skip to main content
research-article

Visual analytics of ensemble data using coupled subspaces

Published: 22 May 2024 Publication History

Abstract

In this work, we introduce a novel visual analysis method to explore correlations between locations and realizations of ensemble data with large realization set. In our approach, the ensemble data are transformed into a matrix with two dimensions: location and realization. The matrix is subdivided into cells which indicate behaviors of corresponding location-realization combinations. Biclustering is employed to simultaneously partition the location domain and the realization set, the two dimensions of the matrix, into several subspaces, where every intersection subspace shares similar coordinated behaviors. With the matrix subspaces and their coordinated behaviors, a visual analytics workflow is designed to support visualization and analysis of location-realization correlations and their variation across different location and realization. Case studies show that our system is able to reveal location-realization correlations, such as the opposite behaviors of realization subspaces in different regions, which are normally difficult to be discovered by previous methods.

Graphical abstract

[graphic not available: see fulltext]

References

[1]
Athawale T and Entezari A Uncertainty quantification in linear interpolation for isosurface extraction IEEE Trans Vis Comput Graph 2013 19 12 2723-2732
[2]
Athawale T, Sakhaee E, and Entezari A Isosurface visualization of data with nonparametric models for uncertainty IEEE Trans Vis Comput Graph 2016 22 1 777-786
[3]
Bordoloi U, Kao DL, and Shen H Visualization techniques for spatial probability density function data Data Sci J 2004 3 153-162
[4]
Caliński T and Harabasz J A dendrite method for cluster analysis Commun Stat Theory Methods 1974 3 1 1-27
[5]
de Souza CVF, Barcellos PDCL, Crissaff L, Cataldi M, Miranda F, and Lage M Visualizing simulation ensembles of extreme weather events Comput Graph 2022 104 162-172
[6]
Demir I, Dick C, and Westermann R Multi-charts for comparative 3d ensemble visualization IEEE Trans Vis Comput Graph 2014 20 12 2694-2703
[7]
Ferstl F, Bürger K, and Westermann R Streamline variability plots for characterizing the uncertainty in vector field ensembles IEEE Trans Vis Comput Graph 2016 22 1 767-776
[8]
Ferstl F, Kanzler M, Rautenhaus M, and Westermann R Visual analysis of spatial variability and global correlations in ensembles of iso-contours Comput Graph Forum 2016 35 3 221-230
[9]
Ferstl F, Kanzler M, Rautenhaus M, and Westermann R Time-hierarchical clustering and visualization of weather forecast ensembles IEEE Trans Vis Comput Graph 2017 23 1 831-840
[10]
Fiaux P, Sun M, Bradel L, North C, Ramakrishnan N, and Endert A Bixplorer: Visual analytics with biclusters IEEE Comput 2013 46 8 90-94
[11]
Görg C, Liu Z, Kihm J, Choo J, Park H, and Stasko JT Combining computational analyses and interactive visualization for document exploration and sensemaking in jigsaw IEEE Trans Vis Comput Graph 2013 19 10 1646-1663
[12]
Guo H, Yuan X, Huang J, and Zhu X Coupled ensemble flow line advection and analysis IEEE Trans Vis Comput Graph 2013 19 12 2733-2742
[13]
Hao L, Healey CG, and Bass SA Effective visualization of temporal ensembles IEEE Trans Vis Comput Graph 2016 22 1 787-796
[14]
Hartigan JA Direct clustering of a data matrix J Am Stat Assoc 1972 67 337 123-129
[15]
Hlawatsch M, Leube PC, Nowak W, and Weiskopf D Flow radar glyphs-static visualization of unsteady flow with uncertainty IEEE Trans Vis Comput Graph 2011 17 12 1949-1958
