skip to main content
research-article

The property of edge-disjoint Hamiltonian cycles in transposition networks and hypercube-like networks

Published: 30 January 2015 Publication History

Abstract

The presence of edge-disjoint Hamiltonian cycles provides an advantage when implementing algorithms that require a ring structure by allowing message traffic to be spread evenly across the network. Edge-disjoint Hamiltonian cycles also provide the edge-fault tolerant hamiltonicity of an interconnection network. In this paper, we first study the property of edge-disjoint Hamiltonian cycles in transposition networks which form a subclass of Cayley graphs. The transposition networks include other famous network topologies as their subgraphs, such as meshes, hypercubes, star graphs, and bubble-sort graphs. We first give a novel decomposition of transposition networks. Using the proposed decomposition, we show that n -dimensional transposition network with n 5 contains four edge-disjoint Hamiltonian cycles. By using the similar approach, we present a linear time algorithm to construct two edge-disjoint Hamiltonian cycles on crossed cubes which is a variation of hypercubes. The proposed approach can be easily applied to construct two edge-disjoint Hamiltonian cycles on the other variations of hypercubes.

References

[1]
A.B. Akers, B. Krishnamurthy, A group-theoretic model for symmetric interconnection networks, IEEE Trans. Comput. 38 (1989) 555-565.
[2]
M.M. Bae, B. Bose, Edge disjoint Hamiltonian cycles in k -ary n -cubes and hypercubes, IEEE Trans. Comput. 52 (2003) 1271-1284.
[3]
D. Barth, A. Raspaud, Two edge-disjoint Hamiltonian cycles in the butterfly graph, Inform. Process. Lett. 51 (1994) 175-179.
[4]
J.C. Bermond, O. Favaron, M. Maheo, Hamiltonian decomposition of Cayley graphs of degree 4, J. Combin. Theory Ser. B 46 (1989) 142-153.
[5]
L.N. Bhuyan, D.P. Agrawal, Generalized hypercube and hyperbus structures for a computer network, IEEE Trans. Comput. C-33 (1984) 323-333.
[6]
C.P. Chang, T.Y. Sung, L.H. Hsu, Edge congestion and topological properties of crossed cubes, IEEE Trans. Parallel Distrib. Syst. 11 (2000) 64-80.
[7]
P.J. Chase, Transposition graphs, SIAM J. Comput. 2 (1973) 128-133.
[8]
S.A. Choudum, V. Sunitha, Augmented cubes, Networks 40 (2002) 71-84.
[9]
T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, third ed., MIT Press, Cambridge, Massachusetts, 2009.
[10]
Q. Dong, X. Yang, J. Zhao, Y.Y. Tang, Embedding a family of disjoint 3D meshes into a crossed cube, Inform. Sci. 178 (2008) 2396-2405.
[11]
K. Efe, A variation on the hypercube with lower diameter, IEEE Trans. Comput. 40 (1991) 1312-1316.
[12]
K. Efe, The crossed cube architecture for parallel computing, IEEE Trans. Parallel Distrib. Syst. 3 (1992) 513-524.
[13]
J. Fan, X. Jia, X. Lin, Complete path embeddings in crossed cubes, Inform. Sci. 176 (2006) 3332-3346.
[14]
J. Fan, X. Lin, X. Jia, Optimal path embedding in crossed cubes, IEEE Trans. Parallel Distrib. Syst. 16 (2005) 1190-1200.
[15]
S. Fujita, Polynomial time algorithm for constructing vertex-disjoint paths in transposition graphs, Networks 56 (2010) 149-157.
[16]
P.A.J. Hilbers, M.R.J. Koopman, J.L.A. van de Snepscheut, The twisted cube, in: J. deBakker, A. Numan, P. Trelearen (Eds.), PARLE: Parallel Architectures and Languages Europe, Parallel Architectures. vol. 1, Springer, Berlin, 1987, pp. 152-158.
[17]
S.Y. Hsieh, C.W. Lee, Pancyclicity of restricted hypercube-like networks under the conditional fault model, SIAM J. Discrete Math. 23 (4) (2012) 2110-2119.
[18]
S.Y. Hsieh, C.J. Tu, Constructing edge-disjoint spanning trees in locally twisted cubes, Theoret. Comput. Sci. 410 (2009) 926-932.
[19]
S.Y. Hsieh, C.Y. Wu, Edge-fault-tolerant Hamiltonicity of locally twisted cubes under conditional edge faults, J. Comb. Optim. 19 (2010) 16-30.
[20]
W.T. Huang, J.M. Tan, C.N. Hung, L.H. Hsu, Fault-tolerant Hamiltonicity of twisted cubes, J. Parallel Distrib. Comput. 62 (2002) 591-604.
[21]
R.W. Hung, Embedding two edge-disjoint Hamiltonian cycles into locally twisted cubes, Theoret. Comput. Sci. 412 (2011) 4747-4753.
