skip to main content
research-article

Reconstructing gene regulatory networks from knock-out data using Gaussian Noise Model and Pearson Correlation Coefficient

Published: 01 December 2015 Publication History

Abstract

Display Omitted A method to reconstruct gene regulatory networks from knock-out data is proposed.The proposed method apply Normal Distributions and Pearson Correlation Coefficient.Indirect regulations generate many false positives.Most of the false negatives are mostly due to multiple genes input. A gene regulatory network (GRN) is a large and complex network consisting of interacting elements that, over time, affect each other's state. The dynamics of complex gene regulatory processes are difficult to understand using intuitive approaches alone. To overcome this problem, we propose an algorithm for inferring the regulatory interactions from knock-out data using a Gaussian model combines with Pearson Correlation Coefficient (PCC). There are several problems relating to GRN construction that have been outlined in this paper. We demonstrated the ability of our proposed method to (1) predict the presence of regulatory interactions between genes, (2) their directionality and (3) their states (activation or suppression). The algorithm was applied to network sizes of 10 and 50 genes from DREAM3 datasets and network sizes of 10 from DREAM4 datasets. The predicted networks were evaluated based on AUROC and AUPR. We discovered that high false positive values were generated by our GRN prediction methods because the indirect regulations have been wrongly predicted as true relationships. We achieved satisfactory results as the majority of sub-networks achieved AUROC values above 0.5.

