skip to main content
research-article

Gaussian bare‐bones gradient‐based optimization: : Towards mitigating the performance concerns

Published: 27 April 2022 Publication History

Abstract

Gradient‐based optimizer (GBO) is a metaphor‐free mathematic‐based algorithm proposed in recent years. Encouraged by the gradient‐based Newton's method, this algorithm combines with population‐based evolutionary methods. The disadvantage of the traditional GBO algorithm is that the global search ability of the algorithm is too strong, and the local search ability is too weak; accordingly, it is difficult to obtain the global optimal solution efficiently. Therefore, a new improved GBO algorithm (GOMGBO) is developed to mitigate such performance concerns by introducing a Gaussian bare‐bones mechanism, an opposition‐based learning mechanism, and a moth spiral mechanism enhanced GBO algorithm. The proposed GOMGBO has been compared against many famous methods and improved variants on 30 benchmark functions. The experimental results show that GOMGBO has apparent advantages in convergence speed and precision. In addition, this paper analyzes the balance and diversity of the GOMGBO algorithm and compares GOMGBO with other algorithms on several engineering problems. The experimental results show that the GOMGBO algorithm is also better than the competitive algorithm in engineering problems. This study uses the GOMGBO algorithm to optimize kernel extreme learning machine (KELM), and a new GOMGBO‐KELM model is proposed. The model is used to deal with four clinical disease diagnosis problems. Compared with GBO‐KELM, back propagation neural network algorithm, and other models, comparative experiments show that GOMGBO‐KELM has high performance in dealing with practical cases. We invite the community to investigate further our method for solving problems more efficiently with reasonable speed and efficiency. Readers of this study can refer to https://aliasgharheidari.com for any guidance about the proposed GOMGBO method.

References

[1]
Moré JJ. The Levenberg–Marquardt algorithm: implementation and theory. In: Watson GA, ed. Numerical Analysis. Springer; 1978:105‐116. https://doi.org/10.1007/BFb0067700
[2]
Madgwick SOH, Harrison AJL, Vaidyanathan R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In: 2011 IEEE International Conference on Rehabilitation Robotics; 2011:1‐7. https://doi.org/10.1109/ICORR.2011.5975346
[3]
Ypma TJ. Historical development of the Newton–Raphson method. SIAM Rev. 1995;37:531‐551.
[4]
Shahidi N, Esmaeilzadeh H, Abdollahi M, Ebrahimi E, Lucas C. Self‐adaptive memetic algorithm: an adaptive conjugate gradient approach. In: IEEE Conference on Cybernetics and Intelligent Systems. Vol 1; 2004:6‐11. https://doi.org/10.1109/ICCIS.2004.1460378
[5]
Hanke M. A regularizing Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Probl. 1997;13:79‐95.
[6]
Rao BV, Kumar GVN, Priya MR, Sobhan PVS. Optimal power flow by Newton method for reduction of operating cost with SVC models. In: 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies; 2009:468‐470. https://doi.org/10.1109/ACT.2009.121
[7]
Jadbabaie A, Ozdaglar A, Zargham M. A distributed Newton method for network optimization. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference. 2009:2736‐2741. https://doi.org/10.1109/CDC.2009.5400289
[8]
Li W, Wang G‐G, Gandomi AH. A survey of learning‐based intelligent optimization algorithms. Arch Comput Methods Eng. 2021;28:3781‐3799.
[9]
Li W, Wang G‐G, Alavi AH. Learning‐based elephant herding optimization algorithm for solving numerical optimization problems. Knowl‐Based Syst. 2020;195:105675.
[10]
Xu Y, Chen H, Heidari AA, et al. An efficient chaotic mutative moth–flame‐inspired optimizer for global optimization tasks. Expert Syst Appl. 2019;129:135‐155.
[11]
Faris H, Al‐Zoubi AM, Heidari AA, et al. An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks. Inf Fusion. 2019;48:67‐83.
[12]
Faris H, Heidari AA, Al‐Zoubi AM, et al. Time‐varying hierarchical chains of salps with random weight networks for feature selection. Expert Syst Appl. 2020;140:112898.
[13]
Faris H, Mafarja MM, Heidari AA, et al. An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems. Knowl‐Based Syst. 2018;154:43‐67.
[14]
Li J, Li Y‐x, Tian S‐s, Zou J. Dynamic cuckoo search algorithm based on Taguchi opposition‐based search. Int J Bio‐Inspired Comput. 2019;13:59‐69.
