships/context, (iii) use syntactic information in processing XML data regardless of the semantics involved, and (iv) are static in adopting fixed disambiguation constraints thus limiting user involvement. In this paper, we provide a new XML Semantic Disambiguation Framework titled XSDFdesigned to address each of the above limitations, taking as input: an XML document, and then producing as output a semantically augmented XML tree made of unambiguous semantic concepts extracted from a reference machine-readable semantic network. XSDF consists of four main modules for: (i) linguistic pre-processing of simple/compound XML node labels and values, (ii) selecting ambiguous XML nodes as targets for disambiguation, (iii) representing target nodes as special sphere neighborhood vectors including all XML structural relationships within a (user-chosen) range, and (iv) running context vectors through a hybrid disambiguation process, combining two approaches: concept-basedand context-based disambiguation, allowing the user to tune disambiguation parameters following her needs. Conducted experiments demonstrate the effectiveness and efficiency of our approach in comparison with alternative methods. We also discuss some practical applications of our method, ranging over semantic-aware query rewriting, semantic document clustering and classification, Mobile and Web services search and discovery, as well as blog analysis and event detection in social networks and tweets.

References

[1]
A. Maguitman, F. Menczer, H. Roinestad, A. Vespignani, Algorithmic detection of semantic similarity, Proceedings of the International Conference on the World Wide Web, WWW, 2005, pp. 107-116.
[2]
A. Tagarelli, M. Longo, S. Greco, Word sense disambiguation for XML structure feature generation, in: Proceedings of the European Semantic Web Conference, LNCS 5554, 2009, pp. 143-157.
[3]
A. Tagarelli, S. Greco, Semantic clustering of XML documents, ACM Trans. Inf. Syst., 28 (2010) 3.
[4]
P. Cimiano, S. Handschuh, S. Staab, Towards the self-annotating web, in: Proceedings of the International World Wide Web Conference, WWW'04, 2004, pp. 462-471.
[5]
R. Navigli, P. Velardi, An analysis of ontology-based query expansion strategies, in: Proceedings of the International Joint Conferences on Artificial Intelligence, IJCAI'03, 2003, pp. 42-49.
[6]
J. Tekli, R. Chbeir, K. Yetongnon, A novel XML structure comparison framework based on sub-tree commonalities and label semantics, Elsevier J. Web Semant. Sci. Serv. Agents World Wide Web, 11 (2012) 14-40.
[7]
H. Do, E. Rahm, Matching large schemas: Approaches and evaluation, Inf. Syst., 32 (2007) 857-885.
[8]
J. Tekli, R. Chbeir, K. Yétongnon, Minimizing user effort in XML grammar matching, Elsevier Inf. Sci. J., 210 (2012) 1-40.
[9]
F. Lecue, N. Mehandjiev, Seeking quality of web service composition in a semantic dimension, IEEE Trans. Knowl. Data Eng. (2011) 942-959.
[10]
A. Malki, M. Barhamgi, S.M. Benslimane, D. Benslimane, M. Malki, Composing data services with uncertain semantics, IEEE Trans. Knowl. Data Eng. (2015) 936-949.
[11]
X. Xia, X. Wang, X. Zhou, Evolving recommender system for mobile apps: A diversity measurement approach, Smart Comput. Rev., 3 (2013) 139-154.
[12]
B. Aleman-Meza, M. Nagarajan, L. Ding, A.P. Sheth, I.B. Arpinar, A. Joshi, T.W. Finin, Scalable semantic analytics on social networks for addressing the problem of conflict of interest detection, ACM Trans. Web, 2 (2008) 7.
[13]
B. Berendt, A. Hotho, G. Stumme, Bridging the gap - data mining and social network analysis for integrating semantic web and web 2.0, J. Web Semant., 8 (2010) 95-96.
[14]
P. Saari, T. Eerola, Semantic computing of moods based on tags in social media of music, IEEE Trans. Knowl. Data Eng. (2014) 2548-2560.
[15]
R. Krovetz, W.B. Croft, Lexical ambiguity and information retrieval, ACM Trans. Inf. Syst., 10 (1992) 115-141.
[16]
C. Fellbaum, Wordnet: An Electronic Lexical Database, MIT Press, Cambridge, MA, 1998.
[17]
W.N. Francis, H. Kucera, Frequency Analysis of English Usage, Houghton Mifflin, Boston, 1982.
