skip to main content
10.1007/978-3-031-57231-9_10guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

From Innermost to Full Almost-Sure Termination of Probabilistic Term Rewriting

Published: 06 April 2024 Publication History

Abstract

There are many evaluation strategies for term rewrite systems, but proving termination automatically is usually easiest for innermost rewriting. Several syntactic criteria exist when innermost termination implies full termination. We adapt these criteria to the probabilistic setting, e.g., we show when it suffices to analyze almost-sure termination (AST) w.r.t. innermost rewriting to prove full AST of probabilistic term rewrite systems. These criteria also apply to other notions of termination like positive AST. We implemented and evaluated our new contributions in the tool AProVE.

References

[1]
G. Agha, J. Meseguer, and K. Sen. “PMaude: Rewrite-based Specification Language for Probabilistic Object Systems”. In: Proc. QAPL ’05. ENTCS 153. 2006, pp. 213–239.
[2]
S. Agrawal, K. Chatterjee, and P. Novotný. “Lexicographic Ranking Supermartingales: An Efficient Approach to Termination of Probabilistic Programs”. In: Proc. ACM Program. Lang. 2.POPL (2017).
[3]
T. Arts and J. Giesl. “Termination of Term Rewriting Using Dependency Pairs”. In: Theor. Comput. Sc. 236.1-2 (2000), pp. 133–178.
[4]
M. Avanzini, U. Dal Lago, and A. Yamada. “On Probabilistic Term Rewriting”. In: Sci. Comput. Program. 185 (2020).
[5]
M. Avanzini, G. Moser, and M. Schaper. “A Modular Cost Analysis for Probabilistic Programs”. In: Proc. ACM Program. Lang. 4.OOPSLA (2020).
[6]
F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
[7]
K. Batz, B. L. Kaminski, J.-P. Katoen, C. Matheja, and L. Verscht. “A Calculus for Amortized Expected Runtimes”. In: Proc. ACM Program. Lang. 7.POPL (2023).
[8]
R. Beutner and L. Ong. “On Probabilistic Termination of Functional Programs with Continuous Distributions”. In: Proc. PLDI ’21. 2021, pp. 1312–1326.
[9]
O. Bournez and C. Kirchner. “Probabilistic Rewrite Strategies. Applications to ELAN”. In: Proc. RTA ’02. LNCS 2378. 2002, pp. 252–266.
[10]
O. Bournez and F. Garnier. “Proving Positive Almost-Sure Termination”. In: Proc. RTA ’05. LNCS 3467. 2005, pp. 323–337.
[11]
K. Chatterjee, H. Fu, and P. Novotný;. “Termination Analysis of Probabilistic Programs with Martingales”. In: Foundations of Probabilistic Programming. Ed. by G. Barthe, J. Katoen, and A. Silva. Cambridge University Press, 2020, 221–258.
[12]
U. Dal Lago and C. Grellois. “Probabilistic Termination by Monadic Affine Sized Typing”. In: Proc. ESOP ’17. LNCS 10201. 2017, pp. 393–419.
[13]
U. Dal Lago, C. Faggian, and S. R. Della Rocca. “Intersection Types and (Positive) Almost-Sure Termination”. In: Proc. ACM Program. Lang. 5.POPL (2021).
[14]
A. Díaz-Caro and G. Martínez. “Confluence in Probabilistic Rewriting”. In: Proc. LSFA ’17. ENTCS 338. 2018, pp. 115–131.
[15]
C. Faggian. “Probabilistic Rewriting and Asymptotic Behaviour: On Termination and Unique Normal Forms”. In: Log. Methods in Comput. Sci. 18.2 (2022).
[16]
L. M. Ferrer Fioriti and H. Hermanns. “Probabilistic Termination: Soundness, Completeness, and Compositionality”. In: Proc. POPL ’15. 2015, pp. 489–501.
[17]
F. Frohn and J. Giesl. “Analyzing Runtime Complexity via Innermost Runtime Complexity”. In: Proc. LPAR ’17. EPiC 46. 2017, pp. 249–228.
[18]
H. Fu and K. Chatterjee. “Termination of Nondeterministic Probabilistic Programs”. In: Proc. VMCAI ’19. LNCS 11388. 2019, pp. 468–490.
[19]
C. Fuhs. “Transforming Derivational Complexity of Term Rewriting to Runtime Complexity”. In: Proc. FroCoS ’19. LNCS 11715. 2019, pp. 348–364.
[20]
J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. “Mechanizing and Improving Dependency Pairs”. In: J. Autom. Reason. 37.3 (2006), pp. 155–203.
[21]
J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. “Analyzing Program Termination and Complexity Automatically with AProVE”. In: J. Autom. Reason. 58.1 (2017), pp. 3–31.
[22]
J. Giesl, P. Giesl, and M. Hark. “Computing Expected Runtimes for Constant Probability Programs”. In: Proc. CADE ’19. LNCS 11716. 2019, pp. 269–286.
[23]
A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. “Probabilistic Programming”. In: Proc. FOSE ’14. 2014, pp. 167–181.
