skip to main content
article

Modeling of single-wall carbon nanotube interconnects for different process, temperature, and voltage conditions and investigating timing delay

Published: 01 December 2012 Publication History

Abstract

The performance of Single-Wall Carbon Nanotube (SWCNT) based interconnect is investigated in this paper. CNT has become the most promising replacement for Cu based interconnects in future VLSI technologies in the nanometer regime. The process, temperature, and voltage (PTV) dependent equivalent circuit model for CNT based interconnect is developed. The performances of Cu and CNT based interconnects are compared for different ITRS technology nodes. The timing delay is analyzed in CNT based interconnect under different PTV conditions for 32 nm and 16 nm technology nodes. Process variation is modeled by considering the variations in CNT diameter, spacing, and metallic fraction. The delay variation is more than 100 % with process variation whereas with voltage and temperature the delay variations are 20 % and 50---60 % from the nominal voltage and room temperature, respectively. The diameter variation of CNT has almost no effect on the timing of SWCNT bundle based interconnects.

References

[1]
Alam, N., Kureshi, A.K., Hasan, M., Arslan, T.: Performance comparison and variability analysis of CNT bundle and cu interconnects. In: Proc. Multimedia, Signal Processing and Communication Technologies. IMPACT'09. International, pp. 169-172 (2009).
[2]
Banerjee, K., Srivastava, N.: Are carbon nanotubes the future of VLSI interconnections? In: Proc. 43rd ACM/IEEE Design Automation Conf., pp. 809-814 (2006).
[3]
Berber, S., Kwon, Y.-K., Tománek, D.: Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84 (20), 4613-4616 (2000).
[4]
Budnik, M., Raychowdhury, A., Roy, K.: Power delivery for nanoscale processors with single wall carbon nanotube interconnects. In: Proc. 6th Conf. IEEE-NANO, pp. 433-436 (2006).
[5]
Burke, P.J.: An RF circuit model for carbon nanotubes. IEEE Trans. Nanotechnol. 2 (1), 55-58 (2003).
[6]
Chen, W.C., Yin, W.-Y., Jia, L., Liu, Q.H.: Electrothermal characterization of single-walled carbon nanotube (SWCNT) interconnect arrays. IEEE Trans. Nanotechnol. 8 (6), 718-728 (2009).
[7]
Cheung, C.L., Kurtz, A., Park, H., Lieber, C.M.: Diameter-controlled synthesis of carbon nanotubes. J. Phys. Chem. B 106 , 2429-2433 (2002).
[8]
Collins, P.G., Hersam, M., Arnold, M., Martel, R., Avouris, Ph.: Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 86 (14), 3128-3131 (2001).
[9]
Franklin, A.D., Chen, Z.: Length scaling of carbon nanotube transistors. Nat. Nanotechnol. Lett. 5 (12), 858-862 (2010).
[10]
Fuchs, K.: Conduction electrons in thin metallic films. Proc. Camb. Philos. Soc. 34 , 100 (1938).
[11]
Hinkov, I., Grand, J., Lamy de la Chapelle, M., Farhat, S., Scott, C.D., Nikolaev, P., Pichot, V., Launois, P., Mevellec, J.Y., Lefrant, S.: Effect of temperature on carbon nanotube diameter and bundle arrangement: microscopic and macroscopic analysis. J. Appl. Phys. 95 (4), 2029-2037 (2004).
[12]
Hiraoka, T., Bandow, S., Shinohara, H., Iijima, S.: Control on the diameter of single-walled carbon nanotubes by changing the pressure in floating catalyst CVD. Carbon 44 , 1853-1859 (2006).
[13]
Huczko, A.: Synthesis of aligned carbon nanotubes. Appl. Phys. A 74 , 617-638 (2002).
[14]
International Technology Roadmap for Semiconductors (ITRS) reports. {Online}. Available: http://www.itrs.net/reports.html.
[15]
Ismail, Y.I., Friedman, E.G., Neves, J.L.: Equivalent Elmore delay for RLC trees. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 19 (1), 83-97 (2000).
[16]
Jia, L., Yin, W.-Y.: Temperature effects on crosstalk in carbon nanotube interconnects. In: Proc. Asia-Pacific Microwave Conference, pp. 1-4 (2008).
[17]
Kapur, P., McVittie, J.P., Saraswat, K.C.: Technology and reliability constrained future copper interconnects--Part I: resistance modeling. IEEE Trans. Electron Devices 49 (4), 590-597 (2002).
[18]
Kim, W., Javey, A., Tu, R., Cao, J., Wang, Q., Dai, H.: Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 87 , 173101 (2005).
[19]
Li, H., Xu, C., Banerjee, K.: Carbon nanomaterials: the ideal interconnect technology for next-generation ICs. In: Emerging Interconnect Technologies for Gigascale Integration, IEEE Design & Test of Computers, July/August, pp. 20-31 (2010).
[20]
Li, H., Srivastava, N., Mao, J.-F., Yin, W.-Y., Banerjee, K.: Carbon nanotube vias: does ballistic electron-phonon transport imply improved performance and reliability? IEEE Trans. Electron Devices 58 (8), 2689-2701 (2011).
[21]