[18]
R. Navigli, Word sense disambiguation: a survey, ACM Comput. Surv., 41 (2009) 1-69.
[19]
N. Ide, J. Veronis, Introduction to the special issue on word sense disambiguation: The state of the art, Comput. Linguist., 24 (1998) 1-40.
[20]
Y. Guo, W. Che, Y. Hu, W. Zhang, T. Liu, HIT-IR-WSD: A WSD System for English Lexical Sample Task, SemEval 2007, ACL.
[21]
S. Pradhan, E. Loper, D. Dligach, M. Palmer, Semeval-2007 task-17: English lexical sample, SRL and all words, in: Proceedings of the 4th International Workshop on Semantic Evaluations, SemEval, Prague, Czech Republic, 2007, pp. 87-92.
[22]
K. Taha, R. Elmasri, XCDSearch: An XML context-driven search engine, IEEE Trans. Knowl. Data Eng., 22 (2010) 1781-1796.
[23]
F. Mandreoli, R. Martoglia, Knowledge-based sense disambiguation (almost) for all structures, Inf. Syst., 36 (2011) 406-430.
[24]
D. Yaworsky, Word-sense disambiguation using statistical models of Roget's categories trained on large corpora, in: Proceedings of the Inter. Conference on Comput. Linguist, COLING, vol. 2, 1992, pp. 454-460. Nantes.
[25]
J. Hoffart, F.M. Suchanek, K. Berberich, G. Weikum, YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia, Artificial Intelligence, 194 (2013) 28-61.
[26]
N. Charbel, J. Tekli, R. Chbeir, G. Tekli, Resolving XML semantic ambiguity, in: International Conference on Extending Database Technology, EDBT'15, Brussels, Belgium, 2015, pp 277-288.
[27]
Y.S. Chan, H.T. Ng, Z. Zhong, NUS-PT: Exploiting parallel texts for word sense disambiguation in the English all-words tasks, in: Proceedings of the 4th International Workshop on Semantic Evaluations, SemEval, Prague, Czech Republic, 2007, pp. 253-256.
[28]
M. Lesk, Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone, in: Proceedings of the 5th Annual Inter. Conference on Systems Documentation, SIGDOC'86, 1986.
[29]
E. Agirre, D. Martinez, O. Lopez De Lacalle, A. Soroa, Two graph-based algorithms for state of the art word sense disambiguation, in: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, 2006, pp. 585-593.
[30]
J. Veronis, Hyperlex: Lexical cartography for information retrieval, Comput. Speech Lang., 18 (2004) 223-252.
[31]
E. Amitay, R. Nelken, W. Niblack, R. Sivan, A. Soffer, Multi-resolution disambiguation of term occurrences, in: Proceedings of the ACM Conference on Information and Knowledge Management, CIKM, 2003, pp, 255-262.
[32]
J. Artiles, A. Penas, F. Verdejo, Word sense disambiguation based on term to term similarity in a context space, in: Senseval-3: Third International Workshop on the Evaluation of Systems, 2004, pp. 58-63.
[33]
G.A. Miller, C. Leacock, R. Tengi, R.T. Bunker, A semantic concordance, in: Proceedings of the ARPA Workshop on Human Language Technology, 1993, pp. 303-308.
[34]
L. Marquez, G. Escudero, D. Martinez, G. Rigau, Supervised corpus-based methods for WSD, in: Word Sense Disambiguation: Algorithms and Applications, in: Supervised corpus-based methods for WSD, in: Word Sense Disambiguation: Algorithms and Applications, Springer, New York, NY, 2006, pp. 167-216.
[35]
S. Tratz, A. Sanfilippo, M. Gregory, A. Chappel, C. Posse, P. Whitney, PNNL: A supervised maximum entropy approach to word sense disambiguation, in: Proceedings of the 4th InternationalWorkshop on Semantic Evaluations, SemEval, Prague, Czech Republic, 2007, pp. 264-267.
[36]
S. Patwardhan, S. Banerjee, T. Pedersen, SenseRelate:TargetWord-A generalized framework forword sense disambiguation, in: AAAI'05, vol. 4, AAAI Press, 2005, pp. 1692-1693.
