skip to main content
research-article

Promoting consensus in the concept mapping methodology

Published: 01 December 2015 Publication History

Abstract

A new method for improving the concept mapping methodology is presented.The global index of consensus (GIc) scores the clustering configurations.GIc is based on qualitative reasoning and it focuses on the experts' consensus.A real case application in the Barcelona hospitality industry is presented.The results show how GIc outperforms some of the most well-known quantitative indexes. Display Omitted The concept mapping methodology aims to respond to the non trivial task of conceptualising abstract thoughts by means of a focus group composed by experts from the studied domain. The approach defines a set of general steps that allow experts to lead the generation of ideas, group the ideas in a conceptual map of interrelated concepts using clustering multidimensional scaling and clustering techniques, analysing the quality of the conceptual maps and deciding on a final interpretation. In this sense, this final decision is not trivial because clustering techniques provide a set of potentially conceptual maps so experts must select the one that fits best according to their opinion. For this reason, we present the global index of consensus as an indicator for filtering the most suitable clustering solutions using qualitative reasoning. It promotes the consensus of experts opinions and ensures objectivity in the final interpretation. The index outperforms three of the most well-known clustering validation indexes in a case study focused on the meaning of excellence in the hospitality industry.This work presents the global index of consensus as an indicator for filtering the most suitable clustering solutions using qualitative reasoning that promotes the consensus of experts' opinions, which is one of the key aspects in the concept mapping methodology. The index outperforms three of the most well-known clustering validation indexes in a case study focused on the meaning of excellence in hospitality.

