skip to main content
research-article

Kernel-based MinMax clustering methods with kernelization of the metric and auto-tuning hyper-parameters

Published: 24 September 2019 Publication History

Abstract

This paper proposes kernel-based MinMax clustering methods with kernelization of the metric and auto-tuning hyper-parameters which learn the variable weights and adjust the cluster weights automatically. We develop the new objective functions that are obtained from the proposed algorithms to achieve the desirable partition by minimizing the dissimilarity measures with kernelization of the metric. Correspondingly, two additional steps are introduced to k-means algorithms, so that, not only the performance is improved, but also the efficiency remains. More specifically, the proposed algorithms learn two types of weights at each iteration where variable weights identify relevant variables and cluster weights to confine the occurrence of the large variance cluster. Finally, the experiments on ten UCI benchmark datasets corroborate the superiority of the proposed algorithms.

References

[1]
P. E. Green, Kim J., F. Carmone, A preliminary study of optimal variable weighting in k-means clustering, J. Classif. 7 (1990) 271–285,.
[2]
Xu R., D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Netw. 16 (3) (2005) 645–678,.
[3]
Zhang H., Chow T.W.S., Wu Q.M.J., Organizing books and authors by multilayer SOM, IEEE Trans. Neural Netw. Learn. Syst. 27 (12) (2016) 2537–2550,.
[4]
Zhang H., Wang S., Xu X., Chow T.W.S., Wu Q.M.J., Tree2Vector: learning a vectorial representation for tree-structured data, IEEE Trans. Neural Netw. Learn. Syst. 29 (11) (2018) 5304–5318,.
[5]
A.K. Jain, R.P.W. Duin, Statistical pattern recognition: a review, IEEE Trans. Pattern Anal. Mach. Intell. 22 (1) (2000) 4–37,.
[6]
J. Peña, J. Lozano, P. Larrañaga, An empirical comparison of four initialization methods for the k-means algorithm, Pattern Recognit. Lett. 20 (10) (1999) 1027–1040,.
[7]
M.E. Celebi, H.A. Kingravi, P.A. Vela, A comparative study of efficient initialization methods for the k-means clustering algorithm, Expert Syst. Appl. 40 (1) (2013) 200–210,.
[8]
Huang J.Z., Ng M.K., Rong H., Li Z., Automated variable weighting in k-means type clustering, IEEE Trans. Pattern Anal. Mach. Intell. 27 (5) (2005) 657–668,.
[9]
R.C. de Amorim, B. Mirkin, Minkowski metric, feature weighting and anomalous cluster initializing in k-means clustering, Pattern Recognit. 45 (3) (2012) 1061–1075,.
[10]
Jing L., Ng M.K., Huang J.Z., An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data, IEEE Trans. Knowl. Data Eng. 19 (8) (2007) 1026–1041,.
[11]
Tsai C.-Y., Chiu C.-C., Developing a feature weight self-adjustment mechanism for a k-means clustering algorithm, Comput. Stat. Data Anal. 52 (10) (2008) 4658–4672,.
[12]
C. Domeniconi, D. Gunopulos, Ma S., Yan B., M. Al-Razgan, D. Papadopoulos, Locally adaptive metrics for clustering high dimensional data, Data Min. Knowl. Discov. 14 (1) (2007) 63–97,.
[13]
Chen X., Xu X., Huang J.Z., Ye Y., TW-k-Means: automated two-level variable weighting clustering algorithm for multiview data, IEEE Trans. Knowl. Data Eng. 25 (4) (2013) 932–944,.
[14]
Chan E.Y., Ching W.K., Ng M.K., Huang J.Z., An optimization algorithm for clustering using weighted dissimilarity measures, Pattern Recognit. 37 (5) (2004) 943–952,.
[15]
B. Schölkopf, A.J. Smola, K.-R. Müller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput. 10 (1998) 1299–1319,.
[16]
M. Girolami, Mercer kernel-based clustering in feature space, IEEE Trans. Neural Netw. 13 (3) (2002) 780–784,.
[17]
M.R. Ferreira, F. de A.T. de Carvalho, Kernel-based hard clustering methods in the feature space with automatic variable weighting, Pattern Recognit. 47 (9) (2014) 3082–3095,.
[18]
M.R. Ferreira, F. de A.T. de Carvalho, Kernel fuzzy c-means with automatic variable weighting, Fuzzy Sets Syst. 237 (2014) 1–46,., Theme: Data Analysis and Fuzzy Models.
