Content-Aware Anomaly Detection with Network Representation Learning
Abstract
References
Recommendations
Deep learning for anomaly detection in multivariate time series: Approaches, applications, and challenges
AbstractAnomaly detection has recently been applied to various areas, and several techniques based on deep learning have been proposed for the analysis of multivariate time series. In this study, we classify the anomalies into three types, ...
Highlights- The methods for anomaly detection on multivariate time series are reviewed.
- The ...
Autoencoding Binary Classifiers for Supervised Anomaly Detection
PRICAI 2019: Trends in Artificial IntelligenceAbstractWe propose the Autoencoding Binary Classifiers (ABC), a novel supervised anomaly detector based on the Autoencoder (AE). There are two main approaches in anomaly detection: supervised and unsupervised. The supervised approach accurately detects ...
Unsupervised Anomaly Detection on Node Attributed Networks: A Deep Learning Approach
ICISS '21: Proceedings of the 4th International Conference on Information Science and SystemsAnomaly detection has been one of the important issues in social network analysis in recent years due to the crucial role it plays in different applications such as fraud and spammer detection. Using both graph and node characteristics leads to more ...
Comments
Information & Contributors
Information
Published In
Publisher
Springer-Verlag
Berlin, Heidelberg
Publication History
Author Tags
Qualifiers
- Article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0