[16]
Hollister BE and Pang A Bivariate quantile interpolation for ensemble derived probability density estimates Int J Uncert Quant 2015 5 2 123-137
[17]
Hollister BE and Pang A Visual analysis of transport similarity in 2D CFD ensembles Electron Imag 2016 2016 1 1-11
[18]
Hummel M, Obermaier H, Garth C, and Joy KI Comparative visual analysis of Lagrangian transport in CFD ensembles IEEE Trans Vis Comput Graph 2013 19 12 2743-2752
[19]
Jäckle D, Fischer F, Schreck T, and Keim DA Temporal MDS plots for analysis of multivariate data IEEE Trans Vis Comput Graph 2016 22 1 141-150
[20]
Jarema M, Demir I, Kehrer J, Westermann R (2015) Comparative visual analysis of vector field ensembles. In: 2015 IEEE conference on visual analytics science and technology (VAST), pp 81–88
[21]
Kehrer J and Hauser H Visualization and visual analysis of multifaceted scientific data: a survey IEEE Trans Vis Comput Graph 2013 19 3 495-513
[22]
Liu R, Guo H, Zhang J, Yuan X (2016) Comparative visualization of vector field ensembles based on longest common subsequence. In: 2016 IEEE pacific visualization symposium (PacificVis), pages 96–103
[23]
Lodha SK, Pang A, Sheehan RE, Wittenbrink CM (1996) UFLOW: visualizing uncertainty in fluid flow. In: Proc. of IEEE visualization, pp 249–254
[24]
Love AL, Pang A, and Kao DL Visualizing spatial multivalue data IEEE Comput Graph Appl 2005 25 3 69-79
[25]
Luo A, Kao D, and Pang A Visualizing spatial distribution data sets Vis Sym 2003 3 29-38
[26]
Madeira SC and Oliveira AL Biclustering algorithms for biological data analysis: a survey IEEE/ACM Trans Comput Biology Bioinform 2004 1 1 24-45
[27]
Mirzargar M, Whitaker RT, and Kirby RM Curve boxplot: Generalization of boxplot for ensembles of curves IEEE Trans Vis Comput Graph 2014 20 12 2654-2663
[28]
Obermaier H and Joy KI Future challenges for ensemble visualization IEEE Comput Graph Appl 2014 34 3 8-11
[29]
Otto M, Germer T, Hege H, and Theisel H Uncertain 2D vector field topology Comput Graph Forum 2010 29 2 347-356
[30]
Otto M, Germer T, Theisel H (2011) Uncertain topology of 3d vector fields. In: 2011 IEEE Pacific Visualization Symposium, pp 67–74
[31]
Pang A, Wittenbrink CM, and Lodha SK Approaches to uncertainty visualization Vis Comput 1997 13 8 370-390
[32]
Petz C, Pöthkow K, and Hege H Probabilistic local features in uncertain vector fields with spatial correlation Comput Graph Forum 2012 31 3 1045-1054
[33]
Pfaffelmoser T, Reitinger M, and Westermann R Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields Comput Graph Forum 2011 30 3 951-960
[34]
Pfaffelmoser T and Westermann R Correlation visualization for structural uncertainty analysis Int J Uncert Quant 2013 3 2 13
[35]
Pöthkow K and Hege H Positional uncertainty of isocontours: condition analysis and probabilistic measures IEEE Trans Vis Comput Graph 2011 17 10 1393-1406
[36]
Pöthkow K, Weber B, and Hege H Probabilistic marching cubes Comput Graph Forum 2011 30 3 931-940
[37]
Potter K, Kirby M, Xiu D, and Johnson CR Interactive visualization of probability and cumulative density functions Int J Uncert Quant 2012 2 4 397-412
[38]
Potter K, Kniss J, Riesenfeld RF, and Johnson CR Visualizing summary statistics and uncertainty Comput Graph Forum 2010 29 3 823-832
[39]
Potter K, Wilson A, Bremer P-T, Williams D, Doutriaux C, Pascucci V, Johnson CR (2009) Ensemble-vis: A framework for the statistical visualization of ensemble data. In: 2009 IEEE international conference on data mining workshops, pp 233–240. IEEE
[40]
Santamaría R, Therón R, and Quintales L Bicoverlapper: a tool for bicluster visualization Bioinformatics 2008 24 9 1212-1213