[19]
D. Graves, W. Pedrycz, Kernel-based fuzzy clustering and fuzzy clustering: a comparative experimental study, Fuzzy Sets Syst. 161 (4) (2010) 522–543,., Theme: Forecasting, Classification, and Learning.
[20]
T. Kohonen, The self-organizing map, Proc. IEEE 78 (9) (1990) 1464–1480,.
[21]
Ding Y., Fu X., Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm, Neurocomputing 188 (2016) 233–238,., Advanced Intelligent Computing Methodologies and Applications.
[22]
Zhou J., Chen L., Chen C.P., Zhang Y., Li H.-X., Fuzzy clustering with the entropy of attribute weights, Neurocomputing 198 (2016) 125–134,., Advances in Neural Networks, Intelligent Control and Information Processing.
[23]
M.R. Ferreira, F. de A.T. de Carvalho, E.C. Simões, Kernel-based hard clustering methods with kernelization of the metric and automatic weighting of the variables, Pattern Recognit. 51 (2016) 310–321,.
[24]
M. Filippone, F. Camastra, F. Masulli, S. Rovetta, A survey of kernel and spectral methods for clustering, Pattern Recognit. 41 (1) (2008) 176–190,.
[25]
F. de A.T. de Carvalho, E.C. Simes, L.V. Santana, M.R. Ferreira, Gaussian kernel c-means hard clustering algorithms with automated computation of the width hyper-parameters, Pattern Recognit. 79 (2018) 370–386,.
[26]
Yin J.-B., Li T., Shen H.-B., Gaussian kernel optimization: complex problem and a simple solution, Neurocomputing 74 (18) (2011) 3816–3822,.
[27]
Chen B., Liang J., Zheng N., J.C. Príncipe, Kernel least mean square with adaptive kernel size, Neurocomputing 191 (2016) 95–106,.
[28]
S. Kitayama, K. Yamazaki, Simple estimate of the width in gaussian kernel with adaptive scaling technique, Appl. Soft Comput. 11 (8) (2011) 4726–4737,.
[29]
A.M. Bagirov, J. Ugon, D. Webb, Fast modified global k-means algorithm for incremental cluster construction, Pattern Recognit. 44 (4) (2011) 866–876,.
[30]
Li X., Wong H.-S., Wu S., A fuzzy minimax clustering model and its applications, Inf. Sci. 186 (1) (2012) 114–125,.
[31]
A. Likas, N. Vlassis, J.J. Verbeek, The global k-means clustering algorithm, Pattern Recognit. 36 (2) (2003) 451–461,., Biometrics.
[32]
G. Tzortzis, A. Likas, The minmax k-means clustering algorithm, Pattern Recognit. 47 (7) (2014) 2505–2516,.
[33]
Huang X., Ye Y., Zhang H., Extensions of kmeans-type algorithms: a new clustering framework by integrating intracluster compactness and intercluster separation, IEEE Trans. Neural Netw. Learn. Syst. 25 (8) (2014) 1433–1446,.
[34]
A. Asuncion, D.J. Newman, UCI Machine Learning Repository, University of California, Irvine, 2007.
[35]
B. Caputo, Sim K., F. Furesj, A. Smola, Appearance-based object recognition using SVMs: which kernel should I use, Proceedings of NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processingand Computer Vision, 2002.
[36]
L. Hubert, P. Arabie, Comparing partitions, J. Classif. 2 (1985) 193–218,.
[37]
R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval, ACM Press, New York, 1999.
[38]
A. Strehl, J. Ghosh, Cluster ensembles - a knowledge reuse framework for combining multiple partitions, J. Mach. Learn. Res. 3 (2002) 583–617,.
[39]
Chiang M., B. Mirkin, Intelligent choice of the number of clusters in k-means clustering: an experimental study with different cluster spreads, J. Classif. 27 (2010) 3–40,.

Index Terms

  1. Kernel-based MinMax clustering methods with kernelization of the metric and auto-tuning hyper-parameters
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Neurocomputing
      Neurocomputing  Volume 359, Issue C
      Sep 2019
      528 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 24 September 2019

      Author Tags

      1. Kernel clustering
      2. Kernelization of the metric
      3. Auto-tuning hyper-parameters
      4. MinMax optimization

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 23 Dec 2024

      Other Metrics

      Citations

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media