skip to main content
10.5555/3005729.3005733acmotherconferencesArticle/Chapter ViewAbstractPublication PageselsConference Proceedingsconference-collections
Article

Using Lisp Macro-Facilities for Transferable Statistical Tests

Published: 09 May 2016 Publication History

Abstract

Model-free statistical tests are purely data-driven approaches to assess correlations and other interdependencies between observable quantities. The few, distinct patterns how to perform these tests on the myriad of potentially different interdependence measures prompted us to use (Common) Lisp's macro capabilities for the development of a general, domain-specific language (DSL) of expectation values under so-called resampling techniques. Herein, we give an introduction into this statistical approach to big data, describe our solution, and report on application as well as on further research opportunities in statistical DSLs. We illustrate the results based on a toy example.

References

[1]
IEEE Transactions on Software Engineering (TSE), special issue, volume 25, number 3, may/june 1999.
[2]
S. D. Anderson, A. Carlson, D. L. Westbrook, D. M. Hart, and P. R. cohen. Common lisp analytical statistics package: User manual. Technical report, Amherst, MA, USA, 1993.
[3]
J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical computing. November 2014.
[4]
J. de Leeuw. On abandoning XLISP-STAT. Journal of Statistical Software, 13(1):1-5, 2005.
[5]
M. Dwass. Modified randomization tests for nonparametric hypotheses. Ann. Math. Statist., 28(1):181-187, 03 1957.
[6]
B. Efron. Bootstrap methods: Another look at the jackknife. Ann. Statist., 7(1):1-26, 01 1979.
[7]
P. Graham. ANSI Common LISP. Prentice Hall, Nov. 1995.
[8]
M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 1 edition, Mar. 2008.
[9]
D. Hoyte. Let Over Lambda. 2008.
[10]
F. Pérez and B. E. Granger. IPython: a system for interactive scientific computing. Computing in Science and Engineering, 9(3):21-29, May 2007.
[11]
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.
[12]
T. Rossini. Common Lisp Statistics. https://github.com/blindglobe/common-lisp-stat, retrieved 03/15/2016.
[13]
T. Rossini. R-Common Lisp gateway. https://github.com/blindglobe/rclg, retrieved 03/15/2016.
[14]
P. Seibel. Practical Common Lisp. Apress, Sept. 2004.
[15]
J. W. Tukey. Bias and confidence in not-quite large samples. Ann. Math. Statist., 29(2):614-623, 06 1958. just the abstract to a talk.
[16]
M. Waechter, K. Jaeger, D. Thuerck, S. Weissgraeber, S. Widmer, M. Goesele, and K. Hamacher. Using graphics processing units to investigate molecular coevolution. Concurrency and Computation: Practice and Experience, 26(6):1278-1296, 2014.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ELS2016: Proceedings of the 9th European Lisp Symposium on European Lisp Symposium
May 2016
117 pages
ISBN:9782955747407

In-Cooperation

Publisher

European Lisp Scientific Activities Association

Publication History

Published: 09 May 2016

Check for updates

Author Tags

  1. Domain Specific Language
  2. Macros
  3. Permutation Test
  4. Statistical Modeling

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 16
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media