skip to main content
research-article

A fast projected fixed-point algorithm for large graph matching

Published: 01 December 2016 Publication History

Abstract

We propose a fast algorithm for approximate matching of large graphs. Previous graph matching algorithms suffer from high computational complexity and therefore do not have good scalability. By using a new doubly stochastic projection, for matching two weighted graphs of n nodes, our algorithm has time complexity only O ( n 3 ) per iteration and space complexity O ( n 2 ) . We proved that our algorithm converges at a super-logarithmic rate. Experiments on large synthetic and real graphs (over 1000 nodes) were conducted to evaluate the performance of various algorithms. Results show that due to its fast convergence, our algorithm is more than an order of magnitude faster than the previous state-of-the-art algorithms, while maintaining comparable accuracy in large graph matching. HighlightsLow time complexity O(n3)/iteration for two graphs of n nodes.Super-logarithm convergence guarantee.Large graph matching experiments.

References

[1]
D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph matching in pattern recognition, Int. J. Pattern Recognit. Artif. Intell., 18 (2004) 265-298.
[2]
H. Bunke, B.T. Messmer, Recent advances in graph matching, Int. J. Pattern Recognit. Artif. Intell., 11 (1997) 169-203.
[3]
R.S. Lee, J.N. Liu, An oscillatory elastic graph matching model for recognition of offline handwritten Chinese characters, in: International Conference on Knowledge-Based Intelligent Information Engineering Systems, 1999, pp. 284-287.
[4]
A. Filatov, A. Gitis, I. Kil, Graph-based handwritten digit string recognition, in: Proceedings of the Third International Conference on Document Analysis and Recognition, vol. 2, 1995, pp. 845-848.
[5]
S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition using shape contexts, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002) 509-522.
[6]
A.C. Berg, T.L. Berg, J. Malik, Shape matching and object recognition using low distortion correspondences, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 2005, pp. 26-33.
[7]
K. Siddiqi, A. Shokoufandeh, S.J. Dickinson, S.W. Zucker, Shock graphs and shape matching, Int. J. Comput. Vision., 35 (1999) 13-32.
[8]
B. Huet, E.R. Hancock, Shape recognition from large image libraries by inexact graph matching, Pattern Recognit. Lett., 20 (1999) 1259-1269.
[9]
L. Wiskott, J.-M. Fellous, N. Kuiger, C. Von Der Malsburg, Face recognition by elastic bunch graph matching, IEEE Trans. Pattern Anal. Mach. Intell., 19 (1997) 775-779.
[10]
M. Leordeanu, M. Hebert, A spectral technique for correspondence problems using pairwise constraints, in: Proceedings of IEEE International Conference on Computer Vision, vol. 2, 2005, pp. 1482-1489.
[11]
Y. Zheng, D. Doermann, Robust point matching for nonrigid shapes by preserving local neighborhood structures, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006) 643-649.
[12]
S. Berretti, A. Del Bimbo, E. Vicario, Efficient matching and indexing of graph models in content-based retrieval, IEEE Trans. Pattern Anal. Mach. Intell., 23 (2001) 1089-1105.
[13]
K. Shearer, H. Bunke, S. Venkatesh, Video indexing and similarity retrieval by largest common subgraph detection using decision trees, Pattern Recognit., 34 (2001) 1075-1091.
[14]
K. chin Fan, J. ming Lu, G. dong Chen, A feature point clustering approach to the recognition of form documents, Pattern Recognit., 31 (1998) 1205-1220.
[15]
M.A. Lozano, F. Escolano, Protein classification by matching and clustering surface graphs, Pattern Recognit., 39 (2006) 539-551.
[16]
D.K. Isenor, S.G. Zaky, Fingerprint identification using graph matching, Pattern Recognit., 19 (1986) 113-122.
[17]
J.R. Ullmann, An algorithm for subgraph isomorphism, J. ACM, 23 (1976) 31-42.
[18]
B.D. McKay, Practical Graph Isomorphism, Department of Computer Science, Vanderbilt University, 1981.
[19]
L.P. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub) graph isomorphism algorithm for matching large graphs, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004) 1367-1372.
[20]
W.-H. Tsai, K.-S. Fu, Error-correcting isomorphisms of attributed relational graphs for pattern analysis, IEEE Trans. Syst. Man Cybern., 9 (1979) 757-768.
[21]
L.G. Shapiro, R.M. Haralick, Structural descriptions and inexact matching, IEEE Trans. Pattern Anal. Mach. Intell., 5 (1981) 504-519.
