skip to main content
article

A review of procedures to evolve quantum algorithms

Published: 01 June 2009 Publication History

Abstract

There exist quantum algorithms that are more efficient than their classical counterparts; such algorithms were invented by Shor in 1994 and then Grover in 1996. A lack of invention since Grover's algorithm has been commonly attributed to the non-intuitive nature of quantum algorithms to the classically trained person. Thus, the idea of using computers to automatically generate quantum algorithms based on an evolutionary model emerged. A limitation of this approach is that quantum computers do not yet exist and quantum simulation on a classical machine has an exponential order overhead. Nevertheless, early research into evolving quantum algorithms has shown promise. This paper provides an introduction into quantum and evolutionary algorithms for the computer scientist not familiar with these fields. The exciting field of using evolutionary algorithms to evolve quantum algorithms is then reviewed.

References

[1]
T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms (Oxford Univeristy Press, 1996).
[2]
T. Bäck, D.B. Fogel, Z. Michalewicz (ed.), Evolutionary Computation 1: Basic Algorithms and Operators (Institute of Physics, 2000).
[3]
T. Bäck, D.B. Fogel, Z. Michalewicz (ed.), Evolutionary Computation 2: Advanced Algorithms and Operators (Institute of Physics, 2000).
[4]
W. Banzhaf, P. Nordin, R. Keller, F. Francone, Genetic Programming--An Introduction (dpunkt Heidelberg and Morgan Kaufmann Publishers, San Francisco, 1998).
[5]
A. Barenco, A universal two-bit gate for quantum computation, in Proceedings of the Royal Society of London A, vol. 449 (1995), pp. 679-683.
[6]
A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, H. Weinfurter, Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457-3467 (1995).
[7]
H. Barnum, H.J. Bernstein, L. Spector, A quantum circuit for OR. ArXiv Quantum Physics e-prints quant-ph/9907056v3 (October 1999).
[8]
H. Barnum, H.J. Bernstein, L. Spector, Quantum circuits for OR and AND of ORs. J. Phys. A Math. Gen. 33(45), 8047-8057 (November 2000).
[9]
R.K. Belew, M.D. Vose (eds.), Foundations of Genetic Algorithms, vol. 4 (Morgan Kaufmann, 1997).
[10]
P. Benioff, The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22(5), 563-591 (1980).
[11]
C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17, 525-532 (1973).
[12]
C.H. Bennett, E. Bernstein, G. Brassard, U.V. Vazirani, Strengths and weaknesses of quantum computing. Soc. Ind. Appl. Math. J. Comput. 26, 1510-1523 (1994).
[13]
E. Bernstein, U.V. Vazirani, Quantum complexity theory, in Proceedings of the 25th Annual ACM Symposium on Theory of Computation (1993), pp. 11-20.
[14]
T. Blickle, Tournament selection, in Evolutionary Computation 1: Basic Algorithms and Operators, ed. by T. Bäck, D.B. Fogel, Z. Michalewicz (Institute of Physics, 2000), pp. 181-186.
[15]
S. Bornholdt, Genetic algorithms, in Non-Standard Computation, ed. by T. Gramß, S. Bornholdt, M. Groß, M. Mitchell, T. Pellizzari (WILEY-VCH, Weinheim, Germany, 1998), pp. 141-178.
[16]
D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibi, H. Weinfurther, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575-579 (1997).
[17]
S.L. Braunstein, Quantum computation: a tutorial. Available from author's homepage at the Department of Computer Science, York University: http://www-users.cs.york.ac.uk/~schmuel/, 1995.
[18]
C.S. Calude, De-quantizing the solution of Deutsch's problem. Int. J. Quantum Inf. 5(3), 409-415 (June 2007). Preprint available at: http://arxiv.org/abs/quant-ph/0610220.
[19]
J.A. Clark, S. Stepney, Fusing natural computational paradigms for cryptanalysis. Or, using heuristic search to bring cryptanalysis problems within quantum computational range, in Proceedings of the 2006 Congress on Evolutionary Computation (CEC2006) (2006), pp. 200-206.
[20]
R. Cleve, A. Ekert, C. Macchiavello, M. Mosca, Quantum algorithms revisited, in Proceedings of the Royal Society of London A, vol. 454 (1998), pp. 339-354.