[37]
F. Mandreoli, R. Martoglia, E. Ronchetti, Versatile structural disambiguation for semantic-aware applications, in: Proceedings of the ACM International Conf. on Information and Knowledge Management, 2005, pp. 209-216.
[38]
R. Richardson, A. Smeaton, Using WordNet in a Knowledge-based approach to information retrieval, in: Proceedings of the BCS-IRSG Colloquium on Information Retrieval, 1995.
[39]
A. Budanitsky, G. Hirst, Evaluating WordNet-based measures of lexical semantic relatedness, Comput. Linguist., 32 (2006) 13-47.
[40]
S. Patwardhan, S. Banerjee, T. Pedersen, Using measures of semantic relatedness for word sense disambiguation, in: Proceedings of the Fourth International Conference on Intelligent Text Processing and Comput. Linguist., CICLing'03, 2003, pp. 241-257.
[41]
J. Lee, M. Kim, Y. Lee, Information retrieval based on conceptual distance in IS-A hierarchies, J. Doc., 49 (1993) 188-207.
[42]
Z. Wu, M. Palmer, Verb semantics and lexical selection, in: Proceedings of the 32nd Annual Meeting of the Associations of Comput. Linguist., 1994, pp. 133-138.
[43]
D. Lin, An information-theoretic definition of similarity, in: Proceedings of the International Conference on Machine Learning, ICML, Morgan Kaufmann Pub. Inc., 1998, pp. 296-304.
[44]
P. Resnik, Disambiguating noun groupings with respect to wordnet senses, in: Proceedings of the 3rd Workshop on Large Corpora, 1995, pp. 54-68.
[45]
S. Banerjee, T. Pedersen, An adapted Lesk algorithm for word sense disambiguation using WordNet, in: Proceedings of the Third International Conference on Intelligent Text Processing and Comput. Linguist., 2002.
[46]
S. Banerjee, T. Pedersen, Extended gloss overlaps as a measure of semantic relatedness, in: International Joint Conference on Artificial Intelligence, IJCAI'03, 2003, p. 805-810.
[47]
K. Saruladha, G. Aghila, S. Raj, A survey of semantic similarity methods for ontology based information retrieval, in: Proceedings of the International Conf. on Machine Learning and Computing, ICMLC'10, 2010, pp. 297-301.
[48]
X. Zhang, L. Jing, X. Hu, M. Ng, X. Zhou, A comparative study of ontology based term similarity measures on document clustering, in: Proceedings of the International Conference on Database Systems for Advanced Applications, DASFAA'07, 2007, pp. 115-126.
[49]
K. Taha, R. Elmasri, CXLEngine: A comprehensive XML loosely structured search engine, in: Proceedings of the EDBT workshop on Database Technologies for Handling XML Information on the Web, DataX'08, 2008, pp. 37-42, Nantes, France.
[50]
K. Taha, R. Elmasri, OOXKSearch: a search engine for answering XML keyword and loosely structured queries using OO techniques, J. Database Manage., 20 (2009) 18-50.
[51]
M. Theobald, R. Schenkel, G. Weikum, Exploiting structure, annotation, and ontological knowledge for automatic classification of XML data, in: Proceedings of the ACM SIGMOD International Workshop on Databases, WebDB, San Diego, California, 2003, pp. 1-6.
[52]
C. Leacock, M. Chodorow, Combining local context and wordnet similarity for word sense identification, in: WordNet: An Electronic Lexical Database, The MIT Press, Cambridge, 1998.
[53]
W3 Consortium, The Document Object Model, 2005 cited 28 May 2009; Available from: http://www.w3.org/DOM.
[54]
S. Abiteboul, P. Buneman, D. Suciu, Data on the Web: From Relations to Semistructured Data and XML, Morgan Kaufmann Publisher, 1999.
[55]
A. Nierman, H.V. Jagadish, Evaluating structural similarity in XML documents, in: Proceedings of the ACM SIGMOD International Workshop on the Web and Databases, WebDB, 2002, pp. 61-66.
[56]
Z. Zhang, R. Li, S. Cao, Y. Zhu, Similarity metric in xml documents, in: Knowledge Management and Experience Management Workshop, 2003.