[15]
Li J, Xiao D‐d, Lei H, Zhang T, Tian T. Using cuckoo search algorithm with Q‐learning and genetic operation to solve the problem of logistics distribution center location. Mathematics. 2020;8:149.
[16]
Nan X, Bao L, Zhao X, et al. EPuL: an enhanced positive‐unlabeled learning algorithm for the prediction of pupylation sites. Molecules. 2017;22:1463.
[17]
Li G, Wang G‐G, Wang S. Two‐population coevolutionary algorithm with dynamic learning strategy for many‐objective optimization. Mathematics. 2021;9:2097.
[18]
Zhang Y, Liu R, Wang X, Chen H, Li C. Boosted binary Harris hawks optimizer and feature selection. Eng Comput. 2020:1‐30. https://doi.org/10.1007/s00366-020-01028-5
[19]
Hu J, Chen H, Heidari AA, et al. Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection. Knowl‐Based Syst. 2021;213:106684.
[20]
Zhang X, Xu Y, Yu C, et al. Gaussian mutational chaotic fruit fly‐built optimization and feature selection. Expert Syst Appl. 2020;141:112976.
[21]
Li Q, Chen H, Huang H, et al. An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis. Comput Math Methods Med. 2017;2017:2017‐15. https://doi.org/10.1155/2017/9512741
[22]
Liu T, Hu L, Ma C, Wang Z‐Y, Chen H‐L. A fast approach for detection of erythemato‐squamous diseases based on extreme learning machine with maximum relevance minimum redundancy feature selection. Int J Syst Sci. 2015;46:919‐931.
[23]
Chen M, Zeng G, Lu K, Weng J. A two‐layer nonlinear combination method for short‐term wind speed prediction based on ELM, ENN, and LSTM. IEEE Internet Things J. 2019;6:6997‐7010.
[24]
Gupta S, Deep K, Heidari AA, Moayedi H, Chen H. Harmonized salp chain‐built optimization. Eng Comput. 2019;37:1049‐1079.
[25]
Ba AF, Huang H, Wang M, et al. Levy‐based antlion‐inspired optimizers with orthogonal learning scheme. Eng Comput. 2020:1‐22. https://doi.org/10.1007/s00366-020-01042-7
[26]
Zhang H, Cai Z, Ye X, et al. A multi‐strategy enhanced salp swarm algorithm for global optimization. Eng Comput. 2020:1‐27. https://doi.org/10.1007/s00366-020-01099-4
[27]
Liang X, Cai Z, Wang M, Zhao X, Chen H, Li C. Chaotic oppositional sine–cosine method for solving global optimization problems. Eng Comput. 2020:1‐17. https://doi.org/10.1007/s00366-020-01083-y
[28]
Pang J, Zhou H, Tsai Y‐C, Chou F‐D. A scatter simulated annealing algorithm for the bi‐objective scheduling problem for the wet station of semiconductor manufacturing. Comput Ind Eng. 2018;123:54‐66.
[29]
Zhou H, Pang J, Chen P‐K, Chou F‐D. A modified particle swarm optimization algorithm for a batch‐processing machine scheduling problem with arbitrary release times and non‐identical job sizes. Comput Ind Eng. 2018;123:67‐81.
[30]
Zhao D, Liu L, Yu F, et al. Chaotic random spare ant colony optimization for multi‐threshold image segmentation of 2D Kapur entropy. Knowl‐Based Syst. 2020;216:106510. https://doi.org/10.1016/j.knosys.2020.106510
[31]
Zhao D, Liu L, Yu F, et al. Ant colony optimization with horizontal and vertical crossover search: fundamental visions for multi‐threshold image segmentation. Expert Syst Appl. 2020:167114122. https://doi.org/10.1016/j.eswa.2020.114122
[32]
Zeng G‐Q, Lu Y‐Z, Mao W‐J. Modified extremal optimization for the hard maximum satisfiability problem. J Zhejiang Univ Sci C. 2011;12:589‐596.
[33]
Zeng G, Lu Y, Dai Y, et al. Backbone guided extremal optimization for the hard maximum satisfiability problem. Int J Innovative Comput Inf Control. 2012;8:8355‐8366.
[34]
Zhang Y, Liu R, Heidari AA, et al. Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis. Neurocomputing. 2020;430:185‐212. https://doi.org/10.1016/j.neucom.2020.10.038
[35]
Yu C, Chen M, Cheng K, et al. SGOA: annealing‐behaved grasshopper optimizer for global tasks. Eng Comput. 2021. https://doi.org/10.1007/s00366-020-01234-1
[36]
Cai Z, Gu J, Luo J, et al. Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy. Expert Syst Appl. 2019;138:112814.
