skip to main content
research-article

Multivariate spatial data visualization: a survey

Published: 01 October 2019 Publication History

Abstract

Abstract

Multivariate spatial data play an important role in computational science and engineering simulations. The potential features and hidden relationships in multivariate data can assist scientists to gain an in-depth understanding of a scientific process, verify a hypothesis, and further discover a new physical or chemical law. In this paper, we present a comprehensive survey of the state-of-the-art techniques for multivariate spatial data visualization. We first introduce the basic concept and characteristics of multivariate spatial data, and describe three main tasks in multivariate data visualization: feature classification, fusion visualization, and correlation analysis. Finally, we prospect potential research topics for multivariate data visualization according to the current research.

Graphic abstract

[Figure not available: see fulltext.]

References

[1]
Akiba H, Ma KL, Chen JH, Hawkes ER (2007) Visualizing multivariate volume data from turbulent combustion simulations. Comput Sci Eng 9(2):76–83
[2]
Akibay H, May KL (2007) A tri-space visualization interface for analyzing time-varying multivariate volume data. In: Proceedings of the 9th Joint Eurographics/IEEE VGTC conference on visualization. Eurographics Association, pp 115–122
[3]
Biswas A, Dutta S, Shen HW, Woodring J (2013) An information-aware framework for exploring multivariate data sets. IEEE Trans Vis Comput Graph 19(12):2683–2692
[4]
Borgo R, Kehrer J, Chung DH, Maguire E, Laramee RS, Hauser H, Ward M, Chen M (2013) Glyph-based visualization: foundations, design guidelines, techniques and applications. In: Eurographics state of the art reports, pp 39–63
[5]
Boyell RL, Ruston H (1963) Hybrid techniques for real-time radar simulation. In: Proceedings of the November 12–14, 1963, fall joint computer conference. ACM, pp 445–458
[6]
Carr H, Duke D (2014) Joint contour nets. IEEE Trans Vis Comput Graph 20(8):1100–1113
[7]
Carr H, Geng Z, Tierny J, Chattopadhyay A, Knoll A (2015) Fiber surfaces: generalizing isosurfaces to bivariate data. Comput Graph Forum 34(3):241–250
[8]
Carr H, Snoeyink J, Axen U (2003) Computing contour trees in all dimensions. Comput Geom 24(2):75–94
[9]
Chuang J, Weiskopf D, Moller T (2009) Hue-preserving color blending. IEEE Trans Vis Comput Graph 15(6):1275–1282
[10]
Crawfis R (1996) Multivariate volume rendering. Technical report, Lawrence Livermore National Lab., CA, USA
[11]
Ding Z, Ding Z, Chen W, Chen H, Tao Y, Li X, Chen W (2016) Visual inspection of multivariate volume data based on multi-class noise sampling. Vis Comput 32(4):465–478
[12]
Duke D, Carr H, Knoll A, Schunck N, Nam HA, Staszczak A (2012) Visualizing nuclear scission through a multifield extension of topological analysis. IEEE Trans Vis Comput Graph 18(12):2033–2040
[13]
Dutta S, Liu X, Biswas A, Shen HW, Chen JP (2017) Pointwise information guided visual analysis of time-varying multi-fields. In: SIGGRAPH Asia 2017 symposium on visualization. ACM, p 17
[14]
Edelsbrunner H, Harer J (2002) Jacobi sets of multiple morse functions. In: Foundations of computational mathematics, Minneapolis, pp 37–57
[15]
Fuchs R, Hauser H (2009) Visualization of multi-variate scientific data. Comput Graph Forum 28(6):1670–1690
[16]
Geng Z, Duke DJ, Carr H, Chattopadhyay A (2014) Visual analysis of hurricane data using joint contour net. In: TPCG, pp 33–40
[17]
Gosink L, Anderson J, Bethel W, Joy K (2007) Variable interactions in query-driven visualization. IEEE Trans Vis Comput Graph 13(6):1400–1407
[18]
Guo H, Hong F, Shu Q, Zhang J, Huang J, Yuan X (2014) Scalable lagrangian-based attribute space projection for multivariate unsteady flow data. In: Visualization symposium (PacificVis), IEEE Pacific. IEEE, pp 33–40
[19]
Guo H, Xiao H, Yuan X (2012) Scalable multivariate volume visualization and analysis based on dimension projection and parallel coordinates. IEEE Trans Vis Comput Graph 18(9):1397–1410
[20]
Hadwiger M, Berger C, Hauser H (2003) High-quality two-level volume rendering of segmented data sets on consumer graphics hardware. In: Visualization, 2003, VIS 2003. IEEE, pp 301–308