[21]
N.L. Cramer A representation for the adaptive generation of simple sequential programs, in Proceedings of an International Conference on Genetic Algorithms and their Applications, ed. by J.J. Grefenstette (July 1985), pp. 183-187.
[22]
C. Darwin, On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (Murray, London, 1859).
[23]
K. Deb, Introduction into selection, in Evolutionary Computation 1: Basic Algorithms and Operators , ed. by T. Bäck, D.B. Fogel, Z. Michalewicz (Institute of Physics, 2000), pp. 166-171.
[24]
D. Deutsch, Quantum theory, the church-turing principle and the universal quantum computer 400, in Proceedings of the Royal Society of London A (1985), pp. 97-117.
[25]
D. Deutsch, Quantum computational networks, in Proceedings of the Royal Society of London A 425 (1989), pp. 73-90.
[26]
D. Deutsch, R. Jozsa Rapid solution of problems by quantum computation, in Proceedings of the Royal Society of London Series A, vol. A439 (1992), pp. 553-558.
[27]
D. Dickmanns, J. Schmidhuber, A. Winklhofer, Der genetische algorithmus: Eine implementierung in prolog. Tech. rep. (Institut für Informatik, Technische Universität Mänchen, 1987).
[28]
S. Ding, Z. Jin, Q. Yang, Evolving quantum oracles with hybrid quantum-inspired evolutionary algorithm. ArXiv Quantum Physics e-prints quant-ph/0610105 (October 2006).
[29]
P. Dirac, The Principles of Quantum Mechanics, 4th edn. (Oxford University Press, 1958).
[30]
R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467-488 (1982).
[31]
R.P. Feynman, There's plenty of room at the bottom: an invitation to enter a new field of physics. Speech at the Annual Meeting of the American Physical Society, December 1959. It is available online at http://www.zyvex.com/nanotech/feynman.html
[32]
R.P. Feynman, D.H. Gilbert DH (eds.), Miniaturization (Reinhold, New York, 1961), pp. 282-295.
[33]
D.B. Fogel, Phenotypes, genotypes, and operators in evolutionary computation, in Computational Intelligence: Theory and Applications (5th Fuzzy Days Berlin, Springer-Verlag, 1995), pp. 337-342.
[34]
G.D. Forney Jr., S. Guha, Simple rate-1/3 convolutional and tail-biting quantum error-correcting codes, in Proceedings of the IEEE International Symposium on Information Theory (September 2005), pp. 1028-1032.
[35]
L. Fortnow, J. Rogers, Complexity limitations on quantum computation. J. Comput. Syst. Sci. 59(2), 240-252 (1999) (Special issue for selected papers from the 13th IEEE Conference on Computational Complexity).
[36]
A.A. Freitas, Data Mining and Knowledge Discovery with Evolutionary Algorithms (Springer-Verlag, 2002).
[37]
A. Galindo, M. Martín-Delgado, Information and computation: classical and quantum aspects. Rev Modern Phys. 74(2), 347-423 (May 2002). Preprint available at: http://arxiv.org/abs/quant-ph/ 0112105
[38]
G.A. Giraldi, R. Portugal, R.N. Thess, Genetic algorithms and quantum computation. ArXiv Quantum Physics e-prints quant-ph/0610105 (March 2004).
[39]
D.E. Goldberg, Genetic Algorithms in Search, Optimisation, and Machine Learning (Addison Wesley, 1989).
[40]
T. Gramß (1998) The theory of quantum computation: an introduction, in Non-Standard Computation ed. by T. Gramß, S. Bornholdt, M. Groß, M. Mitchell, T. Pellizzari (WILEY-VCH, Weinheim, Germany), pp. 141-178.
[41]
J. Grefenstette, Proportional selection and sampling algorithms, in Evolutionary Computation 1: Basic Algorithms and Operators, ed. by T. Bäck, D.B. Fogel, Z. Michalewicz (Institute of Physics, 2000), pp. 172-180.
[42]
J. Grefenstette, Rank-based selection, in Evolutionary Computation 1: Basic Algorithms and Operators, ed. by T. Bäck, D.B. Fogel, Z. Michalewicz (Institute of Physics, 2000), pp. 187-194.
[43]
M. Groß, Molecular computing, in Non-Standard Computation, ed. by T. Gramß, S. Bornholdt, M. Groß, M. Mitchell, T. Pellizzari (WILEY-VCH, Weinheim, Germany, 1998), pp. 15-58.