[41]
Sanyal J, Zhang S, Dyer J, Mercer A, Amburn P, and Moorhead RJ Noodles: a tool for visualization of numerical weather model ensemble uncertainty IEEE Trans Vis Comput Graph 2010 16 6 1421-1430
[42]
Sun M, Bradel L, North CL, Ramakrishnan N (2014) The role of interactive biclusters in sensemaking. In: proceedings of the SIGCHI conference on human factors in computing systems, pp 1559–1562
[43]
Sun M, North C, and Ramakrishnan N A five-level design framework for bicluster visualizations IEEE Trans Vis Comput Graph 2014 20 12 1713-1722
[44]
Sun M, Shaikh AR, Alhoori H, and Zhao J Sightbi: exploring cross-view data relationships with biclusters IEEE Trans Vis Comput Graph 2022 28 1 54-64
[45]
Tatu A, Maaß F Färber I, Bertini E, Schreck T, Seidl T, Keim D (2012) Subspace search and visualization to make sense of alternative clusterings in high-dimensional data. In: visual analytics science and technology (VAST), 2012 IEEE Conference on, pages 63–72
[46]
Thompson D, Levine JA, Bennett JC, Bremer P-T, Gyulassy A, Pascucci V, Pébay PP (2011) Analysis of large-scale scalar data using hixels. In: 2011 IEEE symposium on large data analysis and visualization, pp 23–30. IEEE
[47]
Verma V and Pang A Comparative flow visualization IEEE Trans Vis Comput Graph 2004 10 6 609-624
[48]
Watanabe K, Wu H-Y, Niibe Y, Takahashi S, Fujishiro I (2015) Biclustering multivariate data for correlated subspace mining. In: 2015 IEEE pacific visualization symposium (PacificVis), pp 287–294. IEEE
[49]
Watanabe K, Wu H-Y, Niibe Y, Takahashi S, Fujishiro I (2015) Biclustering multivariate data for correlated subspace mining. In: 2015 IEEE pacific visualization symposium (PacificVis), pages 287–294. IEEE
[50]
Watanabe K, Wu H-Y, Niibe Y, Takahashi S, Fujishiro I (2015) Biclustering multivariate data for correlated subspace mining. In: Proc. of IEEE pacific visualization symposium, pp 287–294
[51]
Whitaker RT, Mirzargar M, and Kirby RM Contour boxplots: a method for characterizing uncertainty in feature sets from simulation ensembles IEEE Trans Vis Comput Graph 2013 19 12 2713-2722
[52]
Wittenbrink CM, Pang A, and Lodha SK Glyphs for visualizing uncertainty in vector fields IEEE Trans Vis Comput Graph 1996 2 3 266-279
[53]
Wu H-Y, Niibe Y, Watanabe K, Takahashi S, Uemura M, Fujishiro I (2017) Making many-to-many parallel coordinate plots scalable by asymmetric biclustering. In: proceeding of IEEE pacific visualization symposium, pp 305–309
[54]
Wu W, Xu J, Zeng H, Zheng Y, Qu H, Ni B, Yuan M, and Ni LM Telcovis: visual exploration of co-occurrence in urban human mobility based on telco data IEEE Trans Vis Comput Graph 2016 22 1 935-944
[55]
Yuan X, Ren D, Wang Z, and Guo C Dimension projection matrix/tree: interactive subspace visual exploration and analysis of high dimensional data IEEE Trans Vis Comput Graph 2013 19 12 2625-2633
[56]
Zhang M, Li Q, Chen L, Yuan X, and Yong J Enconvis: a unified framework for ensemble contour visualization IEEE Trans Vis Comput Graph 2023 29 4 2067-2079
[57]
Zhao J, Sun M, Chen F, and Chiu P Bidots: visual exploration of weighted biclusters IEEE Trans Vis Comput Graph 2018 24 1 195-204

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Visualization
Journal of Visualization  Volume 27, Issue 5
Oct 2024
246 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 22 May 2024
Accepted: 22 January 2024
Received: 19 November 2023

Author Tags

  1. Ensemble data
  2. Uncertainty
  3. Distribution
  4. Biclustering
  5. Subspace

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media