[24]
B. Gramlich. “Abstract Relations between Restricted Termination and Confluence Properties of Rewrite Systems”. In: Fundamenta Informaticae 24 (1995), pp. 2–23.
[25]
R. Gutiérrez and S. Lucas. “MU-TERM: Verify Termination Properties Automatically (System Description)”. In: Proc. IJCAR ’20. LNCS 12167. 2020, pp. 436–447.
[26]
M. Huang, H. Fu, K. Chatterjee, and A. K. Goharshady. “Modular Verification for Almost-Sure Termination of Probabilistic Programs”. In: Proc.  ACM Program.  Lang. 3.OOPSLA (2019).
[27]
B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. “Weakest Precondition Reasoning for Expected Runtimes of Randomized Algorithms”. In: J. ACM 65 (2018), pp. 1–68.
[28]
B. L. Kaminski, J. Katoen, and C. Matheja. “Expected Runtime Analyis by Program Verification”. In: Foundations of Probabilistic Programming. Ed. by G. Barthe, J. Katoen, and A. Silva. Cambridge University Press, 2020, 185–220.
[29]
J.-C. Kassing and J. Giesl. “Proving Almost-Sure Innermost Termination of Probabilistic Term Rewriting Using Dependency Pairs”. In: Proc.  CADE  ’23. LNCS 14132. 2023, pp. 344–364.
[30]
J.-C. Kassing, F. Frohn, and J. Giesl. “From Innermost to Full Almost-Sure Termination of Probabilistic Term Rewriting”. In: CoRR abs/2310.06121 (2023).
[31]
J.-C. Kassing, F. Frohn, and J. Giesl. From Innermost to Full Almost-Sure Termination of Probabilistic Term Rewriting - AProVE Artifact. 2024.
[32]
J.-C. Kassing, S. Dollase, and J. Giesl. “A Complete Dependency Pair Framework for Almost-Sure Innermost Termination of Probabilistic Term Rewriting”. In: Proc.  FLOPS  ’24. LNCS. To appear. Long version at CoRR abs/2309.00344. 2024.
[33]
M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. “Tyrolean Termination Tool 2”. In: Proc.  RTA  ’09. LNCS 5595. 2009, pp. 295–304.
[34]
M. R. K. Krishna Rao. “Some Characteristics of Strong Innermost Normalization”. In: Theor.  Comput.  Sc. 239 (2000), pp. 141–164.
[35]
L. Leutgeb, G. Moser, and F. Zuleger. “Automated Expected Amortised Cost Analysis of Probabilistic Data Structures”. In: Proc.  CAV  ’22. LNCS 13372. 2022, pp. 70–91.
[36]
A. McIver, C. Morgan, B. L. Kaminski, and J.-P. Katoen. “A New Proof Rule for Almost-Sure Termination”. In: Proc.  ACM Program. Lang. 2.POPL (2018).
[37]
F. Meyer, M. Hark, and J. Giesl. “Inferring Expected Runtimes of Probabilistic Integer Programs Using Expected Sizes”. In: Proc. TACAS ’21. LNCS 12651. 2021, pp. 250–269.
[38]
M. Moosbrugger, E. Bartocci, J. Katoen, and L. Kovács. “Automated Termination Analysis of Polynomial Probabilistic Programs”. In: Proc.  ESOP  ’21. LNCS 12648. 2021, pp. 491–518.
[39]
M. H. A. Newman. “On Theories with a Combinatorial Definition of Equivalence”. In: Annals of Mathematics 43.2 (1942), pp. 223–242. URL: http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/NEWMAN/Newman.pdf.
[40]
V. C. Ngo, Q. Carbonneaux, and J. Hoffmann. “Bounded Expectations: Resource Analysis for Probabilistic Programs”. In: Proc. PLDI ’18. 2018, pp. 496–512.
[41]
M. J. O’Donnell. Computing in Systems Described by Equations. LNCS 58. 1977.
[42]
N. Saheb-Djahromi. “Probabilistic LCF”. In: Proc. MFCS ’78. LNCS 64. 1978, pp. 442–451.
[43]
R. Thiemann and C. Sternagel. “Certification of Termination Proofs Using ”. In: Proc.  TPHOLs  ’09. LNCS 5674. 2009, pp. 452–468.
[44]
Y. Toyama. “Counterexamples to the Termination for the Direct Sum of Term Rewriting Systems”. In: Inf.  Proc.  Lett. 25 (1987), pp. 141–143.
[45]
D. Wang, D. M. Kahn, and J. Hoffmann. “Raising Expectations: Automating Expected Cost Analysis with Types”. In: Proc.  ACM Program.  Lang. 4.ICFP (2020).
[46]
A. Yamada, K. Kusakari, and T. Sakabe. “Nagoya Termination Tool”. In: Proc. RTA-TLCA ’14. LNCS 8560. 2014, pp. 466–475.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Foundations of Software Science and Computation Structures: 27th International Conference, FoSSaCS 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6–11, 2024, Proceedings, Part II
Apr 2024
282 pages
ISBN:978-3-031-57230-2
DOI:10.1007/978-3-031-57231-9
  • Editors:
  • Naoki Kobayashi,
  • James Worrell
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 06 April 2024

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media