[21]
Hagh-Shenas H, Kim S, Interrante V, Healey C (2007) Weaving versus blending: a quantitative assessment of the information carrying capacities of two alternative methods for conveying multivariate data with color. IEEE Trans Vis Comput Graph 13(6):1270–1277
[22]
Haidacher M, Bruckner S, Groller E (2011) Volume analysis using multimodal surface similarity. IEEE Trans Vis Comput Graph 17(12):1969–1978
[23]
Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, Amsterdam
[24]
He W, Liu X, Shen HW, Collis SM, Helmus JJ (2017) Range likelihood tree: a compact and effective representation for visual exploration of uncertain data sets. In: Pacific visualization symposium (PacificVis). IEEE, pp 151–160
[25]
He X, Tao Y, Wang Q, Lin H (2018) Biclusters based viusal exploration of multivariate scientific data. In: Visualization, 2018, VIS Short Paper. IEEE
[26]
Hong F, Lai C, Guo H, Shen E, Yuan X, Li S (2014) FLDA: latent dirichlet allocation based unsteady flow analysis. IEEE Trans Vis Comput Graph 20(12):2545–2554
[27]
Huettenberger L, Heine C, Carr H, Scheuermann G, Garth C (2013) Towards multifield scalar topology based on pareto optimality. Comput Graph Forum 32(3pt3):341–350
[28]
Huettenberger L, Heine C, Garth C (2014) Decomposition and simplification of multivariate data using pareto sets. IEEE Trans Vis Comput Graph 20(12):2684–2693
[29]
Ivanovska T, Linsen L (2008) A user-friendly tool for semi-automated segmentation and surface extraction from color volume data using geometric feature-space operations. In: Visualization in medicine and life sciences. Springer, Berlin, pp 153–170
[30]
Johnson C (2004) Top scientific visualization research problems. IEEE Comput Graph Appl 24(4):13–17
[31]
Kehrer J, Hauser H (2013) Visualization and visual analysis of multifaceted scientific data: a survey. IEEE Trans Vis Comput Graph 19(3):495–513
[32]
Khlebnikov R, Kainz B, Steinberger M, Schmalstieg D (2013) Noise-based volume rendering for the visualization of multivariate volumetric data. IEEE Trans Visu Comput Graph 19(12):2926–2935
[33]
Kirby RM, Marmanis H, Laidlaw DH (1999) Visualizing multivalued data from 2d incompressible flows using concepts from painting. In: Proceedings of the conference on Visualization’99: celebrating ten years. IEEE Computer Society Press, pp 333–340
[34]
Kniss J, Kindlmann G, Hansen C (2002) Multidimensional transfer functions for interactive volume rendering. IEEE Trans Vis Comput Graph 8(3):270–285
[35]
Kreeger KA, Kaufman AE (1999) Mixing translucent polygons with volumes. In: Proceedings of the Visualization ’99. IEEE, pp 191–525
[36]
Kruger J, Schneider J, Westermann R (2006) Clearview: an interactive context preserving hotspot visualization technique. IEEE Trans Visu Comput Graph 12(5):941–948
[37]
Kruskal JB, Wish M (1978) Multidimensional scaling, vol 11. Sage, Thousand Oaks
[38]
Kühne L, Giesen J, Zhang Z, Ha S, Mueller K (2012) A data-driven approach to hue-preserving color-blending. IEEE Trans Vis Comput Graph 18(12):2122–2129
[39]
Liu X, Shen HW (2016) Association analysis for visual exploration of multivariate scientific data sets. IEEE Trans Vis Comput Graph 22(1):955–964
[40]
Ljung P, Krüger J, Groller E, Hadwiger M, Hansen CD, Ynnerman A (2016) State of the art in transfer functions for direct volume rendering. Comput Graph Forum 35(3):669–691
[41]
Lu K, Shen HW (2017) Multivariate volumetric data analysis and visualization through bottom-up subspace exploration. In: Pacific Visualization Symposium (PacificVis), 2017 IEEE. IEEE, pp 141–150
[42]
Maaten LVD, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Research 9:2579–2605
[43]
Nagaraj S, Natarajan V (2011) Relation-aware isosurface extraction in multifield data. IEEE Trans Vis Comput Graph 17(2):182–191
[44]
Nagaraj S, Natarajan V, Nanjundiah RS (2011) A gradient-based comparison measure for visual analysis of multifield data. Comput Graph Forum 30(3):1101–1110
[45]
Rocha A, Alim U, Silva JD, Sousa MC (2017) Decal-maps: real-time layering of decals on surfaces for multivariate visualization. IEEE Trans Vis Comput Graph 23(1):821–830
[46]
Sauber N, Theisel H, Seidel HP (2006) Multifield-graphs: an approach to visualizing correlations in multifield scalar data. IEEE Trans Vis Comput Graph 12(5):917–924