References

[1]
M.M. Babu, N.M. Luscombe, L. Aravind, M. Gerstein, S.A. Teichmann, Curr. Opin. Struct. Biol., 14 (2004) 283-291.
[2]
C.H. Brase, C.P. Brase, Understanding Basic Statistics, Cengage Learning, 2012.
[3]
C. Brouard, C. Vrain, J. Dubois, D. Castel, M.-A. Debily, F. d'Alché-Buc, BMC Bioinf., 14 (2013) 1-14.
[4]
Bullinaria, J.A., 2013. Recurrent Neural Networks, Neural Computation : Lecture 12. www.cs.bham.ac.uk/~jxb/INC/l12.pdf.
[5]
H. Chun, J. Kang, X. Zhang, M. Deng, H. Ma, H. Zhao, Reverse engineering of gene regulation networks with an application to the DREAM4 in silico network challenge, in: Handbook of Statistical Bioinformatics, Springer, Heidelberg, Berlin, 2011, pp. 461-477.
[6]
C.P. Dancey, J. Reidy, Statistics Without Maths for Psychology, Pearson Education, 2007.
[7]
J. Davis, M. Goadrich, Proceedings of the 23rd International Conference on Machine Learning, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 233-240.
[8]
Z. Dong, T. Song, C. Yuan, PLoS One, 8 (2013) e83263.
[9]
J.D. Evans, Straightforward Statistics for the Behavioral Sciences, Brooks/Cole Publishing Company, 1996.
[10]
J.J. Faith, B. Hayete, J.T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J.J. Collins, T.S. Gardner, PLoS Biol., 5 (2007) e8.
[11]
T. Fawcett, Mach. Learn., 31 (2004) 1-38.
[12]
T. Fawcett, Pattern Recognit. Lett., 27 (2006) 861-874.
[13]
A. Finkelstein, J. Hetherington, L. Li, O. Margoninski, P. Saffrey, R. Seymour, A. Warner, Computer, 37 (2004) 26-33.
[14]
R.J. Flassig, S. Heise, K. Sundmacher, S. Klamt, Bioinformatics, 29 (2013) 246-254.
[15]
R. Freund, W. Wilson, Regression Analysis: Statistical Modeling of a Response Variable, Academic Press, 1998.
[16]
G. Geeven, R.E. van Kesteren, A.B. Smit, M.C. de Gunst, Bioinformatics, 28 (2012) 214-221.
[17]
B. Godsey, PLoS One, 8 (2013) e68358.
[18]
F. Gregoretti, V. Belcastro, D. di Bernardo, G. Oliva, PLoS One, 5 (2010) e10179.
[19]
X. Guo, Y. Zhang, W. Hu, H. Tan, X. Wang, PLoS One, 9 (2014) e87446.
[20]
Z. Ibrahim, A. Ngom, A.Y. Tawfik, Comput. Biol. Bioinf. IEEE/ACM Trans. on, 8 (2011) 326-334.
[21]
A. Irrthum, L. Wehenkel, P. Geurts, PLoS One, 5 (2010) e12776.
[22]
R. Küffner, T. Petri, P. Tavakkolkhah, L. Windhager, R. Zimmer, Bioinformatics, 28 (2012) 1376-1382.
[23]
K. Kentzoglanakis, M. Poole, Comput. Biol. Bioinf. IEEE/ACM Trans. on (2012) 358-371.
[24]
S. Knott, S. Mostafavi, P. Mousavi, Neurocomputing, 73 (2010) 2419-2429.
[25]
L. Kuo-Ching, W. Xiaodong, EURASIP J. Bioinf. Sys. Biol., 2008 (2008).
[26]
A. Lesne, Lett. Math. Phys., 78 (2006) 235-262.
[27]
G. Liu, L. Liu, C. Liu, M. Zheng, L. Su, C. Zhou, J. Bionic Eng., 8 (2011) 98-106.
[28]
B.A. Logsdon, J. Mezey, PLoS Comput. Biol., 6 (2010) e1001014.
[29]
A. Madar, A. Greenfield, E. Vanden-Eijnden, R. Bonneau, PLoS One, 5 (2010) e9803.
[30]
D. Marbach, T. Schaffter, C. Mattiussi, D. Floreano, J. Comput. Biol., 16 (2009) 229-239.
[31]
A.A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R.D. Favera, A. Califano, BMC Bioinf., 7 (2006) S7.
[32]
P.E. Meyer, F. Lafitte, G. Bontempi, BMC Bioinf., 9 (2008) 461.
[33]
J. Miles, M. Shevlin, Applying Regression and Correlation: A Guide for Students and Researchers, Sage, 2001.
[34]
S. Mitra, R. Das, Y. Hayashi, Comput. Biol. Bioinf. IEEE/ACM Trans. on, 8 (2011) 94-107.
[35]
N. Noman, H. Iba, IEEE/ACM Trans. Comput. Biol. Bioinf., 4 (2007) 634-647.
[36]
J. Pahle, Brief. Bioinf., 10 (2009) 53-64.
[37]
B.-E. Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet, F. d'Alché-Buc, Bioinformatics, 19 (2003) ii138-ii148.
[38]
A. Pinna, N. Soranzo, A. de la Fuente, PLoS One, 5 (2010) e12912.
[39]
R.J. Prill, D. Marbach, J. Saez-Rodriguez, P.K. Sorger, L.G. Alexopoulos, X. Xue, N.D. Clarke, G. Altan-Bonnet, G. Stolovitzky, PLoS One, 5 (2010) e9202.
[40]
J. Qi, T. Michoel, Bioinformatics, 28 (2012) 2325-2332.
[41]
J.J. Rice, Y. Tu, G. Stolovitzky, Bioinformatics, 21 (2005) 765-773.
[42]
S. Roy, D.K. Bhattacharyya, J.K. Kalita, BMC Bioinf., 15 (2014) 1-14.
[43]
N.J. Salkind, Encyclopedia of Research Design, Sage, 2010.
[44]
M.S. Samoilov, X. Wang, A.P. Arkin, L. Wang, Bioinformatics, 29 (2012) 338-346.
[45]
T. Schaffter, D. Marbach, D. Floreano, Bioinformatics, 27 (2011) 2263-2270.
[46]
T. Schlitt, A. Brazma, BMC Bioinf., 8 (2007) S9.
[47]
B. Shipley, Cause and Correlation in Biology: A User's Guide to Path Analysis, Structural Equations and Causal Inference, Cambridge University Press, 2002.
[48]
P. Smolen, D.A. Baxter, J.H. Byrne, Bull. Math. Biol., 62 (2000) 247-292.
[49]
B. Truax, The World Soundscape Project's Handbook for Acoustic Ecology, ARC Publications, Vancouver, BC, 1978.
[50]
J. Vohradsky, J. Biol. Chem., 276 (2001) 36168-36173.
[51]
M. Xiong, J. Li, X. Fang, Genetics, 166 (2004) 1037-1052.
[52]
R. Xu, D. Wunsch, R. Frank, IEEE/ACM Trans. Comput. Biol. Bioinf., 4 (2007) 681-692.
[53]
N. Xuan, M. Chetty, R. Coppel, P.P. Wangikar, BMC Bioinf., 13 (2012) 131.
[54]
K.Y. Yip, R.P. Alexander, K.K. Yan, M. Gerstein, PLoS One, 5 (2010) e8121.
[55]
Y. Yuan, C.-T. Li, O. Windram, PLoS One, 6 (2011) e16835.
[56]
Y. Zhang, J. Xuan, B.G. de los Reyes, R. Clarke, H.W. Ressom, PLoS One, 5 (2010) e10268.
[57]
X. Zhang, X.-M. Zhao, K. He, L. Lu, Y. Cao, J. Liu, J.-K. Hao, Z.-P. Liu, L. Chen, Bioinformatics, 28 (2012) 98-104.
[58]
X. Zhang, K. Liu, Z.-P. Liu, B. Duval, J.-M. Richer, X.-M. Zhao, J.-K. Hao, L. Chen, Bioinformatics, 29 (2013) 106-113.
[59]
M. Zou, S.D. Conzen, Bioinformatics, 21 (2005) 71-79.

Cited By

View all
  1. Reconstructing gene regulatory networks from knock-out data using Gaussian Noise Model and Pearson Correlation Coefficient

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Computational Biology and Chemistry
      Computational Biology and Chemistry  Volume 59, Issue PB
      December 2015
      150 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 01 December 2015

      Author Tags

      1. Bioinformatics
      2. DREAM
      3. Gaussian model
      4. Gene regulatory network
      5. Pearson Correlation Coefficient
      6. Probability and statistics

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 28 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media