skip to main content
research-article

Blocked algorithms for the reduction to Hessenberg-triangular form revisited

Published: 01 September 2008 Publication History

Abstract

We present two variants of Moler and Stewart’s algorithm for reducing a matrix pair to Hessenberg-triangular (HT) form with increased data locality in the access to the matrices. In one of these variants, a careful reorganization and accumulation of Givens rotations enables the use of efficient level 3 BLAS. Experimental results on four different architectures, representative of current high performance processors, compare the performances of the new variants with those of the implementation of Moler and Stewart’s algorithm in subroutine DGGHRD from LAPACK, Dackland and Kågström’s two-stage algorithm for the HT form, and a modified version of the latter which requires considerably less flops.

References

[1]
E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen, LAPACK Users’ Guide, 3rd edn., SIAM, Philadelphia, PA, 1999.
[2]
C. H. Bischof, B. Lang, and X. Sun, A framework for symmetric band reduction, ACM Trans. Math. Softw., 26 (2000), pp. 581–601.
[3]
C. H. Bischof and C. F. Van Loan, The WY representation for products of Householder matrices, SIAM J. Sci. Stat. Comput., 8 (1987), pp. S2–S13.
[4]
K. Braman, R. Byers, and R. Mathias, The multishift QR algorithm. I. Maintaining well-focused shifts and level 3 performance, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 929–947.
[5]
M. Cosnard, J.-M. Muller, and Y. Robert, Parallel QR decomposition of a rectangular matrix, Numer. Math., 48 (1986), pp. 239–249.
[6]
K. Dackland and B. Kågström, Blocked algorithms and software for reduction of a regular matrix pair to generalized Schur form, ACM Trans. Math. Softw., 25 (1999), pp. 425–454.
[7]
J. J. Dongarra, D. C. Sorensen, and S. J. Hammarling, Block reduction of matrices to condensed forms for eigenvalue computations, J. Comput. Appl. Math., 27 (1989), pp. 215–227. (Reprinted in Parallel algorithms for numerical linear algebra, North-Holland, Amsterdam, 1990, pp. 215–227)
[8]
G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd edn., Johns Hopkins University Press, Baltimore, MD, 1996.
[9]
K. Goto and R. van de Geijn, High-performance implementation of the level-3 BLAS, ACM Trans. Math. Software, 35 (2008).
[10]
B. Kågström, P. Ling, and C. F. Van Loan, GEMM-based level 3 BLAS: Algorithms for the model implementations, ACM Trans. Math. Softw., 24 (1999), pp. 268–302.
[11]
B. Kågström, P. Ling, and C. F. Van Loan, GEMM-based level 3 BLAS: High-performance model implementations and performance evaluation benchmark, ACM Trans. Math. Softw., 24 (1999), pp. 303–316.
[12]
B. Kågström and D. Kressner, Multishift variants of the QZ algorithm with aggressive early deflation, SIAM J. Matrix Anal. Appl., 29 (2006), pp. 199–227. (Also appeared as LAPACK working note 173.)
[13]
D. Kressner, Numerical Methods and Software for General and Structured Eigenvalue Problems, PhD thesis, TU Berlin, Institut für Mathematik, Berlin, Germany, 2004.
[14]
B. Lang, Effiziente Orthogonaltransformationen bei der Eigen- und Singulärwertzerlegung. Habilitationsschrift, 1997.
[15]
B. Lang, Using level 3 BLAS in rotation-based algorithms, SIAM J. Sci. Comput., 19 (1998), pp. 626–634.
[16]
H. P. Märchy, On a modification of the QZ algorithm with fast Givens rotations, Computing, 38 (1987), pp. 247–259.
[17]
J. J. Modi and M. R. B. Clarke, An alternative Givens ordering, Numer. Math., 43 (1984), pp. 83–90.
[18]
C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., 10 (1973), pp. 241–256.
[19]
G. Quintana-Ortí and R. A. van de Geijn, Improving the performance of reduction to Hessenberg form, ACM Trans. Math. Softw., 32 (2006), pp. 180–194.
[20]
H. Rutishauser, On Jacobi rotation patterns, in Proc. Sympos. Appl. Math., vol. XV, pp. 219–239, Amer. Math. Soc., Providence, R.I., 1963.
[21]
R. Schreiber and C. F. Van Loan, A storage-efficient WY representation for products of Householder transformations, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 53–57.
[22]
H.-R. Schwarz, Die Reduktion einer symmetrischen Bandmatrix auf tridiagonale Form, Z. Angew. Math. Mech., 45 (1965), pp. T75–T77.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image BIT
BIT  Volume 48, Issue 3
Sep 2008
216 pages

Publisher

BIT Computer Science and Numerical Mathematics

United States

Publication History

Published: 01 September 2008

Author Tags

  1. generalized eigenvalue problems
  2. Hessenberg-triangular form
  3. QZ algorithm
  4. orthogonal transformations
  5. high-performance computing
  6. level 3 BLAS
  7. blocked algorithms

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media