[22]
R.W. Hung, Constructing two edge-disjoint Hamiltonian cycles and two-equal path cover in augmented cubes, IAENG Int. J. Comput. Sci. 39 (2012) 42-49.
[23]
R.W. Hung, S.J. Chan, C.C. Liao, Embedding two edge-disjoint Hamiltonian cycles and two equal node-disjoint cycles into twisted cubes, Lecture Notes Eng. Comput. Sci. 2195 (1) (2012) 362-367.
[24]
H.S. Hung, J.S. Fu, G.H. Chen, Fault-free Hamiltonian cycles in crossed cubes with conditional link faults, Inform. Sci. 177 (2007) 5664-5674.
[25]
W. Hussak, H. Schröder, A Hamiltonian decomposition of 5-star, Int. J. Comput. Inf. Eng. 4 (2010) 39-43.
[26]
K. Kalpakis, Y. Yesha, On the bisection width of the transposition network, Networks 29 (1997) 69-76.
[27]
A. Kanevsky, C. Feng, On the embedding of cycles in pancake graphs, Parallel Comput. 21 (1995) 923-936.
[28]
P. Kulasinghe, S. Bettayeb, Embedding binary trees into crossed cubes, IEEE Trans. Comput. 44 (1995) 923-929.
[29]
C.J. Lai, C.H. Tsai, H.C. Hsu, T.K. Li, A dynamic programming algorithm for simulation of a multi-dimensional torus in a crossed cube, Inform. Sci. 180 (2010) 5090-5100.
[30]
S. Lakshmivarahan, J.S. Jwo, S.K. Dhall, Symmetry in interconnection networks based on Caley graphs of permutation groups: a survey, Parallel Comput. 19 (1993) 361-407.
[31]
S. Latifi, P.K. Srimani, Transposition networks as a class of fault-tolerant robust networks, IEEE Trans. Comput. 45 (1996) 230-238.
[32]
C.W. Lee, S.Y. Hsieh, Pancyclicity of matching composition networks under the conditional fault model, IEEE Trans. Comput. 61 (2) (2012) 278-283.
[33]
S. Lee, K.G. Shin, Interleaved all-to-all reliable broadcast on meshes and hypercubes, in: Proc. Int. Conf. Parallel Processing, vol. 3, 1990, pp. 110-113.
[34]
F.T. Leighton, Introductions to Parallel Algorithms and Architectures: Arrays, Trees and Hypercubes, Morgan Kaufman, 1990, p. 776.
[35]
T.J. Lin, S.Y. Hsieh, J.S.-T. Juan, Embedding cycles and paths in product networks and their applications to multiprocessor systems, IEEE Trans. Parallel Distrib. Syst. 23 (6) (2012) 1081-1089.
[36]
I. Pak, R. Radoicic, Hamiltonian paths in Cayley graphs, Discrete Math. 309 (2009) 5501-5508.
[37]
V. Petrovic, C. Thomassen, Edge-disjoint Hamiltonian cycles in hypertournaments, J. Graph Theory 51 (2006) 49-52.
[38]
R. Rowley, B. Bose, Edge-disjoint Hamiltonian cycles in de Bruijn networks, in: Proc. 6th Distributed Memory Computing Conference, 1991, pp. 707-709.
[39]
Y. Saad, M.H. Schultz, Topological properties of hypercubes, IEEE Trans. Comput. 37 (1988) 867-872.
[40]
M.H. Shahzamanian, M. Shirmohammadi, B. Davvaz, Roughness in Cayley graphs, Inform. Sci. 180 (2010) 3362-3372.
[41]
S. Skiena, Implementing Discrete Mathematics: Combinatorics and Graph Theory with Methematica, Addison-Wesley, Reading, MA, 1990, pp. 9-10.
[42]
L. Stacho, I. Vrt'o, Bisection width of transposition graphs, Discrete Appl. Math. 84 (1998) 221-235.
[43]
Y. Suzuki, K. Kaneko, M. Nakamori, Node-disjoint paths algorithm in a transposition graph, IEICE Trans. Inf. Syst. E89-D (2006) 2600-2605.
[44]
D. Wang, On embedding Hamiltonian cyles in crossed cubes, IEEE Trans. Parallel Distrib. Syst. 19 (2008) 334-346.
[45]
M.C. Yang, T.K. Li, Jimmy J.M. Tan, L.H. Hsu, Fault-tolerant cycle-embedding of crossed cubes, Inform. Process. Lett. 88 (2003) 149-153.
[46]
X. Yang, G.M. Megson, D.J. Evans, Locally twisted cubes are 4-pancyclic, Appl. Math. Lett. 17 (2004) 919-925.

Cited By

View all
  1. The property of edge-disjoint Hamiltonian cycles in transposition networks and hypercube-like networks

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Discrete Applied Mathematics
        Discrete Applied Mathematics  Volume 181, Issue C
        January 2015
        317 pages

        Publisher

        Elsevier Science Publishers B. V.

        Netherlands

        Publication History

        Published: 30 January 2015

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 29 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media