[44]
L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the 18th Annual ACM Symposium on the History of Computing (Philadelphia, Pennsylvania, May 1996), pp. 212-219.
[45]
S. Gudder, Quantum automata: an overview. Int. J. Theor. Phys. 28(9), 2261-2282 (1999).
[46]
H. Häffner, W. Hänsel, C.F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Scalable multiparticle entanglement of trapped ions. Nature 438(1), 643-646 (December 2005).
[47]
Y. Hardy, W.-H. Steeb, Entangled quantum states and a C++ implementation. Int. J. Modern Phys. C 11, 69-77 (2000).
[48]
Y. Hardy, W.-H. Steeb, Classical and Quantum Computing, with C++ and Java Simulations (Birkhäuser Verlag Berlin, Germany, 2001).
[49]
T. Hogg, Solving highly constrained search problems with quantum computers. J. Artif. Intell. Res. 10, 39-66 (1999).
[50]
J.H. Holland, Adaptation in Natural and Artificial Systems (The MIT Press, Cambridge, 1975).
[51]
R. Huber, T. Schell, Mixed size tournament selection. Soft Comput. Fus. Found. Methodol. Appl. 6(6), 449-455 (September 2002).
[52]
T.A. Hungerford, Algebra (Springer-Verlag, New York, 1974).
[53]
B.A. Julstrom It's all the same to me: Revisiting rank-based probabilities and tournaments, in Proceedings of the Congress on Evolutionary Computation, vol. 2 (IEEE Press, Piscataway, New Jersey, 1999), pp. 1501-1505.
[54]
W. Kantschik, W. Banzhaf, Linear-Tree GP and its comparison with other GP structures, in Genetic Programming, Proceedings of EuroGP'2001, ed. by J.F. Miller, M. Tomassini, P.L. Lanzi, C. Ryan, A.G.B. Tettamanzi, W.B. Langdon. Lecture Notes in Computer Science, vol. 2038 (Springer-Verlag, 2001), pp. 302-312.
[55]
W. Kantschik, W. Banzhaf, Linear-graph GP--a new GP structure, in Genetic Programming, Proceedings of EuroGP'2002, ed. by J.A. Foster, E. Lutton, J. Miller, C. Ryan, A.G.B. Tettamanzi. Lecture Notes in Computer Science, vol. 2278 (Springer-Verlag, 2002), pp. 83-92.
[56]
M.H.A. Khan, M. Perkowski, Genetic algorithm based synthesis of multi-output ternary functions using quantum cascade of generalized ternary gates, in Proceedings of 2004 Congress on Evolutionary Computation (June 2004).
[57]
J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (The MIT Press, Cambridge 1992).
[58]
J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs (The MIT Press, Cambridge, 1994).
[59]
J.R. Koza, F.H. Bennett III, D. Andre, M.A. Keane, Genetic Programming III: Darwinian Invention and Problem Solving. (Morgan Kaufmann, 1999).
[60]
J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, G. Lanza, Genetic Programming IV: Routine Human-Competitive Machine Intelligence (Kluwer Academic Publishers, 2003).
[61]
O. Landry, Introduction to quantum computing. From Physics Department of McGill University, April 2004 (It appears to be now unavailable on the Internet, but the authors of this paper have a hard copy available upon request).
[62]
W.B. Langdon, T. Soule, R. Poli, Foster, J.A. The evolution of size and shape, in Advances in Genetic Programming: Volume 3, ed. by L. Spector, W.B. Langdon, U.-M. O-Reilly, P.J. Angeline (The MIT Press, 1999), pp. 163-190.
[63]
D. Leibfried, E. Knill, S. Seidelin, J. Britton, R.B. Blakestad, J. Chiaverini1, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, R. Reichle, D.J. Wineland, Creation of a six-atom 'Schrödinger cat' state. Nature 438(1), 639-642 (December 2005).
[64]
A. Leier, Evolution of Quantum Algorithms Using Genetic Programming, PhD thesis, University of Dortmund, Department of Computer Science, 2004.
[65]
A. Leier, W. Banzhaf, Evolving Hogg's quantum algorithm using linear-tree GP, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-03) (Chicago, 12-16 July 2003), ed. by E. Cantú-Paz, J.A. Foster, K. Deb, D. Davis, R. Roy, U.-M. O'Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M.A. Potter, A.C. Schultz, K. Dowsland, N. Jonoska, J. Miller. LNCS, vol. 2723 (Springer-Verlag), pp. 390-400.