[37]
Heidari AA, Abbaspour RA, Chen H. Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training. Appl Soft Comput. 2019;81:105521.
[38]
Shen L, Chen H, Yu Z, et al. Evolving support vector machines using fruit fly optimization for medical data classification. Knowl‐Based Syst. 2016;96:61‐75.
[39]
Wang M, Chen H, Yang B, et al. Toward an optimal kernel extreme learning machine using a chaotic moth–flame optimization strategy with applications in medical diagnoses. Neurocomputing. 2017;267:69‐84.
[40]
Wang M, Chen H. Chaotic multi‐swarm whale optimizer boosted support vector machine for medical diagnosis. Appl Soft Comput. 2020;88:105946.
[41]
Zeng G‐Q, Lu K‐D, Dai Y‐X, et al. Binary‐coded extremal optimization for the design of PID controllers. Neurocomputing. 2014;138:180‐188.
[42]
Zeng G‐Q, Chen J, Dai Y‐X, Li L‐M, Zheng C‐W, Chen M‐RJN. Design of fractional order PID controller for automatic regulator voltage system based on multi‐objective extremal optimization. Neurocomputing. 2015;160:173‐184.
[43]
Zeng G‐Q, Xie X‐Q, Chen M‐R, Weng J. Adaptive population extremal optimization‐based PID neural network for multivariable nonlinear control systems. Swarm Evol Comput. 2019;44:320‐334.
[44]
Deng W, Xu J, Zhao H, Song Y. A Novel Gate Resource Allocation Method Using Improved PSO‐Based QEA. IEEE Trans Intell Transp Syst. 2020:1‐9. https://doi.org/10.1109/TITS.2020.3025796
[45]
Deng W, Xu JJ, Song YJ, Zhao HM. An effective improved co‐evolution ant colony optimization algorithm with multi‐strategies and its application. Int J Bio‐Inspired Comput. 2020;16(3):158‐170.
[46]
Deng W, Liu H, Xu J, Zhao H, Song YJ. An improved quantum‐inspired differential evolution algorithm for deep belief network. IEEE Trans Instrum Meas. 2020;69:7319‐7327. https://doi.org/10.1109/TIM.2020.2983233
[47]
Zhao H, Liu H, Xu J, Deng W. Performance prediction using high‐order differential mathematical morphology gradient spectrum entropy and extreme learning machine. IEEE Trans Instrum Meas. 2019;68:3200‐3210. https://doi.org/10.1109/TIM.2019.2948414
[48]
Zhao X, Li D, Yang B, Ma C, Zhu Y, Chen H. Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl Soft Comput. 2014;24:585‐596.
[49]
Zhao X, Li D, Yang B, et al. A two‐stage feature selection method with its application. Comput Electr Eng. 2015;47:114‐125.
[50]
Chen Z‐G, Zhan Z‐H, Lin Y, et al. Multiobjective cloud workflow scheduling: a multiple populations ant colony system approach. IEEE Trans Cybern. 2018;49:2912‐2926.
[51]
Wang Z‐J, Zhan Z‐H, Yu W‐J, et al. Dynamic group learning distributed particle swarm optimization for large‐scale optimization and its application in cloud workflow scheduling. IEEE Trans Cybern. 2019;50:2715‐2729.
[52]
Liang D, Zhan Z‐H, Zhang Y, Zhang J. An efficient ant colony system approach for new energy vehicle dispatch problem. IEEE Trans Intell Transp Syst. 2019;21:4784‐4797.
[53]
Liu X‐F, Zhan Z‐H, Zhang J. Resource‐aware distributed differential evolution for training expensive neural‐network‐based controller in power electronic circuit. IEEE Trans Neural Networks Learn Syst. 2021:1‐11. https://doi.org/10.1109/TNNLS.2021.3075205
[54]
Zhan Z‐H, Liu X‐F, Zhang H, et al. Cloudde: a heterogeneous differential evolution algorithm and its distributed cloud version. IEEE Trans Parallel Distrib Syst. 2016;28:704‐716.
[55]
Mafarja M, Qasem A, Heidari AA, Aljarah I, Faris H, Mirjalili S. Efficient hybrid nature‐inspired binary optimizers for feature selection. Cognit Comput. 2020;12:150‐175.
[56]
Li W, Wang G‐G. Elephant herding optimization using dynamic topology and biogeography‐based optimization based on learning for numerical optimization. Eng Comput. 2021.