[57]
E. Bertino, G. Guerrini, Mesiti Marco, Measuring the structural similarity among XML documents and DTDs, J. Intell. Inf. Syst., 30 (2008) 55-92.
[58]
J. Tekli, R. Chbeir, K. Yétongnon, An Overview of XML Similarity: Background, current trends and future directions, Elsevier Comput. Sci. Rev., 3 (2009) 151-173.
[59]
J. Hopfield, D. Tank, Neural computation of decisions in optimization problems, Biol. Cybern., 52 (1985) 52-141.
[60]
A. Marie, A. Gal, Boosting schema matchers, in: Proceedings of the OTM 2008 Confederated International Conferences, 2008, pp. 283-300.
[61]
M. Ming, P. Yefei, S. Michael, A harmony based adaptive ontology mapping approach, in: Proceedings of the International Conference on Semantic Web and Web Services, SWWS'08, 2008, pp. 336-342.
[62]
J. Graupmann, R. Schenkel, G. Weikum, The spheresearch engine for unified ranked retrieval of heterogeneous XML and web documents, in: Proceedings of the International Conference on Very Large Databases (VLDB), 2005, pp. 529-540.
[63]
P. Ganesan, H. Garcia-Molina, J. Windom, Exploiting hierarchical domain structure to compute similarity, ACM Trans. Inf. Syst., 21 (2003) 64-93.
[64]
J. Jiang, D. Conrath, Semantic similarity based on corpus statistics and lexical taxonomy, in: Proceedings of the International Conference on Research in Comput. Linguist., 1997, pp 19-33.
[65]
M. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, New York, 1983.
[66]
J. Tekli, E. Damiani, R. Chbeir, G. Gianini, SOAP processing performance and enhancement, IEEE Trans. Serv. Comput., 5 (2012) 387-403.
[67]
A. Algergawy, M. Mesiti, R. Nayak, Saake Gunter, XML data clustering: an overview, ACM Comput. Surv., 43 (2011) 25.
[68]
J. Tekli, Agma J.M. Traina, Caetano Traina, R. Chbeir, XML document-grammar comparison: Related problems and applications, Cent. Eur. J. Comput. Sci., 1 (2011) 117-136.
[69]
E. Bertino, G. Guerrini, M. Mesiti, A matching algorithm for measuring the structural similarity between an XML documents and a DTD and its applications, Elsevier Inf. Syst., 29 (2004) 23-46.
[70]
L.I. Rusu, J.W. Rahayu, D. Taniar, Storage techniques for multi-versioned XML documents, in: Database Systems for Advanced Applications, DASFAA'08, 2008, pp. 538-545.
[71]
E.H. Hovy, R. Navigli, S.P. Ponzetto, Collaboratively built semi-structured content and artificial intelligence: The story so far, Artificial Intelligence, 194 (2013) 2-27.
[72]
P. Shvaiko, J. Euzenat, A survey of schema-based matching approaches, J. Data Semant. (2005) 146-171.
[73]
H. Su, S. Padmanabhan, M.L. Lo, Identification of syntactically similar DTD elements for schema matching, in: Proceedings of the International Conference on Advances in Web-Age Information Management, WAIM, 2001, pp. 145-159.
[74]
F.G. Taddesse, J. Tekli, R. Chbeir, M. Viviani, K. Yetongnon, Semantic-based merging of RSS items, in: World Wide Web Journal: Internet and Web Information Systems Journal Special Issue: Human-Centered Web Science, vol. 12, Springer, Netherlands, 2010.
[75]
A. Doan, P. Domingos, A. Halevy, Learning to match the schemas of data sources: A multistrategy approach, Mach. Learn., 50 (2003) 279-301.
[76]
J. Cardoso, C. Bussler, Mapping between heterogeneous XML and OWL transaction representations in B2B integration, J. Data Knowl. Eng., 70 (2011) 1046-1069.
[77]
F. Lampathaki, S. Mouzakitis, G. Gionis, Y. Charalabidis, D. Askounis, Business to business interoperability: A current review of XML data integration standards, Comput. Stand. Interfaces, 31 (2009) 1045-1055.