[47]
Schneider D, Heine C, Carr H, Scheuermann G (2013) Interactive comparison of multifield scalar data based on largest contours. Comput Aided Geom Des 30(6):521–528
[48]
Schneider D, Wiebel A, Carr H, Hlawitschka M, Scheuermann G (2008) Interactive comparison of scalar fields based on largest contours with applications to flow visualization. IEEE Trans Vis Comput Graph 14(6):1475–1482
[49]
Schroeder D, Keefe DF (2016) Visualization-by-sketching: an artist’s interface for creating multivariate time-varying data visualizations. IEEE Trans Vis Comput Graph 22(1):877–885
[50]
Soundararajan KP, Schultz T (2015) Learning probabilistic transfer functions: a comparative study of classifiers. Comput Grap Forum 34(3):111–120
[51]
Su Y, Agrawal G, Woodring J, Myers K, Wendelberger J, Ahrens J (2018) Information guided data sampling and recovery using bitmap indexing. In: IEEE Pacific visualization symposium
[52]
Sukharev J, Wang C, Ma KL, Wittenberg AT (2009) Correlation study of time-varying multivariate climate data sets. In: Visualization Symposium, 2009, PacificVis’ 09. IEEE Pacific. IEEE, pp 161–168
[53]
Suthambhara N, Natarajan V (2011) Simplification of jacobi sets. In: Topological methods in data analysis and visualization. Springer, Berlin, pp 91–102
[54]
Tierny J, Carr H (2017) Jacobi fiber surfaces for bivariate reeb space computation. IEEE Trans Vis Comput Graph 23(1):960–969
[55]
Tzeng FY, Ma KL (2004) A cluster-space visual interface for arbitrary dimensional classification of volume data. In: Proceedings of the 6th joint Eurographics-IEEE TCVG conference on visualization. Eurographics Association, pp 17–24
[56]
Urness T, Interrante V, Marusic I, Longmire E, Ganapathisubramani B (2003) Effectively visualizing multi-valued flow data using color and texture. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03). IEEE Computer Society, p 16
[57]
Van Long T, Linsen L (2009) Multiclustertree: interactive visual exploration of hierarchical clusters in multidimensional multivariate data. Comput Graph Forum 28(3):823–830
[58]
Wang C, Yu H, Grout RW, Ma KL, Chen JH (2011) Analyzing information transfer in time-varying multivariate data. In: Visualization Symposium (PacificVis), 2011 IEEE Pacific. IEEE, pp 99–106
[59]
Wang Q, Tao Y, Lin H (2018) Featurenet: automatic visual summarization of major features in multivariate volume data. J Vis 21(3):443–455
[60]
Wang Z, Seidel HP, Weinkauf T (2016) Multi-field pattern matching based on sparse feature sampling. IEEE Trans Vis Comput Graph 22(1):807–816
[61]
Wei TH, Chen CM, Biswas A (2015) Efficient local histogram searching via bitmap indexing. In: Computer graphics forum, vol 34. Wiley Online Library, pp 81–90
[62]
Wei TH, Chen CM, Woodring J, Zhang H, Shen HW (2017) Efficient distribution-based feature search in multi-field datasets. In: Pacific visualization symposium (PacificVis), 2017 IEEE, pp 121–130. IEEE
[63]
Wu F, Chen G, Huang J, Tao Y, Chen W (2015) Easyxplorer: a flexible visual exploration approach for multivariate spatial data. Comput Graph Forum 34(7):163–172
[64]
Wu K, Knoll A, Isaac BJ, Carr H, Pascucci V (2017) Direct multifield volume ray casting of fiber surfaces. IEEE Trans Vis Comput Graph 23(1):941–949
[65]
Zhao X, Kaufman A (2010) Multi-dimensional reduction and transfer function design using parallel coordinates. In: Volume graphics, international symposium on volume graphics. NIH Public Access, p 69
[66]
Zhou L, Hansen C (2014) Guideme: slice-guided semiautomatic multivariate exploration of volumes. Comput Graph Forum 33(3):151–160
[67]
Zhou L, Schott M, Hansen C (2012) Transfer function combinations. Comput Graph 36(6):596–606
[68]
Zhou L, Weiskopf D (2017) Indexed-points parallel coordinates visualization of multivariate correlations. IEEE Trans Vis Comput Graph 24:1997–2010

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Visualization
Journal of Visualization  Volume 22, Issue 5
Oct 2019
198 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 October 2019

Author Tags

  1. Multivariate spatial data
  2. Feature classification
  3. Fusion visualization
  4. Correlation analysis

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media