skip to main content
article
Free access

Logical scalability and efficiency of relational learning algorithms

Published: 01 April 2019 Publication History

Abstract

Relational learning algorithms learn the definition of a new relation in terms of existing relations in the database. The same database may be represented under different schemas for various reasons, such as efficiency, data quality, and usability. Unfortunately, the output of current relational learning algorithms tends to vary quite substantially over the choice of schema, both in terms of learning accuracy and efficiency. We introduce the property of schema independence of relational learning algorithms, and study both the theoretical and empirical dependence of existing algorithms on the common class of (de) composition schema transformations. We show theoretically and empirically that current relational learning algorithms are generally not schema independent. We propose Castor, a relational learning algorithm that achieves schema independence.

References

[1]
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level. Addison-Wesley, Boston (1994)
[2]
Abouzied, A., Angluin, D., Papadimitriou, C., Hellerstein, J., Silberschatz, A.: Learning and verifying quantified boolean queries by example. In: PODS, pp. 49---60 (2013)
[3]
Angluin, D., Frazier, M., Pitt, L.: Learning conjunctions of Horn clauses. Mach. Learn. 9(2---3), 147---164 (1992)
[4]
Arias, M., Khardon, R., Maloberti, J.: Learning Horn expressions with LOGAN-H. J. Mach. Learn. Res. 8, 549---587 (2007)
[5]
Atzeni, P., Ausiello, G., Batini, C., Moscarini, M.: Inclusion and Equivalent Between Relational Database Schemata. TCS, Mumbai (1982)
[6]
Cate, B.T., Dalmau, V., Kolaitis, P.G.: Learning schema mappings. TODS 38(4), 28:1---28:31 (2013)
[7]
Chen, Y., Goldberg, S., Wang, D.Z., Johri, S.S.: Ontological pathfinding: mining first-order knowledge from large knowledge bases. In: SIGMOD, pp. 835---846 (2016)
[8]
Costa, V.S., Srinivasan, A., Camacho, R., Blockeel, H., Demoen, B., Janssens, G., Struyf, J., Vandecasteele, H., Laer, W.V.: Query transformations for improving the efficiency of ILP systems. J. Mach. Learn. Res. 4, 465---491 (2003)
[9]
Davis, J., Burnside, E.S., de Castro Dutra, I., Page, D., Ramakrishnan, R., Costa, V.S., Shavlik, J.W.: View learning for statistical relational learning: with an application to mammography. In: IJCAI, pp. 677---683 (2005)
[10]
De Raedt, L.: Logical and Relational Learning, 1st edn. Springer, Berlin (2010)
[11]
Fagin, R.: Inverting schema mappings. TODS 32(4), 25 (2007)
[12]
Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT, pp. 207---224. Springer, Berlin, Heidelberg (2003)
[13]
Fan, W., Bohannon, P.: Information preserving xml schema embedding. TODS 33(1), 1---44 (2008)
[14]
Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24(6), 707---730 (2015)
[15]
Getoor, L., Machanavajjhala, A.: Entity resolution in big data. In: KDD, p. 1527 (2013)
[16]
Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)
[17]
Hull, R.: Relative information capacity of simple relational database schemata. In: PODS, pp. 97---109 (1984)
[18]
Khardon, R.: Learning function-free Horn expressions. Mach. Learn. 37(3), 241---275 (1999)
[19]
Ku?elka, O., ?elezn?, F.: A restarted strategy for efficient subsumption testing. Fundam. Inf. 89(1), 95---109 (2009)
[20]
Li, H., Chan, C.-Y., Maier, D.: Query from examples: an iterative, data-driven approach to query construction. PVLDB 8(13), 2158---2163 (2015)
[21]
Muggleton, S.: Inverse Entailment and Progol. New Gener. Comput. Special Issue Inductive Log. Program. 13, 245---286 (1995)
[22]
Muggleton, S., Feng, C.: Efficient induction of logic programs. In: ALT. Springer/Ohmsha, pp. 368---381 (1990)
[23]
Muggleton, S., Santos, J.C.A., Tamaddoni-Nezhad, A.: Progolem: a system based on relative minimal generalisation. In: De Raedt, L. (ed.) ILP, vol. 5989. Springer, Berlin, Heidelberg (2009)
[24]
Picado, J., Termehchy, A., Fern, A., Ataei, P.: Schema independent relational learning. arXiv:1508.03846 (2015)
[25]
Picado, J., Termehchy, A., Fern, A., Ataei, P.: Schema independent relational learning. In: SIGMOD, pp. 929---944 (2017)
[26]
Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5, 239---266 (1990)
[27]
Reddy, C., Tadepalli, P.: Learning Horn definitions: theory and an application to planning. New Gener. Comput. 17, 77---98 (1998)
[28]
Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1---2), 107---136 (2006)
[29]
Srinivasan, A.: The Aleph manual (2007). http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph. Accessed 15 Oct 2018
[30]
Termehchy, A., Winslett, M., Chodpathumwan, Y.: How schema independent are schema free query interfaces? In: ICDE, pp. 645---660 (2011)
[31]
Zeng, Q., Patel, J.M., Page, D.: QuickFOIL: scalable inductive logic programming. PVLDB 8(3), 197---208 (2014)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image The VLDB Journal — The International Journal on Very Large Data Bases
The VLDB Journal — The International Journal on Very Large Data Bases  Volume 28, Issue 2
April 2019
142 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 April 2019

Author Tags

  1. Database transformations
  2. Inductive logic programming
  3. Machine Learning
  4. Relational learning
  5. Schema independence

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 73
    Total Downloads
  • Downloads (Last 12 months)34
  • Downloads (Last 6 weeks)10
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media