References

[1]
J.E. Bigné, J.A. Manzano, I. Küster, N. Vila, The concept mapping approach in marketing: an application in the travel agencies sector, Qual. Market Res. Int. J., 5 (2002) 87-95.
[2]
I. Borg, P. Groenen, Springer, 1997.
[3]
C. Bremmer, Euromonitor internationals top city destinations ranking, Euromonitor Int. (2011). http://blog.euromonitor.com/2014/01/euromonitor-internationals-top-city-destinations-ranking.html
[4]
A. Calvo, F. Criado, R. Periez, Desarrollo de un instrumento para evaluar la idoneidad de los planes docentes: una aplicacin a la diplomatura en turismo. Presented in Decisiones basadas en el conocimiento y en el papel social de la empresa, Academia Europea de Direccin y Economa de la Empresa, Palma de Mallorca, 2006.
[5]
G. Corral, A. Garcia-Piquer, A. Orriols-Puig, A. Fornells, E. Golobardes, Analysis of vulnerability assessment results based on {CAOS}, Appl. Soft Comput., 11 (2011) 4321-4331.
[6]
D.L. Davies, D.W. Bouldin, A cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell., 1 (1979) 224-227.
[7]
R. Duda, P. Hart, D. Stork, John Wiley and Sons, Inc, 2000.
[8]
J. Dunn, Well separated clusters and optimal fuzzy partitions, 1974.
[9]
G. Gan, M. Chaoqun, J. Wu, ASA-SIAM, Philadelphia, 2000.
[10]
A. Garcia-Piquer, Research Group in Intelligent Systems, Campus LaSalle, Universitat Ramon Llull, 2012.
[11]
A. Garcia-Piquer, A. Fornells, J. Bacardit, A. Orriols-Puig, E. Golobardes, Large-scale experimental evaluation of cluster representations for multiobjective evolutionary clustering, IEEE Trans. Evol. Comput., 18 (2014) 36-53.
[12]
A. Garcia-Piquer, A. Fornells, A. Orriols-Puig, G. Corral, E. Golobardes, Data classification through an evolutionary approach based on multiple criteria, Knowl. Inf. Sys., 33 (2012) 35-56.
[13]
I. Gurrutxaga, J. Muguerza, O. Arbelaitz, J.M. Prez, J.I. Martn, Towards a standard methodology to evaluate internal cluster validity indices, Pattern Recognit. Lett., 32 (2011) 505-515.
[14]
J.F. Hair, R.L. Tatham, R.E. Anderson, W. Black, Prentice Hall, 2006.
[15]
M. Halkidi, Y. Batistakis, M. Vazirgiannis, On clustering validation techniques, J. Intell. Inf. Sys., 17 (2001) 107-145.
[16]
M. Halkidi, Y. Batistakis, M. Vazirgiannis, Cluster validity methods: part I, SIGMOD Rec., 31 (2002) 40-45.
[17]
J. Handl, J. Knowles, An evolutionary approach to multiobjective clustering, IEEE Trans. Evol. Comput., 1 (2007) 56-76.
[18]
T. Harkison, J. Poulston, J.-H.G. Kim, Hospitality graduates and managers: the big divide, Int. J. Contemp. Hospitality Manag., 23 (2011) 377-392.
[19]
D.A. Harrison, K.J. Klein, What's the difference? diversity constructs as separation, variety, or disparity in organizations, Acad. Manag. Rev., 32 (2007) 1199-1228.
[20]
N. Hemmington, From service to experience: understanding and defining the hospitality business, Serv. Ind. J., 27 (2007) 747-755.
[21]
E.R. Hruschka, R.J.G.B. Campello, A.A. Freitas, A.C.P.L.F. de Carvalho, A survey of evolutionary algorithms for clustering, IEEE Trans. Syst. Man Cybernet. Part C: Appl. Rev., 39 (2009) 133-155.
[22]
A.K. Jain, Data clustering: 50 years beyond k-means, Pattern Recognit. Lett., 31 (2010) 651-666.
[23]
G. Kanji, Measuring business excellence, Routledge Advances in Management and Business Studies, 2002.
[24]
C. Lashley, A. Morrison, et¿al., In search of hospitality: theoretical perspectives and debates, In Search of Hospitality: Theoretical Perspectives and Debates, 2000.
[25]
C. Legány, S. Juhász, A. Babos, Cluster validity measurement techniques, 2006.
[26]
U. Nabitz, P. Severens, W.V.D. Brink, P. Jansen, Improving the EFQM model: an empirical study on model development and theory building using concept mapping, Total Qual. Manag., 12 (2001) 69-81.
[27]
S.R. Rosas, L.C. Camphausen, The use of concept mapping for scale development and validation in evaluation, Eval. Program Plan., 30 (2007) 125-135.
[28]
L. Roselló, F. Prats, N. Agell, M. Sánchez, Measuring consensus in group decisions by means of qualitative reasoning, Int. J. Approx. Reason., 51 (2010) 441-452.
[29]
P. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, 1987.
[30]
C. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948) 379-423, 623-656.
[31]
P. Slattery, Finding the hospitality industry, J. Hospitality Leis. Sport Tourism Educ., 1 (2002) 19-28.
[32]
S. Theodoridis, K. Koutroumbas, Academic Press, Burlington, USA, 2008.
[33]
L. Travé-Massuyès, L. Ironi, P. Dague, Mathematical foundations of qualitative reasoning, AI Mag., 24 (2004) 91-106.
[34]
L. Travé-Massuyès, F. Prats, M. Sánchez, N. Agell, Relative and absolute order-of-magnitude models unified, Ann. Math. Artif. Intell., 45 (2005) 323-341.
[35]
W.M. Trochim, An introduction to concept mapping for planning and evaluation, Eval. Program Plann., 12 (1989) 1-16.
[36]
M. Vila, R. X., G. Costa, R. Santom, Combining research techniques to improve quality service in hospitality, Qual. Quant., 46 (2012) 795-812.
[37]
I.H. Witten, E. Frank, Morgan Kaufmann, San Francisco, 2011.
[38]
R. Wood, B. Brotherton, SAGE Publications, 2008.

Cited By

View all
  • (2024)Construction and Analysis of Collaborative Educational Networks based on Student Concept MapsProceedings of the ACM on Human-Computer Interaction10.1145/36373138:CSCW1(1-22)Online publication date: 26-Apr-2024
  1. Promoting consensus in the concept mapping methodology

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Pattern Recognition Letters
    Pattern Recognition Letters  Volume 67, Issue P1
    December 2015
    108 pages

    Publisher

    Elsevier Science Inc.

    United States

    Publication History

    Published: 01 December 2015

    Author Tags

    1. Concept mapping methodology
    2. Consensus measures
    3. Excellence in hospitality
    4. Qualitative reasoning techniques

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 25 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Construction and Analysis of Collaborative Educational Networks based on Student Concept MapsProceedings of the ACM on Human-Computer Interaction10.1145/36373138:CSCW1(1-22)Online publication date: 26-Apr-2024

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media