Liang, F., Wang, G., Ding, W.: Estimation of time delay and repeater insertion in multiwall carbon nanotube interconnects. IEEE Trans. Electron Devices 58 (8), 2712-2720 (2011).
[22]
Liu, X., Pichler, T., Knupfer, M., Golden, M.S., Fink, J., Kataura, H., Achiba, Y.: Detailed analysis of the mean diameter and diameter distribution of single-wall carbon nanotubes from their optical response. Phys. Rev. B 66 (2002).
[23]
Lu, C., Liu, J.: Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding. J. Phys. Chem. B 110 , 20254-20257 (2006).
[24]
Mayadas, A.F., Shatzkes, M.: Phys. Rev. B 1 , 1382-1389 (1970).
[25]
Naeemi, A., Meindl, J.D.: Impact of electron-phonon scattering on the performance of carbon nanotube interconnects for GSI. IEEE Electron Device Lett. 26 (7), 476-478 (2005).
[26]
Naeemi, A., Meindl, J.D.: Physical modeling of temperature coefficient of resistance for single- and multi-wall carbon nanotube interconnects. IEEE Electron Device Lett. 28 (2), 135-138 (2007).
[27]
Naeemi, A., Meindl, J.D.: Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gigascale integrated systems. IEEE Trans. Electron Devices 54 (1), 26-37 (2007).
[28]
Naeemi, A., Meindl, J.D.: Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans. Electron Devices 55 (10), 2574-2582 (2008).
[29]
Naeemi, A., Sarvari, R., Meindl, J.D.: Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Electron Device Lett. 26 (2), 84-86 (2005).
[30]
Narasimhamurthy, K.C., Paily, R.P.: Impact of bias voltage on magnetic inductance of carbon nanotube interconnects. In: Proc. 22nd International Conference on VLSI Design, pp. 505-510 (2009).
[31]
Nieuwoudt, A., Massoud, Y.: Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques. IEEE Trans. Electron Devices 53 (10), 2460-2466 (2006).
[32]
Nieuwoudt, A., Massoud, Y.: Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques. IEEE Trans. Electron Devices 5 (6), 758-765 (2006).
[33]
Nieuwoudt, A., Massoud, Y.: On the impact of process variations for carbon nanotube bundles for VLSI interconnect. IEEE Trans. Electron Devices 54 (3), 446-455 (2007).
[34]
Pop, E., Mann, D., Cao, J., Wang, Q., Goodson, K., Dai, H.: Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 95 , 1155505 (2005).
[35]
Pop, E., Mann, D.A., Goodson, K.E., Dai, H.: Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. J. Appl. Phys. 101 (9), 093710 (2007).
[36]
Predictive Technology Model: Interconnect Section {Online}. Available: http://ptm.asu.edu/
[37]
Pu, S.-N., Yin, W.-Y., Mao, J.-F., Liu, Q.H.: Crosstalk prediction of single- and double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects. IEEE Trans. Electron Devices 56 (4) (2009).
[38]
Rosa, E.B., Grover, F.W.: Formulas and Tables for the Calculation of Mutual and Self-inductance. Government Printing Office (1916).
[39]
Sondheimer, E.H.: The mean free path of electrons in new metals. Adv. Phys. 1 , 1 (1952).
[40]
Srivastava, N., Banerjee, K.: Performance analysis of carbon nanotube interconencts for VLSI applications. In: Proc. IEEE/ACM Int. Computer Aided Design Conf, San Jose, CA, Nov., pp. 383-390 (2005).
[41]
Srivastava, N., Li, H., Kreupl, F., Banerjee, K.: On the applicability of single-walled carbon nanotubes as VLSI interconnects. IEEE Trans. Nanotechnol. 8 (4), 542-559 (2009).
[42]
Steinhögl, W., Schindler, G., Steinlesberger, G., Engelhardt, M.: Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 66 , 075414 (2002).
[43]
Sun, P., Luo, R.: Analytical modeling for crosstalk noise induced by process variations among CNT-based interconnects. In: Proc. IEEE Int. Symposium on Electromagnetic Compatibility, pp. 103-107 (2009).
[44]
Sun, X., Li, K., Wu, W., Wilhite, P., Saito, T., Yang, C.Y.: Contact resistances of carbon nanotube via interconnects. In: IEEE Int. Conf. on Electron Devices and Solid-State Circuits (EDSSC), pp. 131-135 (2009).
[45]
Wei, B.Q., Vajtai, R., Ajayan, P.M.: Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79 (8), 1172-1174 (2001).

Cited By

View all
  1. Modeling of single-wall carbon nanotube interconnects for different process, temperature, and voltage conditions and investigating timing delay

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Journal of Computational Electronics
      Journal of Computational Electronics  Volume 11, Issue 4
      December 2012
      150 pages

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 01 December 2012

      Author Tags

      1. Process Temperature Voltage (PTV)
      2. Single-wall Carbon Nanotube (SWCNT)
      3. Very Large Scale Integration (VLSI)

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 06 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media