[22]
M.A. Fischler, R.A. Elschlager, The representation and matching of pictorial structures, IEEE Trans. Comput., 22 (1973) 67-92.
[23]
A. Rosenfeld, R.A. Hummel, S.W. Zucker, Scene labeling by relaxation operations, IEEE Trans. Syst. Man Cybern., 6 (1976) 420-433.
[24]
W.J. Christmas, J. Kittler, M. Petrou, Structural matching in computer vision using probabilistic relaxation, IEEE Trans. Pattern Anal. Mach. Intell., 17 (1995) 749-764.
[25]
S. Umeyama, An eigendecomposition approach to weighted graph matching problems, IEEE Trans. Pattern Anal. Mach. Intell., 10 (1988) 695-703.
[26]
S. Gold, A. Rangarajan, A graduated assignment algorithm for graph matching, IEEE Trans. Pattern Anal. Mach. Intell., 18 (1996) 377-388.
[27]
M. Pelillo, Replicator equations, maximal cliques, and graph isomorphism, Neural Comput., 11 (1999) 1933-1955.
[28]
B. Luo, E.R. Hancock, Structural graph matching using the em algorithm and singular value decomposition, IEEE Trans. Pattern Anal. Mach. Intell., 23 (2001) 1120-1136.
[29]
T. Cour, P. Srinivasan, J. Shi, Balanced graph matching, in: Proceedings of Advances in Neural Information Processing Systems, vol. 2, 2006, p. 6.
[30]
M. Leordeanu, M. Hebert, R. Sukthankar, An integer projected fixed point method for graph matching and map inference, in: Proceedings of Advances in Neural Information Processing Systems, vol. 2, 2009, p. 7.
[31]
M. Cho, J. Lee, K. M. Lee, Reweighted random walks for graph matching, in: Proceedings of European Conference on Computer Vision, 2010, pp. 492-505.
[32]
R. Zass, A. Shashua, Probabilistic graph and hypergraph matching, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.
[33]
M. Zaslavskiy, F. Bach, J.-P. Vert, A path following algorithm for the graph matching problem, IEEE Trans. Pattern Anal. Mach. Intell., 31 (2009) 2227-2242.
[34]
F. Zhou, F. De la Torre, Factorized graph matching, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 127-134.
[35]
L. Torresani, V. Kolmogorov, C. Rother, A dual decomposition approach to feature correspondence, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013) 259-271.
[36]
M. Cho, J. Sun, O. Duchenne, J. Ponce, Finding matches in a haystack: a max-pooling strategy for graph matching in the presence of outliers, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2091-2098.
[37]
D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vision., 60 (2004) 91-110.
[38]
R. Zass, A. Shashua, Doubly stochastic normalization for spectral clustering, in: Proceedings of Advances in Neural Information Processing Systems, 2006, pp. 1569-1576.
[39]
H.H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl., 202 (1996) 150-159.
[40]
D.C. Youla, H. Webb, Image restoration by the method of convex projections, IEEE Trans. Med. Imaging, 1 (1982) 81-94.
[41]
H. Almohamad, S.O. Duffuaa, A linear programming approach for the weighted graph matching problem, IEEE Trans. Pattern Anal. Mach. Intell., 15 (1993) 522-525.
[42]
M. Frank, P. Wolfe, An algorithm for quadratic programming, Nav. Res. Logist. Q., 3 (1956) 95-110.
[43]
B.J. van Wyk, M.A. van Wyk, A pocs-based graph matching algorithm, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004) 1526-1530.
[44]
E.L. Lawler, The quadratic assignment problem, Manag. Sci., 9 (1963) 586-599.
[45]
R. Sinkhorn, P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pac. J. Math., 21 (1967) 343-348.
[46]
H.W. Kuhn, The Hungarian method for the assignment problem, Nav. Res. Logist. Q., 2 (1955) 83-97.
[47]
J. Von Neumann, Functional Operators: The Geometry of Orthogonal Spaces, Princeton University Press, Princeton, 1950.
[48]
B. Kalantari, L. Khachiyan, On the complexity of nonnegative-matrix scaling, Linear Algebra its Appl., 240 (1996) 87-103.
[49]
A. Nemirovski, U. Rothblum, On complexity of matrix scaling, Linear Algebra its Appl., 302 (1999) 435-460.
[50]
Y. Lu, H. Bunke, C.-L. Liu, An algorithm for maximum common subgraph of planar triangulation graphs, in: Graph-Based Representations in Pattern Recognition, 2013, pp. 162-171.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Pattern Recognition
Pattern Recognition  Volume 60, Issue C
December 2016
1076 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 December 2016

Author Tags

  1. Feature correspondence
  2. Graph matching
  3. Large graph algorithm
  4. Point matching
  5. Projected fixed-point

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media