[57]
Mirjalili S. Moth–flame optimization algorithm: a novel nature‐inspired heuristic paradigm. Knowl‐Based Syst. 2015;89:228‐249.
[58]
Xu Y, Chen H, Luo J, Zhang Q, Jiao S, Zhang X. Enhanced moth–flame optimizer with mutation strategy for global optimization. Inf Sci (Ny). 2019;492:181‐203. https://doi.org/10.1016/j.ins.2019.04.022
[59]
Xu Y, Huang H, Heidari AA, et al. MFeature: towards high performance evolutionary tools for feature selection. Expert Syst Appl. 2021;186:115655.
[60]
Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of the International Conference on Neural Networks (ICNN'95). Vol 4; 1995:1942‐1948.
[61]
Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I. Grasshopper optimization algorithm for multi‐objective optimization problems. Appl Intell. 2018;48:805‐820.
[62]
Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Software. 2016;95:51‐67. https://doi.org/10.1016/j.advengsoft.2016.01.008
[63]
Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowl‐Based Syst. 2016;96:120‐133.
[64]
Chen H, Jiao S, Heidari AA, Wang M, Chen X, Zhao X. An opposition‐based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy Convers Manage. 2019;195:927‐942.
[65]
Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220:671‐680.
[66]
Allam D, Yousri DA, Eteiba MB. Parameters extraction of the three diode model for the multi‐crystalline solar cell/module using moth–flame optimization algorithm. Energy Convers Manage. 2016;123:535‐548.
[67]
Li C, Li S, Liu Y. A least squares support vector machine model optimized by moth–flame optimization algorithm for annual power load forecasting. Appl Intell. 2016;45:1166‐1178.
[68]
Aziz MAE, Ewees AA, Hassanien AE. Whale optimization algorithm and moth–flame optimization for multilevel thresholding image segmentation. Expert Syst Appl. 2017;83:242‐256.
[69]
Ng Shin Mei R, Sulaiman MH, Mustaffa Z, Daniyal H. Optimal reactive power dispatch solution by loss minimization using moth–flame optimization technique. Appl Soft Comput. 2017;59:210‐222.
[70]
Sayed GI, Hassanien AE. Moth–flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images. Appl Intell. 2017;47:397‐408.
[71]
Li C, Hou L, Sharma BY, et al. Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. Comput Methods Programs Biomed. 2018;153:211‐225.
[72]
Hekimoğlu B, Ekinci S. Grasshopper optimization algorithm for automatic voltage regulator system. In: 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE); 2018:152‐156.
[73]
Barman M, Dev Choudhury NB, Sutradhar S. A regional hybrid GOA‐SVM model based on similar day approach for short‐term load forecasting in Assam, India. Energy. 2018;145:710‐720.
[74]
Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. Harris hawks optimization: algorithm and applications. Future Gener Comput Syst. 2019;97:849‐872. https://doi.org/10.1016/j.future.2019.02.028
[75]
Askari Q, Saeed M, Younas I. Heap‐based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst Appl. 2020;161:113702.
[76]
Ahmadianfar I, Bozorg‐Haddad O, Chu X. Gradient‐based optimizer: a new metaheuristic optimization algorithm. Inf Sci (Ny). 2020;540:131‐159.
[77]
Li S, Chen H, Wang M, Heidari AA, Mirjalili S. Slime mould algorithm: a new method for stochastic optimization. Future Gener Comput Syst. 2020;111:300‐323.
[78]
Ahmadianfar I, Asghar Heidari A, Gandomi AH, Chu X, Chen H. RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method. Expert Syst Appl. 2021;181:115079.
[79]
Yang Y, Chen H, Heidari AA, Gandomi AH. Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst Appl. 2021;177:114864.
[80]
Tu J, Chen H, Wang M, Gandomi AH. The colony predation algorithm. J Bionic Eng. 2021;18:674‐710.
[81]
Sapre S, Mini S. Opposition‐based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization. Soft Comput. 2019;23:6023‐6041.
[82]
Hassanien AE, Gaber T, Mokhtar U, Hefny H. An improved moth flame optimization algorithm based on rough sets for tomato diseases detection. Comput Electron Agric. 2017;136:86‐96.
[83]
Li G, Wang G‐G, Dong J, Yeh W‐C, Li K. DLEA: a dynamic learning evolution algorithm for many‐objective optimization. Inf Sci (Ny). 2021;574:567‐589.
[84]
Wang G‐G, Deb S, Gandomi AH, Alavi AH. Opposition‐based krill herd algorithm with Cauchy mutation and position clamping. Neurocomputing. 2016;177:147‐157.