[78]
E. Leonardi, T.T. Hoai, S.S. Bhowmick, S. Madria, DTD-diff: a change detection algorithm for DTDs, in: Proceedings of the Database Systems for Advanced Applications conference, DASFAA, 2006, pp. 384-402.
[79]
S. Staworko, J. Chomicky, Validity-Sensitive querying of XML databases, in: Lecture Notes in Computer Science, vol. 4254, Springer, 2006.
[80]
I. Stanoi, G. Mihaila, S. Padmanabhan, A framework for the selective dissemination of XML documents based on inferred user profiles, in: Proceedings of the International Conference on Data Engineering, 2003, pp. 531-542.
[81]
W. Renteria-Agualimpia, F.J. López-Pellicer, P.R. Muro-Medrano, J. Nogueras-Iso, F.J. Zarazaga-Soria, Exploring the advances in semantic search engines, in: Advances in Intelligent and Soft Computing, vol. 79, Springer, Berlin, Heidelberg, 2010, pp. 613-620.
[82]
J. Pokorny, V. Rejlek, A matrix model for XML data, in: Frontiers in Artificial Intelligence and Applications, vol. 118, IOS Press, 2005, pp. 53-64.
[83]
D. Carmel, N. Efraty, G.M. Landau, Y.S. Maarek, Y. Mass, An extension of the vector space model for querying XML documents via XML fragments, in: Proceedings of the ACM SIGIR Workshop on XML and Information Retrieval, 2002, pp. 14-25.
[84]
P.A. Boncz, T. Grust, M. Van Keulen, S. Manegold, J. Rittinger, J. Teubner, MonetDB/XQuery: a fast XQuery processor powered by a relational engine, in: International ACM SIGMOD Conference, 2006, pp. 479-490.
[85]
Y. Xiang, Z. Deng, H. Yu, S. Wang, N. Gao, A new indexing strategy for XML keyword search, in: Seventh International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2010, 2010.
[86]
R. Luk, H.V. Leong, T. Dillon, A. Chan, W.B. Croft, J. Allan, A survey in indexing and searching XML documents, J. Am. Soc. Inf. Sci. Technol., 53 (2002) 415-437.
[87]
H. Wang, X. Meng, On the sequencing of tree structures for XML indexing, in: Proceedings of the International Conference on Data Engineering, ICDE'05, 2005, pp. 372-383.
[88]
O. Egozi, S. Markovitch, E. Gabrilovich, Concept-based information retrieval using explicit semantic analysis, ACM Trans. Inf. Syst., 29 (2011) 8.
[89]
G. Furnas, T.K. Landauer, L.M. Gomez, S. Dumais, The vocabulary problem in human-system communication, Commun. ACM, 30 (1987) 964-971.
[90]
J. Lu, An Introduction to XML Query Processing and Keyword Search, Springer-Verlag, Berlin Heidelberg, 2013.
[91]
K. Schoefeggera, T. Tammetb, M. Granitzerc, A survey on socio-semantic information retrieval, Comput. Sci. Rev., 8 (2013) 25-46.
[92]
A. Sahai, V. Machiraju, Enabling fo the Ubiquitous e-services Vision on the Internet, Hewlett-Packard Laboratories, 2001.
[93]
R. Chinnici, J.J. Moreau, A. Ryman, S. Weerawarana, Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language, W3C Recommendation 26 June 2007, 2007 cited 25 August 2009; Available from: http://www.w3.org/TR/wsdl20/.
[94]
Word Wide Web Consortium. SOAP Version 1.2, W3C Recommendation, second ed., 2007, cited February 2010 http://www.w3.org/TR/soap/.
[95]
R. Verma, A. Srivastava, A novel web service directory framework for mobile environments, in: IEEE International Conference on Web Services, ICWS'14, 2014, pp. 614-621.
[96]
L. Richardson, S. Ruby, RESTful Web Services, O'Reilly Media, Inc., 2008.
[97]
J. Tekli, E. Damiani, R. Chbeir, Using XML-based multicasting to improve web service scalability, Int. J. Web Serv. Res., 9 (2012) 1-29.
[98]
T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Sci. Am., 284 (2001) 1-19.
[99]
P. Velardi, S. Faralli, R. Navigli, OntoLearn reloaded: A graph-based algorithm for taxonomy induction, Comput. Linguist., 39 (2013) 665-707.