[66]
A. Leier, W. Banzhaf, Exploring the search space of quantum programs, in Proceedings of the 2003 Congress on Evolutionary Computation (CEC2003), ed. by R. Sarker, R. Reynolds, H. Abbass, K.C. Tan, B. McKay, D. Essam, T. Gedeon (IEEE Press, December 2003), pp. 170-177.
[67]
A. Leier, W. Banzhaf, Comparison of selection strategies for evolutionary quantum circuit design, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-04). Lecture Notes in Computer Science (Springer, 2004), pp. 557-568.
[68]
A.K. Lenstra, H.W. Lenstra Jr., The Development of the Number Field Sieve. Lecture Notes in Mathematics, vol. 1554 (Springer-Verlag, 1993).
[69]
D. Loss, D. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120-126 (1998).
[70]
C. Lu, X. Zhou, O. Gühne, W. Gao, J. Zhang, Z. Yuan, A. Goebel, T. Yang, J. Pan, Experimental entanglement of six photons in graph states. Nature Phys. 3, 91-95 (2007).
[71]
M. Lukac, M. Perkowski, Evolving quantum circuits using genetic algorithms, in Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware (2002), pp. 177-185.
[72]
M. Lukac, M. Perkowski, Evolutionary approach to quantum symbolic logic synthesis, in Proceedings of the 2008 IEEE Congress on Evolutionary Computation (CEC2008) (June 2008), pp. 3374-3380.
[73]
M. Lukac, M. Perkowski, P. Kerntopf, M. Pivtoraiko, M. Folgheraiter, D. Lee, H. Kim, W. Hwuangbo, J. wook Kim, Y.W. Choi, A hierarchical approach to computer aided design of quantum circuits, in Proceedings of the 6th International Symposium on Representations and Methodology of Future Computing Technology (2003), pp. 201-209.
[74]
M. Lukac, M.A. Perkowski, H. Goi, M. Pivtoraiko, C. Hyo Yu, K. Chung, H. Jeech, B. Kim, Y. Kim, Evolutionary approach to quantum and reversible circuits synthesis. Artif. Intell. Rev. 20(3-4), 361-417 (2003).
[75]
S. Luke, L. Spector, A revised comparison of crossover and mutation in genetic programming, in Proceedings of the Third Annual Genetic Programming Conference (Morgan Kaufmann, San Fransisco, 1998), pp. 208-213.
[76]
P. Massey, J.A. Clark, S. Stepney, Evolving quantum circuits and programs through genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2004). Lecture Notes in Computer Science, vol. 3103 (Springer, 2004), pp. 569-580. Winner of the "Best in GP Stream" award, GECCO 2004.
[77]
P. Massey, J.A. Clark, S. Stepney, Evolution of a human-competitive Quantum Fourier Transform algorithm using genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2005) (ACM Press, 2005), pp. 1657-1664. (Ref. 78 is a revised and extended version of this paper).
[78]
P. Massey, J.A. Clark, S. Stepney Human-competitive evolution of quantum computing artefacts by genetic programming. Evol. Comput. J. 14(1), 21-40 (2006) (this is a revised and extended version of Ref. 77).
[79]
P.S. Massey, Searching for Quantum Software. PhD thesis, University of York, Department of Computer Science, 2006. Available at http://www.cs.york.ac.uk/ftpdir/reports/YCST-2007-11.pdf.
[80]
Z. Michalewicz, Genetic algorithms + Data structures = Evolution Programs, 3rd edn. (Springer-Verlag, New York, 1996).
[81]
M. Mitchell, An Introduction to Genetic Algorithms (The MIT Press, 1996).
[82]
P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, J. Wrachtrup, Multipartite entanglement among single spins in diamond. Science 320(5881), 1326-1329 (6 June 2008).
[83]
M.A. Nielsen, I.L. Chuang, Quantum computation and Quantum Information (Cambridge University Press, Cambridge 2000).
[84]
T. Pellizzari, Quantum computers: first steps towards a realization, in Non-Standard Computation, ed. by T. Gramß, S. Bornholdt, M. Groß, M. Mitchell, T. Pellizzari (WILEY-VCH, Weinheim, Germany, 1998), pp. 141-178.