[85]
Chen H, Zhang G, Fan D, Fang L, Huang L. Nonlinear lamb wave analysis for microdefect identification in mechanical structural health assessment. Measurement. 2020;164:108026.
[86]
Feng Y, Wang G‐G, Dong J, Wang L. Opposition‐based learning monarch butterfly optimization with Gaussian perturbation for large‐scale 0–1 knapsack problem. Comput Electr Eng. 2018;67:454‐468.
[87]
Fang L, Sun L, He G. An efficient Newton‐type method with fifth‐order convergence for solving nonlinear equations. Comput Appl Math. 2008;27:269‐274.
[88]
Huang G‐B, Zhu Q‐Y, Siew C‐K. Extreme learning machine: theory and applications. Neurocomputing. 2006;70:489‐501.
[89]
Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B (Cybern). 2012;42:513‐529.
[90]
Wang H, Rahnamayan S, Sun H, Omran MGH. Gaussian bare‐bones differential evolution. IEEE Trans Cybern. 2013;43:634‐647.
[91]
Sun J, Zhang Q, Tsang EPK. DE/EDA: a new evolutionary algorithm for global optimization. Inf Sci (Ny). 2005;169:249‐262.
[92]
Wang H, Wu Z, Rahnamayan S, Liu Y, Ventresca M. Enhancing particle swarm optimization using generalized opposition‐based learning. Inf Sci (Ny). 2011;181:4699‐4714.
[93]
Ewees AA, Abd Elaziz M, Houssein EH. Improved grasshopper optimization algorithm using opposition‐based learning. Expert Syst Appl. 2018;112:156‐172.
[94]
Luo J, Chen H, Heidari AA, Xu Y, Zhang Q, Li C. Multi‐strategy boosted mutative whale‐inspired optimization approaches. Appl Math Model. 2019;73:109‐123.
[95]
Zhou W, Wang P, Heidari AA, Zhao X, Turabieh H, Chen H. Random learning gradient based optimization for efficient design of photovoltaic models. Energy Convers Manage. 2021;230:113751.
[96]
Ahmadianfar I, Gong W, Heidari AA, Golilarz NA, Samadi‐Koucheksaraee A, Chen H. Gradient‐based optimization with ranking mechanisms for parameter identification of photovoltaic systems. Energy Reports. 2021;7:3979‐3997.
[97]
Heidari AA, Abbaspour RA, Jordehi AR. Gaussian bare‐bones water cycle algorithm for optimal reactive power dispatch in electrical power systems. Appl Soft Comput. 2017;57:657‐671.
[98]
Krohling RA, Mendel E. Bare bones particle swarm optimization with Gaussian or Cauchy jumps. In: 2009 IEEE Congress on Evolutionary Computation, 2009:3285‐3291.
[99]
Yu S, Zhu S, Ma Y, Mao D. Enhancing firefly algorithm using generalized opposition‐based learning. Computing. 2015;97:741‐754.
[100]
He Y, Dai L, Zhang H. Multi‐branch deep residual learning for clustering and beamforming in user‐centric network. IEEE Commun Lett. 2020;24:2221‐2225.
[101]
Feng S, Zuo C, Zhang L, Yin W, Chen Q. Generalized framework for non‐sinusoidal fringe analysis using deep learning. Photonics Res. 2021;9:1084‐1098.
[102]
Xu L, Jiang S, Wu J, Zou Q. An in silico approach to identification, categorization and prediction of nucleic acid binding proteins. Brief Bioinf. 2020;22(3). https://doi.org/10.1093/bib/bbaa171
[103]
Wang X‐F, Gao P, Liu Y‐F, Li H‐F, Lu F. Predicting thermophilic proteins by machine learning. Curr Bioinf. 2020;15:493‐502.
[104]
Yang XS, Hossein Gandomi A. Bat algorithm: a novel approach for global engineering optimization. Eng Comput. 2012;29:464‐483.
[105]
Deng S, Wang X, Zhu Y, Lv F, Wang J. Hybrid grey wolf optimization algorithm–based support vector machine for groutability prediction of fractured rock mass. J Comput Civ Eng. 2019;33:04018065.
[106]
Hongwei L, Jianyong L, Liang C, Jingbo B, Yangyang S, Kai L. Chaos‐enhanced moth–flame optimization algorithm for global optimization. J Syst Eng Electron. 2019;30:1144‐1159.
[107]
Alambeigi F, Pedram SA, Speyer JL, et al. SCADE: simultaneous sensor calibration and deformation estimation of FBG‐equipped unmodeled continuum manipulators. IEEE Trans Rob. 2020;36:222‐239.