[100]
M. Pennacchiotti, P. Pantel, Ontologizing semantic relations, in: Proceedings of the 44th Association for Computational Linguistics (ACL) Conf. joint with the 21th Conf. on Computational Linguistics, COLING, 2006, pp. 793-800.
[101]
F. Manola, E. Miller, Resource Description Framework (RDF) Primer : Model and Syntax Specification, W3C Recommendation, 2004. http://www.w3.org/TR/rdf-primer/.
[102]
D.L. McGuinness, F. Van Harmelen, OWL 2 Web - Ontology Language Document Overview, W3C Proposed Edited Recommendation, 2012. http://www.w3.org/TR/owl2-overview/.
[103]
R. Mihalcea, Knowledge-based methods for wsd, in: Word Sense Disambiguation: Algorithms and Applications, Springer, New York, 2006, pp. 107-131.
[104]
R. Garcia-Castro, A. Gomez-Perez, Interoperability results for semantic web technologies using OWL as the interchange language, J. Web. Semant., 8 (2010) 278-291.
[105]
T. Heath, C. Bizer, Linked data: Evolving the web into a global data space, in: Synthesis Lectures on the Semantic Web: Theory and Technology, Morgan & Claypool, 2011.
[106]
S. Malaika, M. Nicola, Data normalization reconsidered: An examination of record keeping in computer systems, in: Developer Works, IBM Corporation, 2010, pp. 32.
[107]
R. MacManus, How best buy is using the semantic web, in: The New York Times, 2010.
[108]
A.K. Singh, R.C. Joshi, Semantic tagging and classification of blogs, in: International Conference on Computer and Communication Technology, ICCCT, 2010, pp. 455-459.
[109]
I. Peters, Folksonomies. Indexing and Retrieval in Web 2.0, De Gruyter, 2009.
[110]
M. d'Aquin, E. Motta, M. Sabou, S. Angeletou, L. Gridinoc, V. Lopez, D. Guidi, Toward a new generation of semantic web applications, IEEE Intell. Syst., 23 (2008) 20-28.
[111]
R. Chbeir, Y. Luo, J. Tekli, K. Yetongnon, C.R. Ibanez, A.J.M. Traina, C. Traina, M. Al Assad, SemIndex: Semantic-aware inverted index, in: 18th East-European Conference on Advanced Databases and Information Systems, ADBIS'14, 2014, pp. 290-307.
[112]
F. DuChateau, Z. Bellahsene, E. Hunt, M. Roantree, a.R.M., An indexing structure for automatic schema matching, in: The 23rd International Conference on Data Engineering, ICDE - Workshops, 2007, pp. 485-491.
[113]
I. Sanz, M. Mesiti, G. Guerrini, R. Berlanga La, R. Berlanga Llavori, Approximate subtree identification in heterogeneous XML documents collections, XML Symposium (2005) 192-206.
[114]
I. Klapaftis, S. Manandhar, Evaluating word sense induction and disamiguation methods, Lang. Resour. Eval., 47 (2013) 579-605.
[115]
B. Dandala, C. Hokamp, R. Mihalcea, R.C. Bunescu, Sense clustering using wikipedia, in: Recent Advances in Natural Language Processing, RANLP'13, 2013, pp. 164-171.
[116]
B. Hachey, W. Radford, J. Nothman, M. Honnibal, J.R. Curran, Evaluating entity linking with wikipedia, Artificial Intelligence, 194 (2013) 130-150.
[117]
J. Tekli, A. Abou Rjeily, R. Chbeir, G. Tekli, P. Houngue, K. Yetongnon, M. Ashagrie Abebe, Semantic to intelligent web era: building blocks, applications, and current trends, in: International Conference on Managment of Emergent Digital EcoSystems, MEDES, 2013, pp. 159-168.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Web Semantics: Science, Services and Agents on the World Wide Web
Web Semantics: Science, Services and Agents on the World Wide Web  Volume 37, Issue C
March 2016
207 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 March 2016

Author Tags

  1. Context representation
  2. Knowledge bases
  3. Semantic ambiguity
  4. Semantic-aware processing
  5. Word sense disambiguation
  6. XML and Semi-structured data

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media