[85]
A.O. Pittenger, An Introduction to Quantum Computing Algorithms (Birkhäuser, Boston 2000).
[86]
G. Paun, G. Rozenberg, A. Salomaa, DNA Computing: New Computing Paradigms (Springer-Verlag, 1998).
[87]
G. Paun, G. Rozenberg, A. Salomaa, in DNA Computing: New Computing Paradigms (Springer-Verlag, 1998), pp. 1-6 Introduction; pp. 43-74 Beginnings of Molecular Computing.
[88]
T. Reid, On the evolutionary design of quantum circuits. Master's thesis, Waterloo, Ontario, Canada, 2005.
[89]
M.J. Rethinam, A.K. Javali, E.C. Behrman, J.E. Steck, S.R. Skinner, A genetic algorithm for finding pulse sequences for NMR quantum computing. ArXiv Quantum Physics e-prints quant-ph/ 0404170v1 (April 2004).
[90]
E. Rieffel, W. Polak, An introduction to quantum computing for non-physicists. ACM Comput. Surv. 32(3), 300-335 (2000).
[91]
B.I.P. Rubinstein, Evolving quantum circuits using genetic programming, in Proceedings of the 2001 IEEE Congress on Evolutionary Computation (CEC2001) (IEEE Press, 2001), pp. 114-121.
[92]
A. Sabry, Modeling quantum computing in Haskell, in Haskell '03: Proceedings of the ACM SIGPLAN workshop on Haskell (ACM Press, New York, NY, USA, 2003), pp. 39-49.
[93]
Y. Shi, Both Toffoli and Controlled-NOT need little help to do universal quantum computation. ArXiv Quantum Physics e-prints quant-ph/0205115v2 (May 2002).
[94]
P.W. Shor, Algorithms for quantum computation: discrete log and factoring, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (Institute of Electrical and Electronic Engineers Computer Society Press, November 1994), pp. 124-134.
[95]
P.W. Shor, Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493-2496 (1995).
[96]
P.W. Shor, Introduction to quantum algorithms. Notes for talk given for the short course at the January 2000 American Math Society meeting, 2000.
[97]
D. Simon, On the power of quantum computation, in Proceedings of the 35th annual IEEE symposium on the foundations of computer science (FOCS) (IEEE, Computer Society Press, Santa Fee, USA, November 1994), pp. 116-123.
[98]
S.F. Smith, A Learning System Based on Genetic Adaptive Algorithms. PhD thesis, University of Pittsburgh, 1980.
[99]
D.A. Sofge, Prospective algorithms for quantum evolutionary computation, in Proceedings of the Second Quantum Interaction Symposium (QI-2008)(2008). Available from ArXiv e-prints at http://arxiv.org/abs/0804.1133v1
[100]
L. Spector, The evolution of arbitrary computational processes. IEEE Intell. Syst. 15(3), 80-83 (May/June 2000).
[101]
L. Spector, Automatic Quantum Computer Programming: A Genetic Programming Approach. Genetic Programming Series. (Kluwer Academic Publishers, 2004).
[102]
L. Spector, H. Barnum, H.J. Bernstein, Genetic programming for quantum computers, in Genetic Programming 1998: Proceedings of the Third Annual Conference, ed. by J.R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, R.L. Riolo (1998), pp. 365-374.
[103]
L. Spector, H. Barnum, H.J. Bernstein, N. Swamy, Finding a better-than-classical quantum AND/ OR algorithm using genetic programming, in Proceedings of the 1999 Congress on Evolutionary Computation (IEEE, 1999), pp. 2239-246.
[104]
L. Spector, H. Barnum, H.J. Bernstein, N. Swamy, Quantum computing applications of genetic programming, in Advances in Genetic Programming: Volume 3, ed. by L. Spector, W.B. Langdon, U.-M. O-Reilly, P.J. Angeline (The MIT Press, 1999), pp. 135-160.
[105]
L. Spector, H.J. Bernstein, Communication capacities of some quantum gates, discovered in part through genetic programming, in Proceedings of the 6th International Conference on Quantum Communication, Measurement, and Computing (QCMC), ed. by J.H. Shapiro, O. Hirota (Rinton Press, 2003), pp. 500-503. Preprint available at http://hampshire.edu/lspector/pubs/spector-QCMC-prepress.pdf
[106]
L. Spector, W.B. Langdon, U.-M. O-Reilly, P.J. Angeline (eds.), Advances in Genetic Programming: Volume 3 (The MIT Press, 1999).