[108]
Gupta S, Deep K. A hybrid self‐adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl. 2019;119:210‐230.
[109]
Shan D, Cao G, Dong H. LGMS‐FOA: an improved fruit fly optimization algorithm for solving optimization problems. Math Probl Eng. 2013;2013:108768‐108769.
[110]
Zhu W, Xu P, Bui T, Wu G, Yang Y. Energy‐efficient cell‐association bias adjustment algorithm for ultra‐dense networks. Sci China Inf Sci. 2017;61:022306.
[111]
Carrasco J, García S, Rueda MM, Das S, Herrera F. Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review. Swarm Evol Comput. 2020;54:100665.
[112]
Zhang M, Chen Y, Susilo W. PPO‐CPQ: a privacy‐preserving optimization of clinical pathway query for e‐healthcare systems. IEEE Internet Things J. 2020;7:10660‐10672.
[113]
Wang P, Wang L, Leung H, Zhang G. Super‐resolution mapping based on spatial–spectral correlation for spectral imagery. IEEE Trans Geosci Remote Sens. 2020;59:2256‐2268.
[114]
Zhou W, Lv Y, Lei J, Yu L. Global and local‐contrast guides content‐aware fusion for RGB‐D saliency prediction. IEEE Trans Syst Man Cybern: Syst. 2021;51:3641‐3649.
[115]
Zhang W, Ma Z, Zhao H, Ren L. Angular velocity measurement with improved scale factor based on a wideband‐tunable optoelectronic oscillator. IEEE Trans Instrum Meas. 2021;70:1‐9.
[116]
Mi C, Huang Y, Fu C, Zhang Z, Postolache O. Vision‐based measurement: actualities and developing trends in automated container terminals. IEEE Instrum Meas Mag. 2021;24:65‐76.
[117]
Kordestani H, Zhang C, Masri SF, Shadabfar M. An empirical time‐domain trend line‐based bridge signal decomposing algorithm using Savitzky–Golay filter. Struct Control Health Monit. 2021;28:e2750.
[118]
Wu Z, Cao J, Wang Y, Wang Y, Zhang L, Wu J. hPSD: a hybrid PU‐learning‐based spammer detection model for product reviews. IEEE Trans Cybern. 2020;50:1595‐1606.
[119]
Li B, Xiao G, Lu R, Deng R, Bao H. On feasibility and limitations of detecting false data injection attacks on power grid state estimation using D‐FACTS devices. IEEE Trans Ind Inf. 2020;16:854‐864.
[120]
Hu P, Cao L, Su J, Li Q, Li Y. Distribution characteristics of salt‐out particles in steam turbine stage. Energy. 2020;192:116626.
[121]
Sun S, Xu L, Zou Q, Wang G. BP4RNAseq: a babysitter package for retrospective and newly generated RNA‐seq data analyses using both alignment‐based and alignment‐free quantification method. Bioinformatics. 2020;37:1319‐1321.
[122]
Sarafrazi S, Nezamabadi‐pour H. Facing the classification of binary problems with a GSA‐SVM hybrid system. Math Comput Model. 2013;57:270‐278.
[123]
Zhang W, Niu P, Li G, Li P. Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm. Knowl‐Based Syst. 2013;39:34‐44.
[124]
Dhiman G, Kumar V. Emperor penguin optimizer: a bio‐inspired algorithm for engineering problems. Knowl‐Based Syst. 2018;159:20‐50.
[125]
Liang H, Liu Y, Shen Y, Li F, Man Y. A hybrid bat algorithm for economic dispatch with random wind power. IEEE Trans Power Syst. 2018;33:5052‐5061.
[126]
Sadollah A, Bahreininejad A, Eskandar H, Hamdi M. Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput. 2013;13:2592‐2612.
[127]
Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct. 2012;110‐111:151‐166.
[128]
Gu F, Ma B, Guo J, Summers PA, Hall P. Internet of things and Big Data as potential solutions to the problems in waste electrical and electronic equipment management: an exploratory study. Waste Manage. 2017;68:434‐448.
[129]
Han C, Zhang B, Chen H, Wei Z, Liu Y. Spatially distributed crop model based on remote sensing. Agric Water Manage. 2019;218:165‐173.
[130]
Moayedi H, Hayati S. Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods. Appl Soft Comput. 2018;66:208‐219.
[131]
Xiong Q, Zhang X, Wang W‐F, Gu Y. A parallel algorithm framework for feature extraction of EEG signals on MPI. Comput Math Methods Med. 2020;2020:9812019.
[132]
Zhu B, Ye S, Jiang M, et al. Achieving the carbon intensity target of China: a least squares support vector machine with mixture kernel function approach. Appl Energy. 2019;233‐234:196‐207.
[133]
Zeng H‐B, Teo KL, He Y, Wang W. Sampled‐data stabilization of chaotic systems based on a TS fuzzy model. Inf Sci (Ny). 2019;483:262‐272.
[134]
Wang G, Yao Y, Chen Z, Hu P. Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology. Energy. 2019;166:256‐266.
[135]
Xu C, Zhang Q. Existence and global exponential stability of anti‐periodic solutions of high‐order bidirectional associative memory (BAM) networks with time‐varying delays on time scales. J Comput Sci. 2015;8:48‐61.
[136]
Xu C, Zhang Q. Bifurcation analysis of a tri‐neuron neural network model in the frequency domain. Nonlinear Dyn. 2014;76:33‐46.
[137]
Xu C, He X, Li P. Global existence of periodic solutions in a six‐neuron BAM neural network model with discrete delays. Neurocomputing. 2011;74:3257‐3267.
[138]
Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2:1‐27.
[139]
Wolberg WH, Mangasarian OL. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proc Natl Acad Sci USA. 1990;87:9193‐9196.
[140]
Elter M, Schulz‐Wendtland R, Wittenberg T. The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process. Med Phys. 2007;34:4164‐4172.
[141]
Wu X, Xu X, Liu J, Wang H, Hu B, Nie F. Supervised feature selection with orthogonal regression and feature weighting. IEEE Trans Neural Networks Learn Syst. 2020;32:1831‐1838. https://doi.org/10.1109/TNNLS.2020.2991336
[142]
Hu Z, Wang J, Zhang C, et al. Uncertainty modeling for multi center autism spectrum disorder classification using Takagi–Sugeno–Kang fuzzy systems. IEEE Trans Cogn Dev Syst. 2021:1.
[143]
Chen C, Wu Q, Li Z, Xiao L, Hu ZY. Diagnosis of Alzheimer's disease based on deeply‐fused nets. Comb Chem High Throughput Screening. 2020;24:781‐789.
[144]
Fei X, Wang J, Ying S, Hu Z, Shi J. Projective parameter transfer based sparse multiple empirical kernel learning machine for diagnosis of brain disease. Neurocomputing. 2020;413:271‐283. https://doi.org/10.1016/j.neucom.2020.07.008
[145]
Saber A, Sakr M, Abo‐Seida OM, Keshk A, Chen H. A novel deep‐learning model for automatic detection and classification of breast cancer using the transfer‐learning technique. IEEE Access. 2021;9:71194‐71209.
[146]
Zhang L, Zou Y, Wang W, Jin Z, Su Y, Chen H. Resource allocation and trust computing for blockchain‐enabled edge computing system. Comput Secur. 2021;88:102249‐134.
[147]
Lejun Z, Zhijie Z, Weizheng W, et al. A covert communication method using special bitcoin addresses generated by vanitygen. Comput Mater Continua. 2020;65:597‐616.
[148]
Zhang L, Zhang Z, Wang W, Jin Z, Su Y, Chen H. Research on a covert communication model realized by using smart contracts in blockchain environment. IEEE Syst J. 2021;13:549‐556. https://doi.org/10.1109/JSYST.2021.3057333
[149]
Xue X, Wang SF, Zhan LJ, Feng ZY, Guo YD. Social learning evolution (SLE): computational experiment‐based modeling framework of social manufacturing. IEEE Trans Ind Inf. 2019;15:3343‐3355.
[150]
Xue X, Chen Z, Wang S, Feng Z, Duan Y, Zhou Z. Value entropy: a systematic evaluation model of service ecosystem evolution. IEEE Trans Serv Comput. 2020;13:549‐556. https://doi.org/10.1109/TSC.2020.3016660
[151]
Zhao H, Guo H, Jin X, Shen J, Mao X, Liu JJN. Parallel and efficient approximate nearest patch matching for image editing applications. Neurocomputing. 2018;305:39‐50.
[152]
Zhao Y, Jin X, Xu Y, Zhao H, Ai M, Zhou K. Parallel style‐aware image cloning for artworks. IEEE Trans Vis Comput Graph. 2014;21:229‐240.
[153]
Yang Y, Zhao H, You L, Tu R, Wu X, Jin X. Semantic portrait color transfer with internet images. Multimedia Tools Appl. 2017;76:523‐541.