[107]
R. Stadelhofer, Evolving Blackbox Quantum Algorithms using Genetic Programming. PhD thesis, University of Dortmund, Department of Physics (2006).
[108]
R. Stadelhofer, W. Banzhaf, D. Suter, Quantum and classical parallelism in parity algorithms for ensemble quantum computers. Phys. Rev. A 71, 032345-1-032345-6 (2005).
[109]
R. Stadelhofer, W. Banzhaf, D. Suter, Evolving blackbox quantum algorithms using genetic programming. Artif. Intell. Eng. Des. Anal. Manuf. 22, 285-297 (2008).
[110]
S. Stepney, J.A. Clark, Evolving quantum programs and protocols, in Handbook of Theoretical and Computational Nanotechnology, volume 3, Quantum and Molecular Computing, Quantum Simulations, ch. 3, ed. by M. Rieth, W. Schommers (American Scientific Publishers, 2006), pp. 113-160.
[111]
S. Stepney, J.A. Clark, Searching for quantum programs and quantum protocols: a review. J. Comput. Theor. Nanosci. 5, 942-969 (May, 2008).
[112]
P. Surry, N. Radcliffe, A formalism for real-parameter evolutionary algorithms and directed recombination. in Foundations of Genetic Algorithms, vol. 4, ed. by R.K. Belew, M.D. Vose (Morgan Kaufmann, 1997).
[113]
A. Teller, M. Veloso, PADO: a new learning architecture for object recognition, in Symbolic Visual Learning, ed. by K. Ikeuchi M. Veloso (Oxford University Press, 1996), pp. 81-116.
[114]
M. Udrescu, L. Prodan, M. Vladutiu, Implementing quantum genetic algorithms: a solution based on grover's algorithm, in Proceedings of the Third Conference on Computing frontiers (ACM Press, New York, 2006), pp. 71-82.
[115]
W. van Dam, A universal quantum cellular automaton, in Proceedings of PhysComp96 (New England Complex Systems Institute, 1996), pp. 323-331.
[116]
R. Van Meter, K. Binkley, Compiling quantum programs using genetic algorithms, in The Wild and Crazy Idea Session IV, abstracts, part of 11th International Conference on Architectural Support for Programming Languages and Operating Systems (October 2004).
[117]
A. van Tonder, A lambda calculus for quantum computation. SIAM J. Comput. 33(5), 1109-1135 (2004).
[118]
L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883-887 (December 2001).
[119]
M.D. Vose, The Simple Genetic Algorithm: Foundations and Theory (The MIT Press, 1999).
[120]
Watrous, J. Relationships between quantum and classical space-bounded complexity classes, in 13th Annual IEEE Conference on Computational Complexity (June 1998), pp. 210-227.
[121]
C.P. Williams, S.H. Clearwater, Explorations in Quantum Computing (Springer-Verlag, 1998).
[122]
C.P. Williams, A.G. Gray, Automated design of quantum circuits, in QCQC '98: Selected papers from the First NASA International Conference on Quantum Computing and Quantum Communications , ed. by C.P. Williams. Lecture Notes in Computer Science, vol. 1509 (Springer-Verlag, 1998), pp. 113-125.
[123]
W.K. Wooters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802-803 (1982).
[124]
T. Yabuki, H. Iba, Genetic algorithms for quantum circuit design, evolving a simpler teleportation circuit, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-00) (Morgan Kauffman Publishers, San Francisco, July 2000), pp. 421-425.
[125]
Q. Yang, The research of a hybrid quantum-inspired evolutionary algorithm. Master's thesis, Wuhan University, China, 2006.
[126]
A. Yao, Quantum circuit complexity, in Proceedings of the 34th Annual Symposium on the Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, USA, 1993), pp. 352-361.
[127]
W.H. Zurek, Decoherence and the transition from quantum to classical. Physics Today 44, 36-44 (1991).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Genetic Programming and Evolvable Machines
Genetic Programming and Evolvable Machines  Volume 10, Issue 2
June 2009
133 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 June 2009

Author Tags

  1. Evolutionary algorithms
  2. Evolving quantum algorithms
  3. Genetic algorithms
  4. Genetic programming
  5. Quantum algorithms
  6. Quantum computing

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media