[154]
Cao X, Cao T, Gao F, Guan X. Risk‐averse storage planning for improving RES hosting capacity under uncertain siting choice. IEEE Trans Sustain Energy. 2021;13:549‐556. https://doi.org/10.1109/TSTE.2021.3075615
[155]
Li J, Chen C, Chen H, Tong C. Towards context‐aware social recommendation via individual trust. Knowl‐Based Syst. 2017;127:58‐66.
[156]
Li J, Lin J. A probability distribution detection based hybrid ensemble QoS prediction approach. Inf Sci (Ny). 2020;519:289‐305.
[157]
Li J, Zheng X‐L, Chen S‐T, Song W‐W, Chen D‐R. An efficient and reliable approach for quality‐of‐service‐aware service composition. Inf Sci (Ny). 2014;269:238‐254.
[158]
Pei H, Yang B, Liu J, Chang K. Active surveillance via group sparse Bayesian learning. IEEE Trans Pattern Anal Mach Intell. 2020. https://doi.org/10.1109/TPAMI.2020.3023092
[159]
Qiu S, Wang Z, Zhao H, Qin K, Li Z, Hu H. Inertial/magnetic sensors based pedestrian dead reckoning by means of multi‐sensor fusion. Inf Fusion. 2018;39:108‐119.
[160]
Qiu S, Wang Z, Zhao H, Hu H. Using distributed wearable sensors to measure and evaluate human lower limb motions. IEEE Trans Instrum Meas. 2016;65(4):939‐950.
[161]
Zhu X, Guo K, Fang H, Chen L, Ren S, Hu B. Cross view capture for stereo image super‐resolution. IEEE Trans Multimedia. 2021;13:549‐556. https://doi.org/10.1109/TMM.2021.3092571
[162]
Zhu X, Guo K, Ren S, Hu B, Hu M, Fang H. Lightweight image super‐resolution with expectation‐maximization attention mechanism. IEEE Trans Circuits Syst Video Technol. 2021;13:549‐556. https://doi.org/10.1109/TCSVT.2021.3078436
[163]
Hu B, Guo K, Wang X, Zhang J, Zhou D. RRL‐GAT: graph attention network‐driven multi‐label image robust representation learning. IEEE Internet Things J. 2021;13:549‐556. https://doi.org/10.1109/JIOT.2021.3089180
[164]
Jiang N, Tian F, Li J, Yuan X, Zheng J. MAN: mutual attention neural networks model for aspect‐level sentiment classification in SIoT. IEEE Internet Things J. 2020;7:2901‐2913.
[165]
Jiang N, Chen J, Zhou R‐G, et al. PAN: pipeline assisted neural networks model for data‐to‐text generation in social internet of things. Inf Sci (Ny). 2020;530:167‐179.
[166]
Jiang N, Xu D, Zhou J, Yan H, Wan T, Zheng J. Toward optimal participant decisions with voting‐based incentive model for crowd sensing. Inf Sci (Ny). 2020;512:1‐17.
[167]
Fan M, Zhang X, Hu J, Gu N, Tao D. Adaptive data structure regularized multiclass discriminative feature selection. IEEE Trans Neural Networks Learn Syst. 2021:1‐14.
[168]
Zhang X, Fan M, Wang D, Zhou P, Tao D. Top‐k feature selection framework using robust 0–1 integer programming. IEEE Trans Neural Networks Learn Syst. 2020;32:3005‐3019.
[169]
Zhang X, Li W, Ye X, Maybank S. Robust hand tracking via novel multi‐cue integration. Neurocomputing. 2015;157:296‐305.
[170]
Majhi SK, Hossain SS, Padhi T. MFOFLANN: moth flame optimized functional link artificial neural network for prediction of earthquake magnitude. Evol Syst. 2019.
[171]
Zhou Y, Tian L, Zhu C, Jin X, Sun Y. Video coding optimization for virtual reality 360‐degree source. IEEE J Sel Top Signal Process. 2020;14:118‐129.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image International Journal of Intelligent Systems
International Journal of Intelligent Systems  Volume 37, Issue 6
June 2022
583 pages
ISSN:0884-8173
DOI:10.1002/int.v37.6
Issue’s Table of Contents

Publisher

John Wiley and Sons Ltd.

United Kingdom

Publication History

Published: 27 April 2022

Author Tags

  1. global optimization
  2. gradient‐based optimizer
  3. kernel extreme learning machine
  4. medical diagnosis
  5. parameter optimization

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media